Velaro Brochure EN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improved Spiral Geometry for High Speed Rail
U.S. Department Of Transportation Federal Railroad Administration RR08-02 January 2008 Improved Spiral Geometry for High Speed Rail SUMMARY A different shape of spiral section for transitioning from tangent to curved track was tested on the Northeast Corridor in a 0.925-degree curve (Figure 1) near Guilford, CT, where typical operating speed for Amtrak's Acela trains is 125 mph. The modified spiral geometry was intended to reduce lateral forces and improve ride quality for high speed trains when entering and exiting curves. The modified design causes a train to rotate around its center of gravity as it leans into a curve, rather than centering rotation at the top-of-rail as does a conventional railroad spiral. Ride quality and force measurements were made before and shortly after spiral modification, and 1 year later. Compared to conventional geometry, initial and final measurements showed that the modified spirals reduced peak-to-peak lateral accelerations in the car body by 41 percent. Lateral wheel-rail force measurements from two instrumented wheelsets of an Acela power car showed a reduction in root-mean- square (RMS) net axle lateral forces of about 33 percent. Initially, truck lateral peak-to-peak acceleration dropped by 38 percent, but after 1 year, these accelerations returned to the pre-modification levels. At the test site, the modified spiral geometry was applied without the need to change rail length. The resulting shape and rate of superelevation change also fall within existing Federal Railroad Administration (FRA) track safety standard allowances. Amtrak plans to continue this study by installing the modified spiral geometry on at least two additional curves for further evaluation. -
Signalling on the High-Speed Railway Amsterdam–Antwerp
Computers in Railways XI 243 Towards interoperability on Northwest European railway corridors: signalling on the high-speed railway Amsterdam–Antwerp J. H. Baggen, J. M. Vleugel & J. A. A. M. Stoop Delft University of Technology, The Netherlands Abstract The high-speed railway Amsterdam (The Netherlands)–Antwerp (Belgium) is nearly completed. As part of a TEN-T priority project it will connect to major metropolitan areas in Northwest Europe. In many (European) countries, high-speed railways have been built. So, at first sight, the development of this particular high-speed railway should be relatively straightforward. But the situation seems to be more complicated. To run international services full interoperability is required. However, there turned out to be compatibility problems that are mainly caused by the way decision making has taken place, in particular with respect to the choice and implementation of ERTMS, the new European railway signalling system. In this paper major technical and institutional choices, as well as the choice of system borders that have all been made by decision makers involved in the development of the high-speed railway Amsterdam–Antwerp, will be analyzed. This will make it possible to draw some lessons that might be used for future railway projects in Europe and other parts of the world. Keywords: high-speed railway, interoperability, signalling, metropolitan areas. 1 Introduction Two major new railway projects were initiated in the past decade in The Netherlands, the Betuweroute dedicated freight railway between Rotterdam seaport and the Dutch-German border and the high-speed railway between Amsterdam Airport Schiphol and the Dutch-Belgian border to Antwerp (Belgium). -
3 Power Supply
3 Power supply Table of contents Article 44 Installation, etc. of Contact Lines, etc. .........................................................................2 Article 45 Approach or Crossing of Overhead Contact Lines, etc................................................ 10 Article 46 Insulation Division of Contact Lines............................................................................ 12 Article 47 Prevention of Problems under Overbridges, etc........................................................... 13 Article 48 Installation of Return Current Rails ........................................................................... 13 Article 49 Lightning protection..................................................................................................... 13 Article 51 Facilities at substations................................................................................................. 14 Article 52 Installation of electrical equipment and switchboards ................................................. 15 Article 53 Protection of electrical equipment................................................................................ 16 Article 54 Insulation of electric lines ............................................................................................ 16 Article 55 Grounding of Electrical Equipment ............................................................................. 18 Article 99 Inspection and monitoring of the contact lines on the main line.................................. 19 Article 101 Records........................................................................................................................ -
Pioneering the Application of High Speed Rail Express Trainsets in the United States
Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies . -
TECHNICAL REPORT DOCUMENTATION PAGE Formats
STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION ADA Notice For individuals with sensory disabilities, this document is available in alternate TECHNICAL REPORT DOCUMENTATION PAGE formats. For alternate format information, contact the Forms Management Unit TR0003 (REV 10/98) at (916) 445-1233, TTY 711, or write to Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814. 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER CA-17-2969 4. TITLE AND SUBTITLE 5. REPORT DATE A Comparative Analysis of High Speed Rail Station Development into Destination and/or Multi-use Facilities: The Case of San Jose Diridon February 2017 6. PERFORMING ORGANIZATION CODE 7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO. Anastasia Loukaitou-Sideris Ph.D. / Deike Peters, Ph.D. MTI Report 12-75 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER Mineta Transportation Institute College of Business 3762 San José State University 11. CONTRACT OR GRANT NUMBER San José, CA 95192-0219 65A0499 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED California Department of Transportation Final Report Division of Research, Innovation and Systems Information MS-42, PO Box 942873 14. SPONSORING AGENCY CODE Sacramento, CA 94273-0001 15. SUPPLEMENTARY NOTES 16. ABSTRACT As a burgeoning literature on high-speed rail development indicates, good station-area planning is a very important prerequisite for the eventual successful operation of a high-speed rail station; it can also trigger opportunities for economic development in the station area and the station-city. At the same time, “on the ground” experiences from international examples of high-speed rail stations can provide valuable lessons for the California high-speed rail system in general, and the San Jose Diridon station in particular. -
The Regional Impact of the Channel Tunnel Throughout the Community
-©fine Channel Tunnel s throughpdrth^Çpmmunity European Commission European Union Regional Policy and Cohesion Regional development studies The regional impact of the Channel Tunnel throughout the Community European Commission Already published in the series Regional development studies 01 — Demographic evolution in European regions (Demeter 2015) 02 — Socioeconomic situation and development of the regions in the neighbouring countries of the Community in Central and Eastern Europe 03 — Les politiques régionales dans l'opinion publique 04 — Urbanization and the functions of cities in the European Community 05 — The economic and social impact of reductions in defence spending and military forces on the regions of the Community 06 — New location factors for mobile investment in Europe 07 — Trade and foreign investment in the Community regions: the impact of economic reform in Central and Eastern Europe 08 — Estudio prospectivo de las regiones atlánticas — Europa 2000 Study of prospects in the Atlantic regions — Europe 2000 Étude prospective des régions atlantiques — Europe 2000 09 — Financial engineering techniques applying to regions eligible under Objectives 1, 2 and 5b 10 — Interregional and cross-border cooperation in Europe 11 — Estudio prospectivo de las regiones del Mediterráneo Oeste Évolution prospective des régions de la Méditerranée - Ouest Evoluzione delle prospettive delle regioni del Mediterraneo occidentale 12 — Valeur ajoutée et ingénierie du développement local 13 — The Nordic countries — what impact on planning and development -
Train Control on French Railroads
TRANSPORTATION RESEARCH RECORD 1314 Train Control on French Railroads J. p. GUILLOUX The French National Railways' (SNCF's) first high-speed line has a signaling system because of its vital safety function and the been in service between Paris and Lyon for 10 years now. A many and serious environmental constraints (interference, wide second high-speed line came into revenue service in September ranging temperatures, atmospheric agents, vibrations, etc). 1989, bringing with it substantial improvements to passenger ser In addition, SNCF considers it necessary to have a contin vices to the west and southwest of France. At the same time, SNCF is engaged in construction work for the Northern Train a uous control system for detecting broken rails, whence the Grande Yitesse (TGV) line, which will link Paris, Brussels, and choice of track-circuit-based signaling technology. London via the Channel Tunnel in less than 2 years' time. A loop line around the eastern outskirts of Paris will link the Northern and Southeast high-speed lines. The Southeast high-speed line Continuous Data Transmission will be extended southward (initially as far as Valence). High speed electric multiple units (emus) will be operated on the new lines at 300 km/hr (187 mph), whereas train speed on the South Under the circumstances described, the continuous data trans east high-speed line is currently limited to 270 km/hr (168 mph). mission system selected consists of an alternating current (AC) track circuit. There are 18 modulation frequencies between 10 and 29 Hz, depending on the data item to be transmitted. For the French National Railways (SNCF), the highest speed To protect against crosstalk, four carrier frequencies are used. -
The Effect of Beijing-Shanghai High-Speed Railway on the Economic Development of Prefecture-Level Cities Along the Line Based on DID Model
E3S Web of Conferences 235, 01016 (2021) https://doi.org/10.1051/e3sconf/202123501016 NETID 2020 The Effect of Beijing-Shanghai High-Speed Railway on the Economic Development of Prefecture-Level Cities Along the Line Based on DID Model Ma Yuzhou1 1School of Economics and Management, Beijing Jiaotong University, Beijing, China Abstract. High-speed railway has an essential impact on the economic and social development of the regions along the line. Based on the Beijing-Shanghai high-speed railway, this paper constructs the DID model and analyzes the impact of Beijing-Shanghai high-speed railway on the economic development of prefecture-level cities along the route from the empirical perspective. The empirical analysis results show that the Beijing- Shanghai high-speed railway has a significant negative impact on the per capita GDP of prefecture-level cities along the line in the short term, mainly because the agglomeration effect is greater than the diffusion effect. Therefore, small cities should actively think about how to deal with the agglomeration effect caused by the construction of high-speed rail. billion yuan. The line is a project with the most massive 1 Introduction scale and highest technique since the founding of China. The BSHSR, which owns faster speed, fewer stops, and Since the opening of Beijing-Tianjin intercity high-speed more running trains, adds a vital passenger transport railway in 2008, China's high-speed railway (abbreviated channel for the eastern region. BSHSR improves the to “HSR”, for short) has stepped into a rapid expansion transportation capacity of Beijing-Shanghai line, meets stage, and the "four vertical and four horizontal" HSR the ever-growing travel demand of passengers, and network planned and constructed by the state has taken strengthens the connection between the two urban clusters shape. -
Brochure.Pdf
PAID Standard Presorted Presorted U.S. Postage Postage U.S. Permit #1608 Permit Baltimore, MD Baltimore, Graduation is approaching! Celebrate this milestone and significant achievement with The Ohio State University Alumni Association’s trip for graduating seniors, Classic Europe. UP TO $200 CLASSIC EUROPE This comprehensive tour offers the chance to visit some of the world’s UNLEASH YOUR INNER ADVENTURER. must-see destinations before settling down into a new job or graduate school. It offers the opportunity for fun, hassle-free travel with other graduates, insights into other people, places and cultures – a source of personal enrichment, SAVE experiences that broaden one’s worldview and provide an advantage in today’s global job market - a vacation to remember and a reward for all the hard work. Travelers see amazing sites, such as Big Ben, the Eiffel Tower, and the Roman Forum on this 12-day, 4-country exploration and can add a 5-day extension to relax in the Greek Isles and explore ancient Athens. Past travelers have commented, “This was a trip of a life-time” – “I learned a lot from other cultures and definitely grew as a person” and “Not only was this a vacation, it was a wake-up call to see the world!” Travelers can feel confident that they will get the most out of their time in Europe with the aid of a private tour director and local city historians. Education does not stop after graduation, it is a life-long process and travel is a fantastic way to augment one’s knowledge. After reviewing the information, we hope you’ll agree – this exciting adventure is the perfect way to celebrate! Best regards, Debbie Vargo OR VISIT WWW.AESU.COM/OSU-GRADTRIP VISIT OR FOR DETAILS OR TO BOOK, CALL 1-800-852-TOUR CALL BOOK, TO OR DETAILS FOR EARLY BIRD DISCOUNT - EARLY DECEMBER 3, 2019 IN FULL BY BOOK AND PAY Longaberger Alumni House Alumni Longaberger River Road 2200 Olentangy Ohio 43210 Columbus, Director, Alumni Tours The Ohio State University Alumni Association, Inc. -
Trainset Presentation
4/15/2015 California High-Speed Rail Common Level Boarding and Tier III Trainsets Peninsula Corridor Joint Powers Board Level Boarding Workshop May 2015 1 Advantages of Common Level Boarding • Improved operations at common stations (TTC, Millbrae, Diridon) • Improved passenger circulation • Improved safety • Improved Reliability and Recovery Capabilities • Significantly reduced infrastructure costs • Improved system operations • Accelerated schedule for Level Boarding at all stations 2 1 4/15/2015 Goals for Commuter Trainset RFP • Ensure that Caltrain Vehicle Procurement does not preclude future Common Level Boarding Options • Ensure that capacity of an electrified Caltrain system is maximized • Identify strategies that maintain or enhance Caltrain capacity during transition to high level boarding • Develop transitional strategies for future integrated service 3 Request for Expressions of Interest • In January 2015 a REOI was released to identify and receive feedback from firms interested in competing to design, build, and maintain the high-speed rail trainsets for use on the California High-Speed Rail System. • The Authority’s order will include a base order and options up to 95 trainsets. 4 2 4/15/2015 Technical Requirements - Trainsets • Single level EMU: • Capable of operating in revenue service at speeds up to 354 km/h (220 mph), and • Based on a service-proven trainset in use in commercial high speed passenger service at least 300 km/h (186 mph) for a minimum of five years. 5 Technical Requirements - Trainsets • Width between 3.2 m (10.5 feet) to 3.4 m (11.17 feet) • Maximum Length of 205 m (672.6 feet). • Minimum of 450 passenger seats • Provide level boarding with a platform height above top of rail of 1219 mm – 1295 mm (48 inches – 51 inches) 6 3 4/15/2015 Submittal Information • Nine Expressions of Interest (EOI) have been received thus far. -
The Eurostar and the Channel Tunnel
The Eurostar and The Channel Tunnel By Patrick Hereford 5/7/03 1.0 Background Britain and France have been in need of an affordable means of transportation since the 1700s. Airlines, ferries, and automobiles dominated the market before 1994. Airlines are considered to expensive, while ferries and automobiles are considered cost efficient but require too much time. In 1984, the Eurostar began to help solve this problem. 1.1 The Eurostar The Eurostar, found in Europe, is the only high speed rail for that area. Its construction began in 1987 with the digging on the channel tunnel and ended in 1994. The Channel Tunnel was funded by a different group of financiers and cost them approximately $13 billion. The actual railway and trains cost about $31 million, not including operations or maintenance. This railway stretches from London to Paris and London to Brussels with stops in between. The railway is approximately 124 miles long, 31 of those miles being underground through the Channel Tunnel [1]. The Eurostar was built to provide an affordable means to get from place to place in a timely fashion. It was not meant to replace airlines or ferries, rather provide a different way to travel. It is cheaper than regular airline travel but arrives slower to its destination and more expensive than ferry travel but arrives quicker at its destination. You can also compare it to automobile transportation as well. It costs roughly $80 to drive from London to Paris. It is about $35 for gas and $45 for tolls. The Eurostar is not cheaper than that, but does arrive much faster than all automobiles. -
M-7 Long Island Railroad .Montreal EMU .Gallery Car Electric Multiple Unit -M- ~ New York, Usj
APPENDIX 6 . M-7 Long Island Railroad .Montreal EMU .Gallery Car Electric Multiple Unit -M- ~ New York, Usj Under joint agreement to the Metropolitan Transportation Authority / Long Island Rail Road (LIRR) and the Metro-North Railroad (MNR), Bombardier Transportation is providing Electric Multiple Unit (EMU) M- 7 commuter cars to LIRR to begin replacement of its Metropolitan M-I commuter car fleet. Chartered in 1834, the Long The units are equipped with The interior of the LIRR' Island Rail Road is the largest Bombardier's renowned stainless "Car of the Future" was designel Commuter Rail system in North steel carbodies for long life and with the input of the passenger America. low maintenance, and asynchro- and employees and includes a] nous AC motors featuring state- ADA compliant toilet, cellula Bombardier's new Electric of-the-art IGBT {isolated gate bipo- telephone and wide, single-lea Multiple Units, its first railcar lar transistors) inverters. Use of sliding doors for ease of entry an contract for the LIRR, will service outboard-bearing bolsterless fab- exit. the Long Island commuter lines, ricated bogies offers considerable constituting 80% of the system. weight savings over cast bogies. ~ BOMBARDIER BOMBARD" TRANSPORTATION 'V Electric Multiple Unit -M- 7 POWERCAR WITH TOILET ---10' 6' B END FEND I 3,200 mi , -: -" 0 C==- ~=0 :- CJCJ ~~[] CJCJCJCJCJCJ [] I D b 01 " ~) -1::1 1211-1/2 t~J ~~W ~~IL...I ~w -A'-'1~~~- I ~~ 309~mmt ~ 1 I~ 11 m 2205~16~m-! 591..1.6" mm --I I 1- -- 59°6" ° 4°8-1/2. , ~ 16,~:,60~m ~-- -;cl 10435mm ~ .-1