SIRT1 Limits the Function and Fate of Myeloid-Derived Suppressor Cells In

Total Page:16

File Type:pdf, Size:1020Kb

SIRT1 Limits the Function and Fate of Myeloid-Derived Suppressor Cells In Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF1α-dependent glycolysis Guangwei Liu1,4,†, Yujing Bi2, Bo Shen3, Hui Yang1,4, Yan Zhang1,4, Xiao Wang1,4, Huanrong Liu1,4, Yun Lu1,4, Jiongbo Liao1,4, Xi Chen1,4, Yiwei Chu1,4 1Key Laboratory of Medical Molecular Virology of MOE/MOH, Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China; 2State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China; 3Institute of Radiomedicine, 4Biotherapy Research Center, Fudan University, Shanghai, China Running title: SIRT1 negatively control tumor MDSC differentiation † Corresponding Authors: Dr. Guangwei Liu, Fudan University, Yixueyuan Road 138, Shanghai, China 200032; Phone: (86) 21-54237563; Fax: (86) 21-54237563 Email: [email protected] Key words: Myeloid-derived suppressive cells; SIRT1; Innate immunity; Glycolytic metabolism; mTOR; HIF-1α 1 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Myeloid-derived suppressor cells (MDSCs) display an immature phenotype that may assume a classically activated (M1) or alternatively activated phenotype (M2) in tumors. In this study, we investigated metabolic mechanisms underlying the differentiation of MDSC into M1 or M2 myeloid lineage and their effect on cancer pathophysiology. We found that SIRT1 deficiency in MDSCs directs a specific switch to M1 lineage when cell enter the periphery from bone marrow, decreasing suppressive function in favor of a pro-inflammatory M1 phenotype associated with tumor cell attack. Glycolytic activation through the mTOR-HIF1α pathway was required for differentiation to the M1 phenotype, which conferred protection against tumors. Our results define the essential nature of a SIRT1-mTOR/HIF1α glycolytic pathway in determining MDSC differentiation, with implications for metabolic reprogramming as a cancer therapeutic approach. 2 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction Myeloid-derived suppressor cells (MDSCs) are one of the major components of the immune-suppressive network responsible for immune cell tolerance in cancer(1-6). Polarized MDSC lineages can be distinguished as M1 and M2 cells. M2 can be induced by IL-4 or IL-13, produce arginase 1 (Arg1) and anti-inflammatory cytokines, eventually converging to facilitate tumorgenesis (5-9). In marked contrast, M1 could be induced by LPS or/and IFN-γ, produce inducible nitric oxide synthase (iNOS), NO and pro-inflammatory cytokines, leading to their anti-tumor effects(1, 2, 7). Whereas the roles of distinct lineage of MDSC have long been extensively known, it remains elusive how the mechanism of M1 and M2 MDSC lineage differentiation. SIRT1, the leading family member, the human orthology of yeast Sir2, has marked anti-inflammtory effects in several systems(10, 11). SIRT1 may limit the inflammatory process by inhibiting the expression of pro-inflammatory cytokines such as TNF-α (11, 12). And, SIRT1 could functions as an anergic factor to maintain peripheral CD4+ T tolearance(13), prolong allograft survival (14) and inhibit TH2 response in airway allergy(15). However, basic regulatory roles of SIRT1 on the myeloid cell differentiation remain unclear. A defining feature of immune cell activation is highly anabolic and demonstrate a striking increase in glycolysis, as well as an increase in glucose and amino 3 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. acid uptake(16, 17). In support of this notion, proper regulation of glucose metabolism is required for the development of immune responses(18, 19). Although a role for the metabolic pathways in immune cell activation and responses is beginning to be appreciated (20-22), little information exists about whether the basic metabolic machinery is actively regulated and contributes to MDSC differentiation. In the present study, we reported that SIRT1 is a key factor in the regulation of MDSC differentiation into M1 or M2 phenotypes through HIF1α induced glycolytic metabolic reprogramming and has an impact on MDSC functions in both immune suppression and promotion of tumor progression. 4 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Materials and Methods Mice, chimeras and tumor model C57BL/6 SIRT1fl/fl and Lysm-Cre and HIF-1αfl/fl mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). All mice were used at an age of 6-12 weeks. Reconstitution of lethally irradiated CD45.1+ congenic mice with CD45.2+ bone marrow cells (BMs) from SIRT1-deficient (SIRT1flox/flox; Cre+/-) or WT (SIRT1flox/flox; Cre-/-) mice(23-25). To establish s.c. tumors, 5 x 105 EL-4 or B16.F10 tumor cells were injected into C57BL/6 mice. This number of cells formed a tumor with a 1-2 cm diameter within 2-3 weeks of injection. Experimental protocols were approved by the Animal Ethics Committee of Fudan University, Shanghai, China. Monoclonal antibody (mAbs) and flow cytometry Flow cytometry (FCM) was used to perform the analysis of cell surface markers, phosphorylated or intracellular signaling proteins, as described (25). FCM data were acquired on a FACSCalibur (Becton Dickinson, San Diego, CA), and data were analyzed with FlowJo (TreeStar, San Carlos, CA). MDSC cell isolation Single cell suspensions were prepared from spleens and bone marrow. MDSCs were isolated by cell sorting on a FACSAria (BD) after cell staining with anti-Gr1-APC and anti-CD11b-PE. Tumors were dissected and digested with 0.7 mg/mL collagenase XI (Sigma-Aldrich) and 30 mg/mL of type IV bovine pancreatic Dnase (Sigma-Aldrich) for 45 min at 37 0C. Gr1+ 5 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. cells were isolated by using biotinylated anti-Gr1 antibody and streptavidin microbeads with MiniMACS columns (Miltenyi Biotech). MDSCs were isolated from tumor tissues as described (26). Arginase activity and NO production. Arginase activity was measured in cell lysates, arginine hydrolysis was conducted by incubating the lysate with L-arginine. For NO production, culture supernatant or serum was incubated with Greiss reagent, as described (24, 27). Real-time PCR and Immunoblot. RNA was extracted with an RNeasy kit (Qiagen), and cDNA was synthesized using SuperScript III reverse transcriptase (Invitrogen). An ABI 7900 real-time PCR system was used for quantitative PCR.The expression of each target gene is presented as the ‘fold change’ relative to that of WT, as described(23, 28). Immunoblot analysis was performed as described (25) using anti-HIF1α (Cayman Chemicals), anti-Acetyl-NF-κB (Cell signaling) and anti-NF-κB (Cell signaling) antibody. MDSC suppression assay. For the in vitro suppression assay, sorted CD11b+Gr1+ cells were added in the mixed lymphocyte reaction (MLR) system for 96 h in 96-well plate, as described(8, 25). 18 h before harvesting, cells were pulsed with 3H-thymidine (GE Healthcare). 3H-thymidine uptake was counted using a liquid scintillation counter and expressed as cpm. 6 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 18, 2013; DOI: 10.1158/0008-5472.CAN-13-2584 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ELISAs. Cytokines concentrations in culture supernatants were measured with mouse IL-10, TGF-β1, TNFα and IL-12 ELISA kits (eBioscience) as per the manufacturer’s instructions. Tumor killing activity. Sorted MDSCs were isolated from tumor or spleen and coincubated with tumor cells (target cells) at 20:1, 10:1 and 5:1 for 4 h. Tumor-killing activities were measured as percentage of tumor cell death. Glycolysis flux assay. Glycolysis of MDSCs was determined by measuring the detritiation of [3-3H]-glucose. In brief, the assay was initiated by adding 1 μCi [3-3H]-glucose (Perkin Elmer) and, 2 h later, medium was transferred to microcentrifuge tubes containing 50 μl 5N HCL. The microcentrifuge tubes were then placed in 20 ml scintillation vials containing 0.5 ml water and the 3 vials capped and sealed. H2O was separated from un-metabolized [3-3H]-glucose by evaporation diffusion for 24 h at room temperature. Statistical analysis. All data are presented as the mean ± SD. Student’s unpaired t test was applied for comparison of means was used to compare differences between groups. Comparison of the survival curves was performed using the Log-Rank (Mantel-Cox) test. A P value (alpha-value) of less than 0.05 was considered to be statistically significant. 7 Downloaded from cancerres.aacrjournals.org on October 2, 2021.
Recommended publications
  • Effect of a Caloric Restriction Based On
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) VÍCTOR MICÓ MORENO Madrid, 2018 UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA DOCTORAL THESIS Biology PhD “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging” INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS EN ALIMENTACIÓN (IMDEA FOOD INSTITUTE) Memoria presentada por: Víctor Micó Moreno Para optar al grado de: DOCTOR EN BIOLOGÍA Doña Lidia Ángeles Daimiel Ruíz, Doctora en Biología Celular y Genética por la Universidad Autónoma de Madrid, investigadora del Instituto IMDEA Alimentación, informa favorablemente la solicitud de autorización de defensa de la tesis doctoral con el Título: “Effect of a caloric restriction based on the Mediterranean diet and intake of traditional Mediterranean foods on the expression of microRNAs regulating molecular processes associated with aging”, presentada por Don Víctor Micó Moreno para optar al grado de Doctor en Biología. Este trabajo ha sido realizado en el Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA Alimentación) bajo su dirección, y cumple satisfactoriamente las condiciones requeridas por el Departamento de Biología de la Universidad Autónoma de Madrid para optar al Título de Doctor. Ha actuado como tutor académico, y presenta su conformidad el Dr. Carlos Francisco Sentís Castaño, vicedecano de Personal Docente e Investigador y profesor titular del Departamento de Biología de la Facultad de Ciencias de la Universidad Autónoma de Madrid.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Compartmentation of NAD+-Dependent Signalling ⇑ ⇑ Friedrich Koch-Nolte A, , Stefan Fischer B, Friedrich Haag A, Mathias Ziegler B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 1651–1656 journal homepage: www.FEBSLetters.org Review Compartmentation of NAD+-dependent signalling ⇑ ⇑ Friedrich Koch-Nolte a, , Stefan Fischer b, Friedrich Haag a, Mathias Ziegler b, a Institute of Immunology, University Medical Center, Martinistr. 52, 20246 Hamburg, Germany b Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway article info abstract Article history: NAD+ plays central roles in energy metabolism as redox carrier. Recent research has identified Received 25 February 2011 important signalling functions of NAD+ that involve its consumption. Although NAD+ is synthesized Revised 21 March 2011 mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracel- Accepted 21 March 2011 lular compartments. Three protein families that consume NAD+ in signalling reactions have been Available online 31 March 2011 characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD+ glyco- Edited by Sergio Papa, Gianfranco Gilardi hydrolases (NADases). Members of these families serve important regulatory functions in various and Wilhelm Just cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracel- + Keywords: lular compartment. Distinct NAD pools may be crucial for these processes. Here, we review the cur- + NAD+ rent knowledge about the compartmentation and biochemistry of NAD -converting enzymes that + ADP-ribosyltransferase control NAD signalling. Sirtuins Ó 2011 Federation of European Biochemical Societies.
    [Show full text]
  • Metabolic Regulation of Epigenetic Modifications and Cell
    cancers Review Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer Pasquale Saggese 1, Assunta Sellitto 2 , Cesar A. Martinez 1, Giorgio Giurato 2 , Giovanni Nassa 2 , Francesca Rizzo 2 , Roberta Tarallo 2 and Claudio Scafoglio 1,* 1 Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (P.S.); [email protected] (C.A.M.) 2 Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; [email protected] (A.S.); [email protected] (G.G.); [email protected] (G.N.); [email protected] (F.R.); [email protected] (R.T.) * Correspondence: [email protected]; Tel.: +1-310-825-9577 Received: 20 October 2020; Accepted: 11 December 2020; Published: 16 December 2020 Simple Summary: Cancer cells change their metabolism to support a chaotic and uncontrolled growth. In addition to meeting the metabolic needs of the cell, these changes in metabolism also affect the patterns of gene activation, changing the identity of cancer cells. As a consequence, cancer cells become more aggressive and more resistant to treatments. In this article, we present a review of the literature on the interactions between metabolism and cell identity, and we explore the mechanisms by which metabolic changes affect gene regulation. This is important because recent therapies under active investigation target both metabolism and gene regulation. The interactions of these new therapies with existing chemotherapies are not known and need to be investigated.
    [Show full text]
  • Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells
    Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. Kucharzewska, Paulina; Christianson, Helena; Belting, Mattias Published in: PLoS ONE DOI: 10.1371/journal.pone.0116740 2015 Link to publication Citation for published version (APA): Kucharzewska, P., Christianson, H., & Belting, M. (2015). Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS ONE, 10(1), [e0116740]. https://doi.org/10.1371/journal.pone.0116740 Total number of authors: 3 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 07. Oct. 2021 RESEARCH ARTICLE Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells Paulina Kucharzewska1, Helena C.
    [Show full text]
  • Epigenetic Regulation in B-Cell Maturation and Its Dysregulation in Autoimmunity
    OPEN Cellular and Molecular Immunology (2018) 15, 676–684 www.nature.com/cmi REVIEW Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity Haijing Wu1, Yaxiong Deng1, Yu Feng1, Di Long1, Kongyang Ma2, Xiaohui Wang2, Ming Zhao1, Liwei Lu2 and Qianjin Lu1 B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes. Cellular and Molecular Immunology advance online publication, 29 January 2018; doi:10.1038/cmi.2017.133 Keywords:
    [Show full text]
  • Activation of the AMPK/Sirt1 Pathway by a Leucine
    METABOLISM CLINICAL AND EXPERIMENTAL 65 (2016) 1679– 1691 Available online at www.sciencedirect.com Metabolism www.metabolismjournal.com Activation of the AMPK/Sirt1 pathway by a leucine–metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans Jheelam Banerjee⁎, Antje Bruckbauer, Michael B. Zemel NuSirt BioPharma Inc., 11020 Solway School Road, Knoxville, TN 37931, USA ARTICLE INFO ABSTRACT Article history: Background. We have previously shown leucine (Leu) to activate Sirt1 by lowering its KM for Received 28 January 2016 NAD+, thereby amplifying the effects of other sirtuin activators and improving insulin Accepted 29 June 2016 sensitivity. Metformin (Met) converges on this pathway both indirectly (via AMPK) and by direct activation of Sirt1, and we recently found Leu to synergize with Met to improve insulin Keywords: sensitivity and glycemic control while achieving ~80% dose-reduction in diet-induced obese AMPK mice. Accordingly, we sought here to define the mechanism of this interaction. Sirt1 Methods. Muscle cells C2C12 and liver cells HepG2 were used to test the effect of Met–Leu on Insulin sensitivity Sirt1 activation. Caenorhabditis elegans was used for glucose utilization and life span studies. Leucine Results. Leu (0.5 mmol/L) + Met (50–100 μmol/L) synergistically activated Sirt1 (p < 0.001) at + Metformin low (≤100 μmol/L) NAD levels while Met exerted no independent effect. This was associated with an increase in AMPK and ACC, phosphorylation, and increased fatty acid oxidation, which was prevented by AMPK or Sirt inhibition or silencing. Met–Leu also increased P-IRS1/IRS1 and P-AKT/AKT and in insulin-independent glucose disposal in myotubes (~50%, p < 0.002) evident within 30 min as well as a 60% reduction in insulin EC50.
    [Show full text]
  • Unexpected Side Effects of Everyday Medication Through Sirtuin1 Modulation
    223-232 9/1/08 16:06 Page 223 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 21: 223-232, 2008 223 Aging and anti-aging: Unexpected side effects of everyday medication through sirtuin1 modulation NICOLE ENGEL2 and ULRICH MAHLKNECHT1,2 1Saarland University Medical Center, Department of Hematology/Oncology, José Carreras Center for Immunotherapy and Gene Therapy, D-66424 Homburg/Saar; 2Department of Hematology/Oncology, University of Heidelberg Medical Center, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany Received August 28, 2007; Accepted October 19, 2007 Abstract. The sirtuin 1 protein (SIRT1) is a member of the Introduction class III NAD+-dependent histone deacetylases, which are also referred to as the ‘sirtuins’. The sirtuins and silent Reversible DNA and protein modification, such as acetylation information regulator 1 (SIRT1) in particular, are known to and deacetylation, are involved in the regulation of tran- play a role in the response to DNA damage, metabolism, scriptional activity and influence protein enzymatic activity. longevity and carcinogenesis. SIRT1 regulates different Acetylation of histone N-terminal lysine residues is carried cellular processes such as proliferation, differentiation and out by histone acetyltransferases (HATs) and is associated apoptosis through deacetylation of important regulatory with increased transcriptional activity in eukaryotic cells proteins such as p53, FOXO3a and NFκB. A number of through chromatin relaxation and may be reversed by different modifiers of SIRT1 expression and activity have competing histone deacetylase (HDAC) enzymatic activities, been discovered and even food and cosmetic additives (e.g. which cause histone deacetylation and thus chromatin resveratrol and dihydrocoumarin) have been suggested to condensation and subsequently repression of gene expression either activate or inhibit the activity of human SIRT1.
    [Show full text]
  • Global Proteomic Detection of Native, Stable, Soluble Human Protein Complexes
    GLOBAL PROTEOMIC DETECTION OF NATIVE, STABLE, SOLUBLE HUMAN PROTEIN COMPLEXES by Pierre Claver Havugimana A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto © Copyright by Pierre Claver Havugimana 2012 Global Proteomic Detection of Native, Stable, Soluble Human Protein Complexes Pierre Claver Havugimana Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto 2012 Abstract Protein complexes are critical to virtually every biological process performed by living organisms. The cellular “interactome”, or set of physical protein-protein interactions, is of particular interest, but no comprehensive study of human multi-protein complexes has yet been reported. In this Thesis, I describe the development of a novel high-throughput profiling method, which I term Fractionomic Profiling-Mass Spectrometry (or FP-MS), in which biochemical fractionation using non-denaturing high performance liquid chromatography (HPLC), as an alternative to affinity purification (e.g. TAP tagging) or immuno-precipitation, is coupled with tandem mass spectrometry-based protein identification for the global detection of stably- associated protein complexes in mammalian cells or tissues. Using a cell culture model system, I document proof-of-principle experiments confirming the suitability of this method for monitoring large numbers of soluble, stable protein complexes from either crude protein extracts or enriched sub-cellular compartments. Next, I document how, using orthogonal functional genomics information generated in collaboration with computational biology groups as filters, we applied FP-MS co-fractionation profiling to construct a high-quality map of 622 predicted unique soluble human protein complexes that could be biochemically enriched from HeLa and HEK293 nuclear and cytoplasmic extracts.
    [Show full text]
  • Resveratrol and Vascular Function
    International Journal of Molecular Sciences Review Resveratrol and Vascular Function Huige Li 1,* , Ning Xia 1, Solveig Hasselwander 1 and Andreas Daiber 2,* 1 Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; [email protected] (N.X.); [email protected] (S.H.) 2 Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany * Correspondence: [email protected] (H.L.); [email protected] (A.D.) Received: 25 March 2019; Accepted: 24 April 2019; Published: 30 April 2019 Abstract: Resveratrol increases the production of nitric oxide (NO) in endothelial cells by upregulating the expression of endothelial NO synthase (eNOS), stimulating eNOS enzymatic activity, and preventing eNOS uncoupling. At the same time, resveratrol inhibits the synthesis of endothelin-1 and reduces oxidative stress in both endothelial cells and smooth muscle cells. Pathological stimuli-induced smooth muscle cell proliferation, vascular remodeling, and arterial stiffness can be ameliorated by resveratrol as well. In addition, resveratrol also modulates immune cell function, inhibition of immune cell infiltration into the vascular wall, and improves the function of perivascular adipose tissue. All these mechanisms contribute to the protective effects of resveratrol on vascular function and blood pressure in vivo. Sirtuin 1, AMP-activated protein kinase, and estrogen receptors represent the major molecules mediating the vascular effects of resveratrol. Keywords: resveratrol; endothelium; endothelial nitic oxide synthase; sirtuin 1; cardiovascular disease; vascular function 1. Resveratrol and its Molecular Targets The polyphenolic phytoalexin 3,5,40-trihydroxy-trans-stilbene, better known under its trivial name resveratrol, can be found in numerous plants, such as white hellebore (Veratrum grandiflorum), mulberry (Morus rubra), peanut (Archis hypogaea), and grapes (Vitis vinifera)[1–3].
    [Show full text]
  • Metabolism Impacts on Proteostasis and Aging
    Cell Death & Differentiation (2021) 28:505–521 https://doi.org/10.1038/s41418-020-00682-y REVIEW ARTICLE Build-UPS and break-downs: metabolism impacts on proteostasis and aging 1 1 1,2 Franziska Ottens ● André Franz ● Thorsten Hoppe Received: 4 September 2020 / Revised: 9 November 2020 / Accepted: 10 November 2020 / Published online: 4 January 2021 © The Author(s) 2021, corrected publication 2021 Abstract Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ 1234567890();,: 1234567890();,: adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. Facts Open questions ● Metabolic imbalance and proteostasis decline have been ● Common signaling nodes and shared mechanisms of recognized as hallmarks of aging and age-associated proteostasis networks and metabolism remain to be diseases, both processes are largely considered identified.
    [Show full text]
  • Calmodulin-Dependent Protein Kinase Kinase Β Phosphorylation of Sirtuin 1 in Endothelium Is Atheroprotective
    Ca2+/calmodulin-dependent protein kinase kinase β phosphorylation of Sirtuin 1 in endothelium is atheroprotective Liang Wena,b, Zhen Chenb, Fan Zhangc, Xiaopei Cuib, Wei Sunb, Greg G. Gearyd, Yinsheng Wangc, David A. Johnsonb, Yi Zhua,1, Shu Chiene,1, and John Y.-J. Shyyb,f,1 aDepartment of Physiology and Pathophysiology, Peking University Health Sciences Center, Beijing 100191, China; bDivision of Biomedical Sciences and cDepartment of Chemistry, University of California, Riverside, CA 92521; dDepartment of Kinesiology and Health Sciences, California State University, San Bernardino, CA 92407; and Departments of eBioengineering and fMedicine, University of California, San Diego, La Jolla, CA 92093 Contributed by Shu Chien, May 16, 2013 (sent for review March 3, 2013) Atheroprotective flow exerts antioxidative and anti-inflammatory SIRT1, there could be a flow-responsive cytoplasmic kinase that effects on vascular endothelial cells (ECs), in part through the phosphorylates SIRT1 to enhance its activity. induction of Sirtuin 1 (SIRT1), a class III histone deacetylase. The role Like SIRT1, AMP-activated protein kinase (AMPK) functions of Ca2+/calmodulin-dependent protein kinase kinase (CaMKK)β in as a master regulator in stress response and energy homeostasis in flow induction of SIRT1 both in vitro and in vivo was investigated. eukaryotic cells. SIRT1 and AMPK are coregulated by caloric Pulsatile shear stress mimicking atheroprotective flow increased restriction, resveratrol, and exercise (15, 16), which coordinately the level of SIRT1 in cultured ECs by enhancing its stability, and this deacetylate and phosphorylate a common set of molecular targets effect was abolished by inhibition or knockdown of CaMKKβ.Flow- such as PGC1α (17).
    [Show full text]