Planetary Organic Chemistry and the Origins of Biomolecules

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Organic Chemistry and the Origins of Biomolecules Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Planetary Organic Chemistry and the Origins of Biomolecules Steven A. Benner, Hyo-Joong Kim, Myung-Jung Kim, and Alonso Ricardo Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology, Gainesville, Florida 32601 Correspondence: [email protected] Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to iden- tify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to col- lectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. Theyare com- ponents of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia. nteresting organic chemistry occurs through- certainly contributed to the reduced carbon Iout the cosmos, including in presolar nebulae inventory on Earth before life emerged, plane- (see the article in this collection by Pascale Erh- tary processing on Earth undoubtedly also con- renfreund), asteroidal bodies (see the article in tributed to the inventory of prebiotic molecules this collection by Sandra Pizzarello) and icy that were available to life as it originated (as- bodies near the outer boundary of our solar sys- suming that Earth was the site of life’s origin). tem (Bernstein et al. 2002). Although organic Indeed, in the RNA first model for the origin molecules made in off-Earth locales almost of life on Earth (Joyce and Orgel 1999)(Benner Editors: David Deamer and Jack W. Szostak Additional Perspectives on The Origins of Life available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a003467 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a003467 1 Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press S.A. Benner et al. 2009), it is often proposed that terran-based organic transformations might have occurred on chemistry produced RNA in oligomeric form dry land or below water on a planetary surface to initiate Darwinian evolution. that was totally submerged. How are we to constrain models for planetary processing to converge on a model for what actually happened on Earth four billion years BACKGROUND ago? Today, atmospheric dioxygen (O2)readily Organic Molecules with Energy converts organic materials to carbon dioxide, Spontaneously Yield Polymers and Complex making it essentially impossible to observe such Mixtures processing on the surface of Earth. Furthermore, the ubiquity of life on modern Earth means that Any model for planetary organic chemistry must any organic processing is more likely to reflect recognize that very few organic molecules are biology than prebiology. The closest we may thermodynamically stable in water, either with come today to observe organic transformations respect to conversion to their fully hydrated state absent biology on a planetary scale might be on or decomposition upon heating to elemental car- Titan, a moon of Saturn whose atmosphere and bon (charcoal), carbon dioxide, orother thermo- surface is rich in reduced carbon. dynamic “end points.” Accordingly, any model Nevertheless, it is possible to apply a general for planetary prebiotic chemistry must address understanding of organic chemical reactivity to the metastability of organic species. This word suggest chemical reactions that might have captures the concept that organic molecules that occurred on early Earth and the products that have appeared through the interaction of precur- they might have produced. These suggestions sors with energy, water, and other organics can are constrained by models for the atmosphere then disappear upon further interaction. As and mineralogy of early Earth, although these many authors have noted (Cairns-Smith 1982; constraints might change as models improve. Shapiro 1987; Shapiro 2007), any prebiotic reac- In this article, we assume that the atmos- tion scheme that requires two or more organic phere of early Earth was less oxidizing than species must be concerned about the metastabil- today’s atmosphere, although not as rich in ity of two or more species; any scheme that does methane as the simulated atmosphere used in not produce both components in useful concen- the classic experiments of Stanley Miller (Miller trations at the same time will not meet a standard 1955). Further, we assume that the atmosphere of proof that the community need to accept a on early Earth had access to many sources solution to the problem. of energy. These include electrical discharge, Here, too, the mineral inventory of early ultraviolet and visible light (although the Sun Earthcannotbeignored.Mineralsofmanykinds was almost certainly dimmer then than now, a may have guided the reactivityof organic species Titan-like haze may have prevented high energy that emerged on early Earth, altered their meta- photons from reacting the Earth’s surface), stability, and influenced the time when specific volcanism (providing not only heat but also organic species were available to emerging life. reactive species and mixtures not at thermo- dynamic equilibrium), ionizing radiation, and Carbohydrates Embody this Natural impacts.(SeePizzarelloandShock2010foradis- Propensity to Polymerize cussion of such energy sources.) We also assume that life emerged after Toexplorethese points anddevelop the scientific the planet underwent a geological fractionation methods that enable this exploration, we will use in which heavier minerals and elemental iron carbohydrates as a focus. Carbohydrates are sank towards the core, leaving lighter rocks to organic species having carbon, hydrogen and formthecrust.Openquestionsconcerntheinven- oxygen atoms in a ratio of 1:2:1. They are there- tory of water relative to the surface of early Earth, fore at the same oxidation level of elemental car- an inventory that determined whether planetary bon. Furthermore the simplest carbohydrate, 2 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a003467 Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Planetary Organic Chemistry and the Origins of Biomolecules formaldehyde (HCHO, H2C¼O, or C1H2O1)is and preclude certain compound classes based easily generated by electrical discharge or ultra- on the same data, characterizes the “origins” field violet radiation impinging on moist atmos- in general (Benner 2009). To evaluate such con- pheres that are rich in carbon dioxide; nearly tradicting views, participants in this field must every contemporary model for early Earth per- understand relevant features of bonding and mitssuchatmospheres(Pintoetal.1980;Cleaves reactivity in organic molecules. This understand- 2008).Becausetheycontainketoneandaldehyde ing requires in turn that they understand the for- groups (see later), carbohydrates have interest- malisms used by organic chemists to describe ing reactivity that includes the ability to form bonding and reactivity in organic molecules. newcarbon-carbonbondsunder “standardcon- Although the features and formalisms are taught ditions,” defined as those where water is liquid in introductory organic chemistry courses, it is under contemporary terran atmospheric pres- worth summarizing them here a prelude to dis- sure. By comparison, the compounds that often cussing constraints on reactions that might be concern prebiotic chemists (carboxylic acids, expected to occur in prebiotic environments. fatty acids, and amino acids, for example) have First, a single bond joining two carbon essentially no such reactivity. Indeed, carbohy- atoms is strong, on the order of 400 kJ (100 drates are “high energy” because they can rear- kcal) per mole. This means that a pair of carbon range their constituent atoms to give carboxylic atoms joined by a typical single bond will acid derivatives and other more stable end point remain joined for many millions of years at tem- “sinks.” peratures when water is a liquid at sea level on Recognizing this, some authors, most nota- Earth near neutral pH (“standard conditions”). bly Arthur Weber (Weber 2001a; Weber 2001b; This is also true
Recommended publications
  • Physics of Information in Nonequilibrium Systems A
    PHYSICS OF INFORMATION IN NONEQUILIBRIUM SYSTEMS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS MAY 2019 By Elan Stopnitzky Thesis Committee: Susanne Still, Chairperson Jason Kumar Yuriy Mileyko Xerxes Tata Jeffrey Yepez Copyright c 2019 by Elan Stopnitzky ii To my late grandmother, Rosa Stopnitzky iii ACKNOWLEDGMENTS I thank my wonderful family members Benny, Patrick, Shanee, Windy, and Yaniv for the limitless love and inspiration they have given to me over the years. I thank as well my advisor Susanna Still, who has always put great faith in me and encouraged me to pursue my own research ideas, and who has contributed to this work and influenced me greatly as a scientist; my friend and collaborator Lee Altenberg, whom I have learned countless things from and who contributed significantly to this thesis; and my collaborator Thomas E. Ouldridge, who also made important contributions. Finally, I would like to thank my partner Danelle Gallo, whose kindness and support have been invaluable to me throughout this process. iv ABSTRACT Recent advances in non-equilibrium thermodynamics have begun to reveal the funda- mental physical costs, benefits, and limits to the use of information. As the processing of information is a central feature of biology and human civilization, this opens the door to a physical understanding of a wide range of complex phenomena. I discuss two areas where connections between non-equilibrium physics and information theory lead to new results: inferring the distribution of biologically important molecules on the abiotic early Earth, and the conversion of correlated bits into work.
    [Show full text]
  • Magnetite Plaquettes Are Naturally Asymmetric Materials in Meteorites
    1 (Revision 2) 2 Magnetite plaquettes are naturally asymmetric materials in meteorites 3 Queenie H. S. Chan1, Michael E. Zolensky1, James E. Martinez2, Akira Tsuchiyama3, and Akira 4 Miyake3 5 1ARES, NASA Johnson Space Center, Houston, Texas 77058, USA. 6 2Jacobs Engineering, Houston, Texas 77058, USA. 7 3Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 8 606-8502, Japan. 9 10 Correspondence to: Queenie H. S. Chan. Correspondence and requests for materials should be 11 addressed to Q.H.S.C. (Email: [email protected]) 12 13 Abstract 14 Life on Earth shows preference towards the set of organics with particular spatial configurations. 15 Enantiomeric excesses have been observed for α-methyl amino acids in meteorites, which 16 suggests that chiral asymmetry might have an abiotic origin. A possible abiotic mechanism that 17 could produce chiral asymmetry in meteoritic amino acids is their formation under the influence 18 of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. 19 Although magnetite plaquettes have been proposed to be a possible candidate for an asymmetric 20 catalyst, based on the suggestion that they have a spiral structure, a comprehensive description of 21 their morphology and interpretation of the mechanism associated with symmetry-breaking in 22 biomolecules remain elusive. Here we report observations of magnetite plaquettes in 1 23 carbonaceous chondrites (CCs) which were made with scanning electron microscopy and 24 synchrotron X-ray computed microtomography (SXRCT). We obtained the crystal orientation of 25 the plaquettes using electron backscatter diffraction (EBSD) analysis. SXRCT permits 26 visualization of the internal features of the plaquettes.
    [Show full text]
  • Phd Projects at the Institute of Origins
    PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................
    [Show full text]
  • Carl Sagan 1934–1996
    Carl Sagan 1934–1996 A Biographical Memoir by David Morrison ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. CARL SAGAN November 9, 1934–December 20, 1996 Awarded 1994 NAS Pubic Welfare Medal Carl Edward Sagan was a founder of the modern disci- plines of planetary science and exobiology (which studies the potential habitability of extraterrestrial environments for living things), and he was a brilliant educator who was able to inspire public interest in science. A visionary and a committed defender of rational scientific thinking, he transcended the usual categories of academia to become one of the world’s best-known scientists and a true celebrity. NASA Photo Courtesy of Sagan was propelled in his careers by a wealth of talent, By David Morrison a large share of good luck, and an intensely focused drive to succeed. His lifelong quests were to understand our plane- tary system, to search for life beyond Earth, and to communicate the thrill of scientific discovery to others. As an advisor to the National Aeronautics and Space Administration (NASA) and a member of the science teams for the Mariner, Viking, Voyager, and Galileo missions, he was a major player in the scientific exploration of the solar system. He was also a highly popular teacher, but his influence reached far beyond the classroom through his vivid popular writing and his mastery of the medium of television. The early years Born in 1934, Sagan grew up in a workingclass Jewish neighborhood of Brooklyn, New York, and attended public schools there and in Rahway, New Jersey.
    [Show full text]
  • An Evolving Astrobiology Glossary
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.
    [Show full text]
  • Isoprene Rule Revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, Hormones and Life: Isoprene Rule Revisited
    242 2 Journal of S G Hillier and R Lathe Isoprene rule revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, hormones and life: isoprene rule revisited Stephen G Hillier1 and Richard Lathe2 1Medical Research Council Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK 2Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK Correspondence should be addressed to S G Hillier or R Lathe: [email protected] or [email protected] Abstract The year 2019 marks the 80th anniversary of the 1939 Nobel Prize in Chemistry awarded Key Words to Leopold Ruzicka (1887–1976) for work on higher terpene molecular structures, including f isoprene the first chemical synthesis of male sex hormones. Arguably his crowning achievement f terpene was the ‘biogenetic isoprene rule’, which helped to unravel the complexities of terpenoid f steroid biosynthesis. The rule declares terpenoids to be enzymatically cyclized products of f evolution substrate alkene chains containing a characteristic number of linear, head-to-tail f great oxidation event condensed, C5 isoprene units. The number of repeat isoprene units dictates the type of f Ruzicka terpene produced (i.e., 2, monoterpene; 3, sesquiterpene; 4, diterpene, etc.). In the case of triterpenes, six C5 isoprene units combine into C30 squalene, which is cyclized into one of the signature carbon skeletons from which myriad downstream triterpenoid structures are derived, including sterols and steroids. Ruzicka also had a keen interest in the origin of life, but the pivotal role of terpenoids has generally been overshadowed by nucleobases, amino acids, and sugars.
    [Show full text]
  • Molecular Asymmetry in Prebiotic Chemistry: an Account from Meteorites
    life Review Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites Sandra Pizzarello School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; [email protected]; Tel.: +1-480-965-3370 Academic Editors: Pier Luigi Luisi and David Deamer Received: 8 February 2016; Accepted: 7 April 2016; Published: 13 April 2016 Abstract: Carbonaceous Chondrite (CC) meteorites are fragments of asteroids, solar planetesimals that never became large enough to separate matter by their density, like terrestrial planets. CC contains various amounts of organic carbon and carry a record of chemical evolution as it came to be in the Solar System, at the time the Earth was formed and before the origins of life. We review this record as it pertains to the chiral asymmetry determined for several organic compounds in CC, which reaches a broad molecular distribution and enantiomeric excesses of up to 50%–60%. Because homochirality is an indispensable attribute of extant polymers and these meteoritic enantiomeric excesses are still, to date, the only case of chiral asymmetry in organic molecules measured outside the biosphere, the possibility of an exogenous delivery of primed prebiotic compounds to early Earth from meteorites is often proposed. Whether this exogenous delivery held a chiral advantage in molecular evolution remains an open question, as many others regarding the origins of life are. Keywords: meteorites; asteroids; abiotic; prebiotic; chemical evolution; enantiomeric excess 1. Carbon-Containing Meteorites and Cosmochemical Evolution One of the paradigms of chemical evolution proposes that the abiotic formation of increasingly complex molecules throughout cosmochemical and Earthly processes could eventually lead to life’s precursor molecules.
    [Show full text]
  • Quantifying Hydrogen-Deuterium Exchange of Meteoritic Dicarboxylic Acids During Aqueous Extraction
    Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction Item Type Article; text Authors Fuller, M.; Huang, Y. Citation Fuller, M., & Huang, Y. (2003). Quantifying hydrogendeuterium exchange of meteoritic dicarboxylic acids during aqueous extraction. Meteoritics & Planetary Science, 38(3), 357-363. DOI 10.1111/j.1945-5100.2003.tb00271.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 29/09/2021 19:01:11 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655665 Meteoritics & Planetary Science 38, Nr 3, 357–363 (2003) Abstract available online at http://meteoritics.org Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction Megan FULLER and Yongsong HUANG* Department of Geological Sciences, Brown University, Providence, Rhode Island 02912–1846, USA *Corresponding author. E-mail: [email protected] (Received 15 July 2002; revision accepted 8 January 2003) Abstract–Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in δD values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction.
    [Show full text]
  • Planetary Organic Chemistry and the Origins of Biomolecules
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Planetary Organic Chemistry and the Origins of Biomolecules Steven A. Benner, Hyo-Joong Kim, Myung-Jung Kim, and Alonso Ricardo Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology, Gainesville, Florida 32601 Correspondence: [email protected] Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to iden- tify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to col- lectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. Theyare com- ponents of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars.
    [Show full text]
  • Presentation
    IRENA MAMAJANOV FROM MESSY CHEMISTRY TO THE ORIGINS OF LIFE Habitability: Producing Conditions Conducive to Life LPI “First Billion Years” Conference Series September 9 2019 PLANETARY HABITABILITY AS PERCEIVED BY A CHEMIST WHAT IS HABITABILITY ANYWAY? Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and sustain life. EARTH-CENTRIC? DEFINITION OF LIFE LIFE IS A SELF-SUSTAINING SYSTEM CAPABLE OF DARWINIAN EVOLUTION NASA Working Definition HOW WE STUDY ORIGINS OF LIFE TWO APPROACHES IN THE BROADEST SENSE ▸ More Earth biology-centric ▸ Prebiotic synthesis of biological building blocks ▸ Setting biological processes in abiotic environments ▸ Evolution of biological structures ▸ More open-ended: Building a chemical system capable of Darwinian Evolution ▸ Selectivity ▸ Replication ▸ Heredity MORE EARTH BIOLOGY-CENTRIC: UNSATISFYING? TV PARADOX ? ? “MORE OPEN ENDED” APPROACH ▸ Looking at systems level processes. MESSY CHEMISTRY ▸ “Systems Chemistry” usually = small defined networks ▸ “Messy Chemistry” = the network chemistry of large, “intractable”, prebiotically plausible systems. ▸ Sloppy biological processes ▸ Processes resembling biological but inefficient Small fraction of the Organic Chemistry M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop, Parallel optimization of synthetic pathways within the network of organic chemistry. Angew. Network (~0.001%). Chem. Int. Ed. 51, 7928-7932 (2012). EVOLUTION OF THE CHEMOSPHERE AND BIOCHEMICAL NETWORKS Biomimetic Systems Systems approximating biological fUnction • Protoenzymes • Protocells Open-Ended Systems Systems having no predetermined limit or boundary • Autocatalytic systems M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop (2012) Angew. Chem. Int. Ed. 51:7928-7932 Small fraction of the Organic Chemistry Network (~0.001%).
    [Show full text]
  • Mapping Disciplinary Relationships in Astrobiology: 2001-2012
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2014 Mapping disciplinary relationships in Astrobiology: 2001-2012 Jason W. Cornell Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geography Commons Recommended Citation Cornell, Jason W., "Mapping disciplinary relationships in Astrobiology: 2001-2012" (2014). WWU Graduate School Collection. 387. https://cedar.wwu.edu/wwuet/387 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Mapping Disciplinary Relationships in Astrobiology: 2001 - 2012 By Jason W. Cornell Accepted in Partial Completion Of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Gigi Berardi Dr. Linda Billings Dr. David Rossiter ! ! MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books.
    [Show full text]
  • Molecular Asymmetry in Extraterrestrial Chemistry: Insights from a Pristine Meteorite
    Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite Sandra Pizzarello†‡, Yongsong Huang§, and Marcelo R. Alexandre§ †Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604; and §Department of Geological Science, Brown University, Providence, RI 02920 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved January 3, 2008 (received for review October 18, 2007) The nonracemic amino acids of meteorites provide the only natural report here on the soluble organic composition of a carbona- example of molecular asymmetry measured so far outside the ceous meteorite that was collected in the Graves Nunataks biosphere. Because extant life depends on chiral homogeneity for Antarctica ice fields, stored in the Johnson Space Center cura- the structure and function of biopolymers, the study of these torial facilities (as GRA 95229), and seems exceptional in having meteoritic compounds may offer insights into the establishment of escaped most of terrestrial contamination. This meteorite is prebiotic attributes in chemical evolution as well as the origin of classified as CR2, i.e., to belong to a recently discovered family terrestrial homochirality. However, all efforts to understand the of chondrites that are compositionally similar to Renazzo, a origin, distribution, and scope of these amino acids’ enantiomeric meteorite fallen in 1824 and long kept unclassified. The miner- excesses (ee) have been frustrated by the ready exposure of alogy of these CCs is not known in detail, but it is believed that meteorites to terrestrial contaminants and the ubiquitous homo- their asteroidal parent bodies experienced a liquid phase of high chirality of such contamination.
    [Show full text]