Iterative properties of birational rowmotion II: Rectangles and triangles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Grinberg, Darij, and Tom Roby. "Iterative properties of birational rowmotion II: Rectangles and triangles." Electronic Journal of Combinatorics 22(3) (2015). As Published http://www.combinatorics.org/ojs/index.php/eljc/article/view/ v22i3p40 Publisher European Mathematical Information Service (EMIS) Version Final published version Citable link http://hdl.handle.net/1721.1/100753 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Iterative properties of birational rowmotion II: rectangles and triangles Darij Grinberg∗ Tom Robyy Department of Mathematics Department of Mathematics Massachusetts Institute of Technology University of Connecticut Massachusetts, U.S.A. Connecticut, U.S.A.
[email protected] [email protected] Submitted: May 1, 2014; Accepted: Sep 8, 2015; Published: Sep 20, 2015 Mathematics Subject Classifications: 06A07, 05E99 Abstract Birational rowmotion { a birational map associated to any finite poset P { has been introduced by Einstein and Propp as a far-reaching generalization of the (well- studied) classical rowmotion map on the set of order ideals of P . Continuing our exploration of this birational rowmotion, we prove that it has order p+q on the (p; q)- rectangle poset (i.e., on the product of a p-element chain with a q-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set).