Secular Chaos and Its Application to Mercury, Hot Jupiters, and The
Secular chaos and its application to Mercury, hot SPECIAL FEATURE Jupiters, and the organization of planetary systems Yoram Lithwicka,b,1 and Yanqin Wuc aDepartment of Physics and Astronomy and bCenter for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208; and cDepartment of Astronomy and Astrophysics, University of Toronto, Toronto, ON, Canada M5S 3H4 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board October 31, 2013 (received for review May 2, 2013) In the inner solar system, the planets’ orbits evolve chaotically, by including the most important MMRs (11).] It is the cause, for driven primarily by secular chaos. Mercury has a particularly cha- example, of Earth’s eccentricity-driven Milankovitch cycle. How- otic orbit and is in danger of being lost within a few billion years. ever, on timescales ≳107 years, the evolution is chaotic (e.g., Fig. Just as secular chaos is reorganizing the solar system today, so it 1), in sharp contrast to the prediction of linear secular theory. has likely helped organize it in the past. We suggest that extra- That appears to be puzzling, given the small eccentricities and solar planetary systems are also organized to a large extent by inclinations in the solar system. secular chaos. A hot Jupiter could be the end state of a secularly However, despite its importance, there has been little theo- chaotic planetary system reminiscent of the solar system. How- retical understanding of how secular chaos works. Conversely, ever, in the case of the hot Jupiter, the innermost planet was chaos driven by MMRs is much better understood.
[Show full text]