Acids and Bases What Is an Acid and Base?

Total Page:16

File Type:pdf, Size:1020Kb

Acids and Bases What Is an Acid and Base? Acids and Bases What is an Acid and Base? Acids and bases are special types of solutions Remember a solution is a mixture of a solute and a solvent Acids and Bases are extremely useful to us in our everyday life. Common Acids Citrus fruits – citric acid and ascorbic acid Dairy products – lactic acid Vinegar – Acetic acid (CH3COOH) Car Batteries – Sulfuric acid (H2SO4) Stomach Acid - Hydrochloric Acid (HCl) Acid Rain – Nitric Acid (HNO3) Coke – Phosphoric acid (H3PO4) Properties of Acids Taste Sour Electrolyte (Conduct Electricity) Have no characteristic feel Turns blue litmus red Produces hydrogen gas when reacted with a certain metals Produce carbon dioxide gas when reacted with carbonate compounds. Corrosive Common Bases Drain Cleaner – Sodium hydroxide Baking soda – Sodium hydrogen carbonate Soap – Sodium hydroxide Glass cleaner – Ammonia Antacid Tablets – Magnesium Hydroxide Properties of Bases Taste Bitter Electrolyte (Conduct electricity ) Feel slippery Turn red litmus paper blue Do not react with active metals Do not react with carbonate compounds Corrosive Solutions that are basic are also called alkaline Hydronium Ion An ion that forms when a hydrogen ion (H+) gets added to a water molecule + Hydronium ion = H3O In chemical reactions involving acids and bases the hydronium ion is often shown as H+ for simplicity + - HCl + H2O → H + Cl (does not take water into account) OR + - HCl + H2O → H3O + Cl Acid and Base Theories 1. Arrhenius Theory of Acids and Bases - Early theory proposed in 1884 - aqueous solution (aq) – a solution in which water is the dissolving medium or solvent. - Acid is a substance that adds hydronium ions + (H3O ) to an aqueous solution. - Base is a substance that adds hydroxide ions (OH-) to an aqueous solution + - - HCl(aq) → H3O (aq) + Cl (aq) (HCl = acid) + - - NaOH(aq) → Na + OH (NaOH = base) 2. Bronsted-Lowry Theory of Acid and Bases - Arrhenius did not explain how substances without hydroxide ions, in their formula, like ammonia (NH3) can be bases. Acid – A substance that can donate a proton (H+) to another substance. Base – A substance that can accept a proton (H+) from another substance. + - Ex// NH3(g) + H2O(l) → NH4 (aq) + OH (aq) NH3 accepts proton = base H2O donates proton = acid Strong vs Weak Acids The strength of an acid is determined by its ability to dissociate in water to produce Hydrogen/Hydronium ions. Therefore strong electrolytes are strong acids For example Hydrochloric Acid (HCl) is a strong acid because every HCl molecule dissociates into H+ HF is a weak acid because it doesn’t dissociate well in water Strong vs Weak Bases The strength of a base is based on the concentration of dissociated OH- (hydroxide ions) Therefore strong electrolytes are strong bases Strong bases can also be described as having a high alkalinity Those bases that are not soluble in water and don’t dissociate well are weak bases. NaOH (sodium hydroxide) is a strong base because it dissociates well into Na+ and OH- ions. Ammonia (NH3+) is a weak base because most of its molecules do not react with water to form ions. Strength Versus Concentration ❖The terms weak and strong are used to compare strengths of acids and bases ❖The terms dilute and concentrated are used to describe the concentration ❖For example it is possible to have a concentrated solution of a weak acid or base or a dilute solution of a weak acid or weak base. pH scale The pH scale is a number line that assigns number values from 0 – 14 to acids and bases. pH is measuring the concentration of hydrogen ions (H+ in the solution As the concentration of H+ increases the pH decreases Although pH is a measure of H+ ions you can also determine the OH- concentration because if H+ concentration is high the OH- concentration is low. Therefore a pH of 0 has a high concentration of H+ ions. Acids: pH value of 0-6 The lower the number the stronger the acid Bases: pH value of 8-14 The higher the number the stronger the base Neutral: pH value of 7 Water is neutral How would the pH of HCl change if water was added to it? The pH would increase By adding water to HCl you are decreasing the concentration of H+ ions. Since pH is inversely related to the concentration of H+ ions if H+ concentration decreases the pH increases. Indicators An indicator is a chemical that change color when they come in contact with an acid or base. Types of indicators 1. pH paper / Universal Indicator – This yellow paper will change color depending on whether it is an acid or base - The color corresponds to a specific pH so you can also determine the pH of the substance 2. Litmus Paper - Two pieces of paper where one is blue and one is red - Acid turns blue litmus paper red - Base turns red litmus paper blue 3. Phenolphthalein - Turns from a clear solution to a purple solution when a base is present 4. Red Cabbage Juice - Turns pink in an acid - Turns green in the presence of a base - Remains purple is a neutral solution Conjugate Acids and Bases The Bronsted-Lowry definitions of acids and bases provide a basis for studying proton – transfer reactions. Suppose that a Bronsted Lowry acid gives up a proton; the remaining ion or molecule can re-accept that proton and thus act as a base. Such a base is known as a CONJUGATE BASE Thus, the species that remains after a Bronsted-Lowry acid has given up a proton is the conjugate base of that acid. The species that is formed when a Bronsted-Lowry base gains a proton is the CONJUGATE ACID of that base. In general, Bronsted-Lowry acid-base reactions are equilibrium systems meaning that both the forward and reverse reactions occur. They involve two acid-base pairs, known as conjugate acid-base pairs. In this example: HCl is the acid in the forward direction because it + donates the H while H2O is the base because it accepts the H+. + H3O is the conjugate acid because it donates the H+ in the reverse direction, while Cl- is the conjugate base because it accepts the H+.
Recommended publications
  • Wastewater Technology Fact Sheet: Ammonia Stripping
    United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere.
    [Show full text]
  • Choosing Buffers Based on Pka in Many Experiments, We Need a Buffer That Maintains the Solution at a Specific Ph. We May Need An
    Choosing buffers based on pKa In many experiments, we need a buffer that maintains the solution at a specific pH. We may need an acidic or a basic buffer, depending on the experiment. The Henderson-Hasselbalch equation can help us choose a buffer that has the pH we want. pH = pKa + log([conj. base]/[conj. acid]) With equal amounts of conjugate acid and base (preferred so buffers can resist base and acid equally), then … pH = pKa + log(1) = pKa + 0 = pKa So choose conjugates with a pKa closest to our target pH. Chemistry 103 Spring 2011 Example: You need a buffer with pH of 7.80. Which conjugate acid-base pair should you use, and what is the molar ratio of its components? 2 Chemistry 103 Spring 2011 Practice: Choose the best conjugate acid-base pair for preparing a buffer with pH 5.00. What is the molar ratio of the buffer components? 3 Chemistry 103 Spring 2011 buffer capacity: the amount of strong acid or strong base that can be added to a buffer without changing its pH by more than 1 unit; essentially the number of moles of strong acid or strong base that uses up all of the buffer’s conjugate base or conjugate acid. Example: What is the capacity of the buffer solution prepared with 0.15 mol lactic acid -4 CH3CHOHCOOH (HA, Ka = 1.0 x 10 ) and 0.20 mol sodium lactate NaCH3CHOHCOO (NaA) and enough water to make 1.00 L of solution? (from previous lecture notes) 4 Chemistry 103 Spring 2011 Review of equivalence point equivalence point: moles of H+ = moles of OH- (moles of acid = moles of base, only when the acid has only one acidic proton and the base has only one hydroxide ion).
    [Show full text]
  • Properties of Acids and Bases
    GREEN CHEMISTRY LABORATORY MANUAL Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? hat do you taste when you brush your teeth and drink orange juice afterwards. Yuck! It leaves a really bad taste in your mouth, but why? Orange juice and toothpaste by themselves taste good. But the terrible taste W results because an acid/base reaction is going on in your mouth. Orange juice is a weak acid and the toothpaste is a weak base. When they are placed together they neutralize each other and produce a product that is unpleasant to taste. How do you determine what is an acid and what is a base? In this lab we will discover how to distinguish between acids and bases. Introduction Two very important classes of compounds are acids and bases. But what exactly makes them different? There are differences in definition, physical differences, and reaction differences. According to the Arrhenius definition, acids ionize in water to + produce a hydronium ion (H3O ), and bases dissociate in water to produce hydroxide ion (OH -). Physical differences can be detected by the senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation to broken skin. For example, if you have ever tasted a lemon, it can often result in a sour face. Bases have a bitter taste and a slippery feel. Soap and many cleaning products are bases.
    [Show full text]
  • Superacid Chemistry
    SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer SUPERACID CHEMISTRY SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer Copyright # 2009 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.
    [Show full text]
  • Soaps and Detergents • the Next Time You Are in a Supermarket, Go to the Aisle with Soaps and Detergents
    23 Table of Contents 23 Unit 6: Interactions of Matter Chapter 23: Acids, Bases, and Salts 23.1: Acids and Bases 23.2: Strengths of Acids and Bases 23.3: Salts Acids and Bases 23.1 Acids • Although some acids can burn and are dangerous to handle, most acids in foods are safe to eat. • What acids have in common, however, is that they contain at least one hydrogen atom that can be removed when the acid is dissolved in water. Acids and Bases 23.1 Properties of Acids • An acid is a substance that produces hydrogen ions in a water solution. It is the ability to produce these ions that gives acids their characteristic properties. • When an acid dissolves in water, H+ ions + interact with water molecules to form H3O ions, which are called hydronium ions (hi DROH nee um I ahnz). Acids and Bases 23.1 Properties of Acids • Acids have several common properties. • All acids taste sour. • Taste never should be used to test for the presence of acids. • Acids are corrosive. Acids and Bases 23.1 Properties of Acids • Acids also react with indicators to produce predictable changes in color. • An indicator is an organic compound that changes color in acid and base. For example, the indicator litmus paper turns red in acid. Acids and Bases 23.1 Common Acids • At least four acids (sulfuric, phosphoric, nitric, and hydrochloric) play vital roles in industrial applications. • This lists the names and formulas of a few acids, their uses, and some properties. Acids and Bases 23.1 Bases • You don’t consume many bases.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Drugs and Acid Dissociation Constants Ionisation of Drug Molecules Most Drugs Ionise in Aqueous Solution.1 They Are Weak Acids Or Weak Bases
    Drugs and acid dissociation constants Ionisation of drug molecules Most drugs ionise in aqueous solution.1 They are weak acids or weak bases. Those that are weak acids ionise in water to give acidic solutions while those that are weak bases ionise to give basic solutions. Drug molecules that are weak acids Drug molecules that are weak bases where, HA = acid (the drug molecule) where, B = base (the drug molecule) H2O = base H2O = acid A− = conjugate base (the drug anion) OH− = conjugate base (the drug anion) + + H3O = conjugate acid BH = conjugate acid Acid dissociation constant, Ka For a drug molecule that is a weak acid The equilibrium constant for this ionisation is given by the equation + − where [H3O ], [A ], [HA] and [H2O] are the concentrations at equilibrium. In a dilute solution the concentration of water is to all intents and purposes constant. So the equation is simplified to: where Ka is the acid dissociation constant for the weak acid + + Also, H3O is often written simply as H and the equation for Ka is usually written as: Values for Ka are extremely small and, therefore, pKa values are given (similar to the reason pH is used rather than [H+]. The relationship between pKa and pH is given by the Henderson–Hasselbalch equation: or This relationship is important when determining pKa values from pH measurements. Base dissociation constant, Kb For a drug molecule that is a weak base: 1 Ionisation of drug molecules. 1 Following the same logic as for deriving Ka, base dissociation constant, Kb, is given by: and Ionisation of water Water ionises very slightly.
    [Show full text]
  • Chapter 12 "Acids and Bases"
    This is “Acids and Bases”, chapter 12 from the book Beginning Chemistry (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i 635 Chapter 12 Acids and Bases Chapter 12 Acids and Bases 636 Chapter 12 Acids and Bases Opening Essay Formerly there were rather campy science-fiction television shows in which the hero was always being threatened with death by being plunged into a vat of boiling acid: “Mwa ha ha, Buck Rogers [or whatever the hero’s name was], prepare to meet your doom by being dropped into a vat of boiling acid!” (The hero always escapes, of course.) This may have been interesting drama but not very good chemistry.
    [Show full text]
  • Chem331 Lect 2 Water Ph Acid Base Buffer
    Chapter 2 – Water and pH Water - one of the most important molecules in life. •70% of the bodies mass is water •2/3 of total body water is intracellular (55-66% body weight of men and 10% less for women) •The rest is interstitial fluid of which 25% is in the blood plasma. pH - The body tightly controls both the volume and pH of water. •The bicarbonate system is crucial for blood maintenance •changes of pH greater than 0.1 are dangerous and can lead to coma -diabetics Properties of water • Polarity • Hydrogen bonding potential Specific heat, heat of vaporization • It is the unique combination of properties of water • Nucleophilic that make it the perfect solvent for biological • Ionization systems. We will discuss each of these properties in • Water is an ideal more detail. biological solvent Water is close to a tetrahedral shape with the unshared electrons on the two sp3-hybridized orbital are in two corners and the hydrogen in others o Compared to a tetrahedron, CH4 (109 ) or NH3 the bond angle is smaller (109.5o and 107o vs.104.5o) Water has hydrogen bonding potential •H-bonds are non-covalent, weak interactions •H2O is both a Hydrogen donor and acceptor •One H2O can form up to four H-bonds What Are the Properties of Water? A comparison of ice and water, in terms of H-bonds and Motion • Ice: 4 H bonds per water molecule • Water: 2.3 H bonds per water molecule • Ice: H-bond lifetime - about 10 microsec • Water: H-bond lifetime - about 10 psec • (10 psec = 0.00000000001 sec) The Solvent Properties of Water Derive from Its Polar Nature •Water has a high dielectric constant •Ions are always hydrated in water and carry around a "hydration shell" •Water forms H bonds with polar solutes The Solvent Properties of Water Derive from Its Polar Nature What makes this molecule important? solvent ability - easily disrupts ionic compounds - dielectric constant (D) is high (measure of the ability to keep ions apart) – Large electronegativity creates a strong ionic type bond (dipole).
    [Show full text]
  • Acid Base Chemistry Objectives Properties of Acids Properties Of
    May 09, 2014 Objectives 1) Acid/Base Theories 2) pH scale and pH calculations 3) Measuring pH, pH scale Acid Base Chemistry 4) Strength of Acids and Bases Acid Base Chemistry -Equilibrium (Honors) Chapter 19 Properties of Acids Three Acid and Base Theories • Aqueous solutions of acids taste sour. Change the color of acid/base indicators • 1. Arrhenius Theory • Many will conduct electrical currents. Acid Rxns with Metals 1. Al, Mg and Zn form hydrogen gas 2. Bronsted-Lowry Theory 2Al + 6HCl 2AlCl3 + 3H2 2. Metal carbonates form carbon dioxide 3. Lewis Theory CaCO3 + 2HCl CaCl2 + H2O + CO2 Properties of Bases • Aqueous solutions have a bitter taste. • Change the color of acid/base indicators • Many react with acids to form salts in water. • They often feel slimy to the touch. • Solutions that are basic are often called alkaline. Examples of Arrhenius 1) Arrhenius Theory An acid in water ionizing to form a H+ ion Svante Arrhenius published a paper + - about how acids, bases, and salts can HCl(aq) H (aq) + Cl (aq) conduct an electric current. Concluded that both acids and bases A base in water dissociating to form hydroxide ion, OH- must release a charged particle in solution. Acids ionized to produce H+ and + - Bases ionized to produce hydroxide NaOH Na (aq) + OH (aq) ions OH- May 09, 2014 2) Bronsted-Lowry Theory Bronsted-Lowry Theory: General acid/base reaction This definition is an expansion on the Arrhenius acid definition. Acid + Base Conjugate base + Conjugate Acid In a chemical reaction, any substance that donates a proton is an acid and any substance that accepts a Conjugate base: particle that remains after a proton proton is a base.
    [Show full text]
  • 17.3 Weak Acids Weak Bases Titration
    17.3 Weak Acids Weak Bases Titration Titration of Weak Acid with Strong Base Titration of Base Acid with Strong Acid Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Weak Acids Weak Bases Titration March 18 Weak Acid (or Weak Base) with Strong Base (or strong Acid) Experimental technique and the concept is similar to that of the titration of a strong acid with a strong base (or vice versa) with equilibrium concept applied. pH calculation involves 4 different type of calculations. i) The analyte alone (equilibrium calculation) ii) Buffer region (Henderson-Hasselbach eqn) iii) Equivalence point (Hydrolysis) iv) Excess titrant Equilb Buffer Hydrolysis Stoic Excess (Stoichiometric calculation) Click for simulation 2 Weak Acids Weak Bases Titration March 18 Titration (WA-SB): Weak Acid (or Weak Base) with Strong Base (or strong Acid) Consider the titration problem: Titration curve for a weak acid (HOCl) and an strong base (KOH). Generate a titration curve upon addition of KOH @ 0%-, 50%-, 95%-, 100%- and 105% of equivalent point. Analyte : 10.00 ml 0.400M HOCl: Titrant: 0.400 M KOH - + HOCl + KOH g H2O + OCl + K HOCl = 0.400M • 10.00ml = 4.0 mmol HOCl Volume KOH corresponding to 0%-, 50%-, 95%-, 100%- and 105% 0.400 M KOH = 0ml, 5.0ml, 9.5ml, 10.0ml, 10.5 ml -8 Misc. Info.: HOCl: Ka = 3•10 pKa = 7.5 4 Weak Acids Weak Bases Titration March 18 Type i: Weak Acid with Strong Base 0 % Type 1: Calculation EQUILBRIUM 0% KOH added (TYPE 1 Weak acid calc.) 0%, VT = 10.0 ml Weak acid pKa - (Type 1 Calculation) pH of solution is determined by the dissociation of the weak acid.
    [Show full text]
  • Complex Ions and Amphoterism
    Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM his experiment involves the separation and identification of ions using Ttwo important reaction types: (i) the formation of complex ions and (ii) the amphoteric behavior of some metal hydroxides. You have already encoun- tered complex ion formation in the analysis of the silver group ions and in the experiment on metal sulfides, but more needs to be said about this topic as an introduction to this experiment. THE FORMATION OF COMPLEX IONS Although we usually write cation formulas in solution as if they were simple ions, such as Al3+, these ions are actually bound to a number of water mol- ecules arranged around the central ion (see figure below). The water molecules in this case are examples of a much larger class of molecules and ions called ligands that form coordinate covalent bonds with a central metal cation. That is, the bond is of the form L: → Mn+, where L has donated δ+ an otherwise unused lone pair of electrons H As noted in the experiment on the to the electron accepting metal ion. In the 3+ δ+ H O Al silver group ions, a ligand is a Lewis water molecule, there are two lone pairs of •• base (a donor of one or more pairs of electrons on the O atom, and either of these δ− electrons), and the metal ion in the may form a coordinate covalent bond with a complex ion is a Lewis acid (an elec- metal cation. Ligands are often small, polar tron pair acceptor).
    [Show full text]