Eusebio Juaristi VITA

Total Page:16

File Type:pdf, Size:1020Kb

Eusebio Juaristi VITA Eusebio Juaristi V I T A Diciembre de 2020. I. Datos Personales Fecha y lugar de nacimiento: 21 de diciembre de 1950, en Querétaro, Qro., México. Estado Civil: Casado Dirección: Departamento de Química del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN # 2508, 07360 Ciudad de México Teléfono: (5255) 5747-3722 Fax: (5255) 5747-3389 e-mail: [email protected] o “[email protected]” Domicilio Particular: Oruro 38, Col. Lindavista, México, D.F. 07300 Teléfono Particular: (5255)5586-0615 II. Antecedentes. Estudios Realizados: Estudios de posgrado culminados con la obtención del título de Doctor en Química, en la Universidad de Carolina del Norte en Chapel Hill, EUA, septiembre de 1972 a marzo de 1977. Estudios profesionales culminados con la obtención del grado de Licenciado en Ciencias Químicas, en el Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), febrero de 1968 a junio de 1972. (Examen de Grado: Agosto de 1974). Estudios preparatorios en la Escuela Preparatoria de Irapuato, febrero de 1966 a diciembre de 1967. Estudios primarios y secundarios en el Instituto “Marciano Tinajero y Estrada”, Querétaro, 1957-1962; Instituto “Villa Estela”, Tlaxcala, 1963-1964; Instituto “Juan Ponce de León”, Puebla, 1965. 1 III. Experiencia Profesional Jefe del Departamento de Química del CINVESTAV, del 7 de agosto de 2007 al 31 de mayo de 1013. Profesor Visitante, Institute of Organic Chemistry, Technische Hochschule Aachen (RWTH-Aachen), Alemania, mayo 1 a julio 31 de 2013. Profesor Visitante (docencia e investigación), Departamento de Química, Universidad de California en Berkeley, EUA, agosto de 1999 a julio de 2000. Profesor Visitante (investigación), Departamento de Química, Eidgenössische Technische Hochschule (ETH) Zürich, Suiza, septiembre 1985 a agosto 1986, y agosto 1992 a agosto 1993. Coordinador del laboratorio de péptidos del Departamento de Química del CINVESTAV, del 1 de julio de 2005 al 31 de diciembre de 2015. Profesor Titular, Jefe del Laboratorio de Fisicoquímica Orgánica del Departamento de Química del Centro de Investigación y de Estudios Avanzados del I.P.N., a partir de enero 1o. de 1983. Profesor Visitante (investigación), Departamento de Química, University of Arizona, Tucson, AZ, febrero 19 a marzo 2, 1984; abril 28 a mayo 5, 1985; julio 10-15, 1988. Profesor Visitante, U.A. CNRS 478, Université de Paris-Sud, Orsay, Francia, mayo 19-23, 1986; Universidad de Helsinki, Finland, agosto 4-9, 1986, Universidad de Sevilla-Universidad Autónoma de Madrid, España, junio 14-21, 1986. Universidad de Barcelona, Gerona, España, septiembre 26-30, 1994. Universidad del País Vasco, Bilbao, España, abril 19-24, 1999. Universidad de Sao Paulo, Brasil, mayo 2-18, 2003 y julio 15-28, 2005. Ben-Gurion University at the Negev, Beer-Sheva, Israel, marzo 17 a abril 8, 2007. Profesor Adjunto, Jefe del Laboratorio de Fisicoquímica Orgánica del Departamento de Química del Centro de Investigación y de Estudios Avanzados del I.P.N., de septiembre 1o. de 1979 a diciembre 31, 1982. Coordinador Académico del Departamento de Química del Centro de Investigación y de Estudios Avanzados del I.P.N., del 1o. de mayo de 1980 al 31 de agosto de 1983. Síntesis de narcóticos y derivados farmacéuticos, desarrollo de ensayos enzimáticos inmunoquímicos, en la División de Diagnósticos de Syntex (SYVA Research Inst.), Palo Alto Calif., EUA, de septiembre de 1978 a agosto de 1979. 2 Trabajo de investigación en la química de ácidos débiles y estudios teóricos de moléculas orgánicas, como investigador asociado posdoctoral del Dr. Andrew Streitwieser, Jr., en los laboratorios del Departamento de Química de la Universidad de California en Berkeley, U.S.A., de abril de 1977 a septiembre 15 de 1978. Asesor Industrial en la empresa “Industrial Orgánica, S.A.”, Monterrey, N.L., México, de enero a mayo de 1978, y de noviembre de 1996 a febrero de 1998. Trabajo de investigación en química orgánica, en análisis conformacional y estereoquímica, en los laboratorios del Departamento de Química de la Universidad de Carolina del Norte en Chapel Hill, EUA, bajo la dirección del Dr. Ernest L. Eliel, de septiembre de 1972 a marzo de 1977. Instructor en el Laboratorio de Química Analítica y Orgánica impartido en la Universidad de Carolina del Norte en Chapel Hill, EUA, para estudiantes de Licenciatura en el área de Química, enero a diciembre de 1974. Trabajo de investigación en la química de productos naturales, bajo la dirección del Dr. Xorge A. Domínguez, en los laboratorios del Departamento de Química del ITESM, México, de enero de 1971 a junio de 1972. Maestro Auxiliar del Instituto Tecnológico y de Estudios Superiores de Monterrey, impartiendo el curso de química orgánica elemental, septiembre de 1970 a mayo de 1972. Trabajo de investigación en la síntesis de compuestos heterocíclicos, en el Centro de Investigación de Syntex, S.A., México, D.F., bajo la dirección del Dr. Paul Ortiz de Montellano, verano de 1970. IV. Dirección de Tesis IV. 1. Doctorado: 1.1 Lucía E. Valle A., “Análisis Conformacional del 1,3-Difenilfosfinoíl-1,3-ditiano y sus Derivados: Estudio de la Interacción Anomérica S-C-P”, CINVESTAV- IPN, marzo de 1987. 1.2 Roberto Martínez, “Análisis Conformacional y Electroquímica de 1,3-Dioxanos y 1,3-Ditianos Sustituídos en C(5)”, CINVESTAV-IPN, abril de 1987. 1.3 G. Bárbara Gordillo Román, “Análisis Conformacional de Ciclohexanos y de 1,3-Dioxanos Sustituidos por Grupos Sulfuro, Sulfinilo y Sulfonilo. Resultados Experimentales y Cálculos Teóricos”, CINVESTAV-IPN, noviembre de 1988. 3 1.4 Abelardo Flores Vela, “Análisis Conformacional y Espectroscópico del 2- Difenilfos- finoíl-1,3-dioxano, del 2-Difenilfosfinoíl-1,3-oxatiano y sus Derivados. Evaluación de la Interacción Anomérica O-C-P(O)”, CINVESTAV- IPN, noviembre de 1989. 1.5 Gabriel Cuevas González-Bravo, “Estudio de los Efectos Estereoelectrónicos Responsables del Comportamiento Conformacional de 1,3-Ditianos 2- Sustituidos, y Heterociclos Análogos”, CINVESTAV-IPN, marzo de 1993. 1.6 Delia Quintana Zavala, “Síntesis Asimétrica de -Amino Acidos -Sustituídos a partir de la 1-Benzoíl-2(S)-tert-butil-3-metilperhidropirimidín-4-ona”, CINVESTAV-IPN, diciembre de 1994. 1.7 Jaime Escalante García, “Síntesis Enantioselectiva de -Amino Acidos ,- Disustituídos”, CINVESTAV-IPN, julio de 1995. 1.8 Domingo Madrigal Peralta, “Alquilación Diastereoselectiva de N-(- Metilbencil)-1,3-imidazolidín-4-onas y sus Análogos”, CINVESTAV-IPN, febrero de 1996. 1.9 Cecilia Anaya Berrios, “Síntesis y Aplicación de Ligandos Quirales Incorporando el Grupo (S)--Metilbencilo, CINVESTAV-IPN, febrero de 1997. 1.10 Francisco Díaz Cedillo, “Análisis Conformacional de 1,3-Dioxanos 5-Sustituidos en Presencia de Sales”, CINVESTAV-IPN, agosto 15, 1997. 1.11 Oscar García Barradas, “Síntesis y Aplicación de Imidazolidinonas Quirales Conteniendo el Grupo Metilbencilo. Síntesis Enantioselectiva de Acidos Amino- Fosfónicos Quirales” CINVESTAV-IPN, Agosto 25, 1997. 1.12 Adelfo Natalio Reyes Ramírez, “Uso de la (S)--Metilbencilamina y Derivados Estructuralmente Relacionados en Procesos para la Obtención de Compuestos Enantiopuros”, CINVESTAV-IPN, Marzo 26, 1999. 1.13 Sandra Antúnez Perezache, “Aplicación de la Química Computacional en la Determinación de las Contribuciones Entálpicas y Entrópicas en Equilibrios Conformacionales de Ciclohexanos Sustituidos y Análogos Heterocíclicos”, CINVESTAV-IPN, Julio 2, 1999. 1.14 Yara Ramírez Quirós, “Estudio Conformacional de 1-Benzoílperhidropirimidin- 4-onas a Partir de Datos de Difracción de Rayos-X”, CINVESTAV-IPN, Noviembre 5, 1999. 1.15 Heraclio López Ruiz, “Preparación de Imino Eteres Quirales y su Aprovechamiento en la Síntesis Enantioselectiva de Derivados del Acido Aspártico”, CINVESTAV-IPN, Septiembre 14, 2000. 4 1.16 José Luis León Romo, “Síntesis Enantioselectiva de -Amino Acidos Vía Benzodiazepinonas Quirales”, CINVESTAV-IPN, Octubre 31, 2000. 1.17 Víctor Manuel Gutiérrez García, “Síntesis Enantioselectiva de -Aminoácidos y Acidos Carboxílicos -Sustituidos, Usando como Auxiliares Quirales la (S)- y (R)--Feniletilamina”, CINVESTAV-IPN, Septiembre 6, 2002. 1.18 Jesús Samuel Cruz Sánchez, “Síntesis y Análisis Conformacional de 1,3-Ditianos Sustituidos en C(5) con Grupos Polares”, CINVESTAV-IPN, Diciembre 13, 2002. 1.19 Martha V. Sosa Rivadeneyra, “Síntesis de -Aminoalcoholes Derivados de la (S)-1-Fenil-etilamina y su Aplicación en Síntesis Asimétrica”, Universidad Autónoma de Puebla (Co-dirección con la Dra. Leticia Quintero Cortés), Marzo 14, 2003. 1.20 Irma Linzaga Elizalde, “Síntesis Estereoselectiva de Precursores Quirales de Acidos -Aminofosfónicos,” CINVESTAV-IPN, Marzo 19, 2003. 1.21 Judit Araceli Aviña Verduzco, “Síntesis en Solución y en Fase Sólida de ,- y -Péptidos No Naturales. Análisis Conformacional, Reacciones de Alquilación y Afinidad a Iones Metálicos”, CINVESTAV-IPN, Junio 8, 2004. 1.22 Virgina F. Marañón Ruiz, “Síntesis y Caracterización de Derivados de (1S,2S,1’S)- y (1R,2R,1’S)-2-N-(-Metilbencil)aminociclohexanol como Precursores de Ligantes y Auxiliares Quirales”, CINVESTAV-IPN, Junio 11, 2004. 1.23 Gloria Elizabeth Moreno Morales, “Preparación de Derivados de Fósforo a Partir de N,N’-Di-(-Feniletil)-1,2-diaminas y sus Aplicaciones”, Universidad Autónoma de Puebla, (Co-dirección con la Dra. Cecilia Anaya Berrios), Julio 16, 2004. 1.24 Elena Castellanos Santiago, “Síntesis Enantioselectiva de ,-Diaminoácidos”, CINVESTAV-IPN, Septiembre 10, 2004. 1.25 Maribel Vázquez Hernández, “Síntesis y Análisis Conformacional de 1,3-
Recommended publications
  • Physics of Information in Nonequilibrium Systems A
    PHYSICS OF INFORMATION IN NONEQUILIBRIUM SYSTEMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS MAY 2019 By Elan Stopnitzky Thesis Committee: Susanne Still, Chairperson Jason Kumar Yuriy Mileyko Xerxes Tata Jeffrey Yepez Copyright c 2019 by Elan Stopnitzky ii To my late grandmother, Rosa Stopnitzky iii ACKNOWLEDGMENTS I thank my wonderful family members Benny, Patrick, Shanee, Windy, and Yaniv for the limitless love and inspiration they have given to me over the years. I thank as well my advisor Susanna Still, who has always put great faith in me and encouraged me to pursue my own research ideas, and who has contributed to this work and influenced me greatly as a scientist; my friend and collaborator Lee Altenberg, whom I have learned countless things from and who contributed significantly to this thesis; and my collaborator Thomas E. Ouldridge, who also made important contributions. Finally, I would like to thank my partner Danelle Gallo, whose kindness and support have been invaluable to me throughout this process. iv ABSTRACT Recent advances in non-equilibrium thermodynamics have begun to reveal the funda- mental physical costs, benefits, and limits to the use of information. As the processing of information is a central feature of biology and human civilization, this opens the door to a physical understanding of a wide range of complex phenomena. I discuss two areas where connections between non-equilibrium physics and information theory lead to new results: inferring the distribution of biologically important molecules on the abiotic early Earth, and the conversion of correlated bits into work.
    [Show full text]
  • Magnetite Plaquettes Are Naturally Asymmetric Materials in Meteorites
    1 (Revision 2) 2 Magnetite plaquettes are naturally asymmetric materials in meteorites 3 Queenie H. S. Chan1, Michael E. Zolensky1, James E. Martinez2, Akira Tsuchiyama3, and Akira 4 Miyake3 5 1ARES, NASA Johnson Space Center, Houston, Texas 77058, USA. 6 2Jacobs Engineering, Houston, Texas 77058, USA. 7 3Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 8 606-8502, Japan. 9 10 Correspondence to: Queenie H. S. Chan. Correspondence and requests for materials should be 11 addressed to Q.H.S.C. (Email: [email protected]) 12 13 Abstract 14 Life on Earth shows preference towards the set of organics with particular spatial configurations. 15 Enantiomeric excesses have been observed for α-methyl amino acids in meteorites, which 16 suggests that chiral asymmetry might have an abiotic origin. A possible abiotic mechanism that 17 could produce chiral asymmetry in meteoritic amino acids is their formation under the influence 18 of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. 19 Although magnetite plaquettes have been proposed to be a possible candidate for an asymmetric 20 catalyst, based on the suggestion that they have a spiral structure, a comprehensive description of 21 their morphology and interpretation of the mechanism associated with symmetry-breaking in 22 biomolecules remain elusive. Here we report observations of magnetite plaquettes in 1 23 carbonaceous chondrites (CCs) which were made with scanning electron microscopy and 24 synchrotron X-ray computed microtomography (SXRCT). We obtained the crystal orientation of 25 the plaquettes using electron backscatter diffraction (EBSD) analysis. SXRCT permits 26 visualization of the internal features of the plaquettes.
    [Show full text]
  • Molecular Asymmetry in Prebiotic Chemistry: an Account from Meteorites
    life Review Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites Sandra Pizzarello School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; [email protected]; Tel.: +1-480-965-3370 Academic Editors: Pier Luigi Luisi and David Deamer Received: 8 February 2016; Accepted: 7 April 2016; Published: 13 April 2016 Abstract: Carbonaceous Chondrite (CC) meteorites are fragments of asteroids, solar planetesimals that never became large enough to separate matter by their density, like terrestrial planets. CC contains various amounts of organic carbon and carry a record of chemical evolution as it came to be in the Solar System, at the time the Earth was formed and before the origins of life. We review this record as it pertains to the chiral asymmetry determined for several organic compounds in CC, which reaches a broad molecular distribution and enantiomeric excesses of up to 50%–60%. Because homochirality is an indispensable attribute of extant polymers and these meteoritic enantiomeric excesses are still, to date, the only case of chiral asymmetry in organic molecules measured outside the biosphere, the possibility of an exogenous delivery of primed prebiotic compounds to early Earth from meteorites is often proposed. Whether this exogenous delivery held a chiral advantage in molecular evolution remains an open question, as many others regarding the origins of life are. Keywords: meteorites; asteroids; abiotic; prebiotic; chemical evolution; enantiomeric excess 1. Carbon-Containing Meteorites and Cosmochemical Evolution One of the paradigms of chemical evolution proposes that the abiotic formation of increasingly complex molecules throughout cosmochemical and Earthly processes could eventually lead to life’s precursor molecules.
    [Show full text]
  • Quantifying Hydrogen-Deuterium Exchange of Meteoritic Dicarboxylic Acids During Aqueous Extraction
    Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction Item Type Article; text Authors Fuller, M.; Huang, Y. Citation Fuller, M., & Huang, Y. (2003). Quantifying hydrogendeuterium exchange of meteoritic dicarboxylic acids during aqueous extraction. Meteoritics & Planetary Science, 38(3), 357-363. DOI 10.1111/j.1945-5100.2003.tb00271.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 29/09/2021 19:01:11 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655665 Meteoritics & Planetary Science 38, Nr 3, 357–363 (2003) Abstract available online at http://meteoritics.org Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction Megan FULLER and Yongsong HUANG* Department of Geological Sciences, Brown University, Providence, Rhode Island 02912–1846, USA *Corresponding author. E-mail: [email protected] (Received 15 July 2002; revision accepted 8 January 2003) Abstract–Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in δD values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction.
    [Show full text]
  • Planetary Organic Chemistry and the Origins of Biomolecules
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Planetary Organic Chemistry and the Origins of Biomolecules Steven A. Benner, Hyo-Joong Kim, Myung-Jung Kim, and Alonso Ricardo Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology, Gainesville, Florida 32601 Correspondence: [email protected] Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to iden- tify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to col- lectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. Theyare com- ponents of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars.
    [Show full text]
  • Molecular Asymmetry in Extraterrestrial Chemistry: Insights from a Pristine Meteorite
    Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite Sandra Pizzarello†‡, Yongsong Huang§, and Marcelo R. Alexandre§ †Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604; and §Department of Geological Science, Brown University, Providence, RI 02920 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved January 3, 2008 (received for review October 18, 2007) The nonracemic amino acids of meteorites provide the only natural report here on the soluble organic composition of a carbona- example of molecular asymmetry measured so far outside the ceous meteorite that was collected in the Graves Nunataks biosphere. Because extant life depends on chiral homogeneity for Antarctica ice fields, stored in the Johnson Space Center cura- the structure and function of biopolymers, the study of these torial facilities (as GRA 95229), and seems exceptional in having meteoritic compounds may offer insights into the establishment of escaped most of terrestrial contamination. This meteorite is prebiotic attributes in chemical evolution as well as the origin of classified as CR2, i.e., to belong to a recently discovered family terrestrial homochirality. However, all efforts to understand the of chondrites that are compositionally similar to Renazzo, a origin, distribution, and scope of these amino acids’ enantiomeric meteorite fallen in 1824 and long kept unclassified. The miner- excesses (ee) have been frustrated by the ready exposure of alogy of these CCs is not known in detail, but it is believed that meteorites to terrestrial contaminants and the ubiquitous homo- their asteroidal parent bodies experienced a liquid phase of high chirality of such contamination.
    [Show full text]
  • On the Origins of Biological Homochirality Sandra Pizzarello ([email protected]) University of Arizona
    On the Origins of Biological Homochirality Sandra Pizzarello ([email protected]) University of Arizona Carbonaceous chondrites meteorites contain abundant organic material with structures as diverse as kerogen-like macromolecules and simpler soluble compounds ranging from polar amino acids and polyols to nonpolar hydrocarbons. Some of these compounds have identical counterparts in the terrestrial biosphere and it has been proposed that their exogenous delivery by meteorite and comet might have seeded the early Earth with biomolecule precursors prior to the onset of life. One central problem in experimental prebiotic chemistry has been that synthetic processes relevant to molecular evolution, such as the formose reaction, result in complex mixture of compounds. In view of this, to explain the origin of chemically homogeneous polymers as RNA remains a daunting problem. The chemistry of meteorites, seemingly also a result of abiotic random processes, represent a significant exception in that some of its chiral amino acids show enantiomeric excesses of the same configuration as protein amino acids. Recent analyses of pristine Antarctic meteorites suggest that aldehydes may have carried such asymmetry during parent body reactions as well. Because chiral homogeneity, which is essential to extant life, was probably an attribute necessary to the origin and/or development of life and meteoritic amino acids represents the only natural example of molecular asymmetry measured so far outside the biosphere, it appears reasonable to propose that such chiral trait may constitute a link between abiotic and prebiotic chemistry. Experiments involving non-racemic amino acids of the type found in meteorites have shown that these compounds could have been suited to aid molecular evolution.
    [Show full text]
  • First Symposium on ,,I; Chemical Evolution
    - NASA Conference Publication 2276 First Symposium on ,,I;- Chemical Evolution @ and the Origin and ‘L-z Evolution of Life LOANCDPY:RETURN TO AFWLTECHNICALLIEXARY Kli?TIANDAFB&M. Proceedings of a symposium held at NASA Ames Research Center Moffett Field, California August 24, 1982 25th Anniversary 1958-1983 TECH LIBRARY KAFB, NM llllllllllllllllll~~lml~~sml oossi4s NASA Conference Pubis,,,,,., yy, v First Symposium on Chemical Evolution and the Origin and Evolution of Life Edited by Donald L. DeVincenzi NASA Headquarters Washington, D.C. Linda G. Pleasant The George Washington University Medical Center Washington, D. C. Proceedings of a symposium sponsored by the National Aeronautics and Space Administration and the International Society for the Study of the Origin of Life and held at NASA Ames Research Center Moffett Field, California August 2-4, 1982 National Aeronautics and Space Administration Scientific and Technical information Branch 1983 Contents Introduction ...................................................... 1 Background ........................................................ 2 Symposium Program ................................................. 4 Scientific Session Summaries ...................................... 13 Abstracts Session I: Extraterrestrial Chemi stry .......................... 37 Session II: Primitive Earth..... .............................. 47 Session III: Information Transfer .............................. 59 Session IV: Solar System Exploration ........................... 68 Session V: Planetary Protection
    [Show full text]
  • Final Progress Report
    Final Progress Report Date: April 22,2004 Title of Grant: Chiral Analyses of Organic Compounds in Carbonaceous Meteorites Name of PI: Sandra Pizzarello Period Covered By Report: April 15,2000 to April 14,2004 Recipients Institution: Arizona State University Grant Number: NAG5-9451 . This report presents a summary of the research studies conducted during the years 2001 to 2004 and funded by NASA grant NAG5-9451. 1. Characterization of Tagish Lake organic content The first two grant years were largely devoted to the molecular and isotopic analyses of Tagish Lake organic composition. This carbonaceous meteorite fell in Canada in the winter of the year 2000, and its exceptional atmospheric entry and subsequent recovery (e. g., the sample was recovered and stored by avoiding hand contact and above freezing temperatures) contributed in providing a rare and pristine extraterrestrial material. This laboratory received half of the only ten-gram piece of the Tagish Lake meteorite that was given for analysis after its fall. In our studies, we established the amounts and distribution of the soluble organic suite, characterized the meteorite insoluble macromolecular carbon by determining its general composition and elemental, deuterium, fullerene and noble gas content, and focused in detail on Tagish Lake dicarboxylic acids, which are the meteorite most varied group of soluble compounds. Overall, the Tagish Lake meteorite revealed a unique organic content and distribution, its soluble organic suite is dominated by carboxylated species, monocarboxylic acids, alkyl and aryl dicarboxylic acids, their imides and anhydrides, carboxylated quinolines, and methanesulfonic acid, while amino acids, amines, and other common meteoritic organics are either scarce or absent.
    [Show full text]
  • Looking for the Origin of Life in Cosmochemistry Asteroids and Their Carbon-Rich Meteorites
    MONOGRAPH MÈTODE Science Studies Journal, 6 (2016): 161–165. University of Valencia. DOI: 10.7203/metode.6.5000 ISSN: 2174-3487. Article received: 24/03/2015, accepted: 17/06/2015. LOOKING FOR THE ORIGIN OF LIFE IN COSMOCHEMISTRY ASTEROIDS AND THEIR CARBON-RICH METEORITES SANDRA PIZZAREllO Carbonaceous chondrite meteorites are carbon-containing fragments of primitive asteroids that have offered the only samples available to date giving insights into chemical evolution in laboratory analyses. Their study has revealed that abundant organic chemistry came to be in the Solar System ahead of terrestrial life and, by the input of these meteorites and comets, might have aided in the origin of our planet’s biochemistry. Keywords: biogenic elements, carbonaceous meteorites, chemical evolution, chirality, chembiogenesis. Louis Lerman (2010) recently wrote: and subsequent generation of stars, evolved through Origin problems are the most conjectural and qualitative a long cosmic history into increasingly complex of scientific questions. It is hardly surprising then that abiotic molecules, some of which eventually reached the origin of life, like the origin of the universe, lacks planetary systems such as our own and may have led uniquely defining quantitative assumptions and initial to life’s precursor molecules. conditions. Individually, they are Fermi questions of a functional sort, requiring the use of a first-principles n THE CONCEPT OF CHEMBIOGENESIS conceptual approach to a situation of fundamental quantitative ignorance. That a natural pre-biotic chemical evolution could Well put, if not sobering, since reach early Earth, an idea also cleverly referred the processes that led to the to as chembiogenesis by Von origin of life remains utterly Kiedrowski (2005), has found unknown as well as difficult to direct experimental scrutiny «THAT A NATURAL PRE- decipher.
    [Show full text]
  • Redalyc.LOOKING for the ORIGIN of LIFE in COSMOCHEMISTRY
    Mètode Science Studies Journal ISSN: 2174-3487 [email protected] Universitat de València España Pizzarellllo, Sandra LOOKING FOR THE ORIGIN OF LIFE IN COSMOCHEMISTRY ASTEROIDS AND THEIR CARBON-RICH METEORITES Mètode Science Studies Journal, núm. 6, 2016, pp. 161-165 Universitat de València Valencia, España Available in: http://www.redalyc.org/articulo.oa?id=511754471023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MONOGRAPH MÈTODE Science Studies Journal, 6 (2016): 161–165. University of Valencia. DOI: 10.7203/metode.6.5000 ISSN: 2174-3487. Article received: 24/03/2015, accepted: 17/06/2015. LOOKING FOR THE ORIGIN OF LIFE IN COSMOCHEMISTRY ASTEROIDS AND THEIR CARBON-RICH METEORITES SANDRA PIZZAREllO Carbonaceous chondrite meteorites are carbon-containing fragments of primitive asteroids that have offered the only samples available to date giving insights into chemical evolution in laboratory analyses. Their study has revealed that abundant organic chemistry came to be in the Solar System ahead of terrestrial life and, by the input of these meteorites and comets, might have aided in the origin of our planet’s biochemistry. Keywords: biogenic elements, carbonaceous meteorites, chemical evolution, chirality, chembiogenesis. Louis Lerman (2010) recently wrote: and subsequent generation of stars, evolved through Origin problems are the most conjectural and qualitative a long cosmic history into increasingly complex of scientific questions. It is hardly surprising then that abiotic molecules, some of which eventually reached the origin of life, like the origin of the universe, lacks planetary systems such as our own and may have led uniquely defining quantitative assumptions and initial to life’s precursor molecules.
    [Show full text]
  • Quantum Chemical Studies of Enantioselective Organocatalytic Reactions
    Quantum Chemical Studies of Enantioselective Organocatalytic Reactions Peter Hammar Department of Theoretical Chemistry School of Biotechnology Royal Institute of Technology Stockholm 2008 Quantum Chemical Studies of Enantioselective Organocatalytic Reactions Licentiate thesis Department of Theoretical Chemistry Royal Institute of Technology Stockholm, Sweden © Peter Hammar, 2008 ISBN 978-91-7178-934-1 ISSN 1654-2312 TRITA-BIO-Report 2008:6 Printed by Universitetsservice US AB, Stockholm Abstract Density Functional Theory is used in order to shed light on the reaction mechanisms and the origins of stereoselectivity in enantioselective organocatalytic reactions. The reactions investigated are the dipeptide-catalyzed aldol reaction, the cinchona thiourea- catalyzed nitroaldol reaction and the prolinol derivative-catalyzed hydrophosphination reaction. We can justify the stereoselectivity in the reactions from the energies arising from different interactions in the transition states. The major contributions to the energy differences are found to be hydrogen bond-type attractions and steric repulsions. This knowledge will be useful in the design of improved catalysts as well as general understanding of the basis of selection in other reactions. iii Contents Preface...................................................................................................................v List of Abbreviations............................................................................................vi List of Included Papers........................................................................................vii
    [Show full text]