Preliminary Design of a High Performance Solar Sailing Mission

Total Page:16

File Type:pdf, Size:1020Kb

Preliminary Design of a High Performance Solar Sailing Mission SSC02-II-5 Preliminary Design of a High Performance Solar Sailing Mission Dan Cohen AeroAstro, Inc. 327 A St., 5th Floor Boston, MA 02210 617-451-8630 x19 [email protected] Paul Gloyer AeroAstro, Inc. 160 Adams Lane Waveland, MS 39576 228-466-9863 [email protected] James Rogan Encounter 2001, LLC. 2444 Times Blvd #260 Houston, TX 77005 713-522-7282 [email protected] Abstract. The Team Encounter participants, Team Encounter, LLC, AeroAstro Inc., and L’Garde, Inc. have recently completed the preliminary design of the Team Encounter spacecraft, Humanity's First Starship™. The spacecraft, intended to be launched as a secondary payload on an Ariane 5 launcher in the first or second quarter of 2004, consists of two parts: the Carrier, which transports the Sailcraft beyond Earth’s gravity well and the Sailcraft which transports its payload of 3 kg out of the solar system. The Carrier must provide a stable platform for deployment and separation of the 4900 m2 solar sail, and will provide for video streaming of the Sailcraft as it begins its journey. The Team Encounter Sailcraft is the first spacecraft with the capability to self propel itself out of the solar system with a combination of performance-enhancing tacking maneuvers and an areal density of 3.4 g/m2 including payload. The mission analysis made use of an innovative unified Matlab / Satellite Tool Kit model developed by AeroAstro that simulates geometry, attitude and trajectory concurrently. This model was used to optimize motor firing, Sailcraft deployment and mission phasing. The Sailcraft ADCS control scheme was validated via stability analysis and simulation, and the results will be presented in this paper. Introduction The Team Encounter PDR was held February 28 are in turn broken down into the lower level and March 1, 2002 in Houston, TX. This paper mission elements, which are identified in Fig. 1. provides a technical summary of the design As in any significant engineering project, the status at PDR especially with respect to the PDR effort began with identific ation of Carrier design (along with its major requirements. From the top level product subsystems), Sailcraft attitude determination and requirements, provided by the Customer, the control system, systems engineering, trajectory technical team derived and flowed mission and mission simulation, assembly, integration, requirements, which in turn flowed into the test, launch vehicle integration and the ground Space and Ground Segments. The requirements segment. traceability process was flowed down to the subsystem and component level, in order to The scope of effort for the mission consists of a allow for preliminary identification of spacecraft Space Segment and a Ground Segment. These components and vendors. The requirements flow Cohen, Dan 1 16th Annual/USU Conference on Small Satellites Encounter Mission Space Segment Ground Segment Spacecraft Launch TEMOC Global Tracking Vehicle Network Cover Carrier Sailcraft Figure 1. Mission Element Breakdown and traceability process used on the Encounter Sailcraft (Stowed) program is shown in Fig. 2. Carrier Requirements Spacecraft Requirements Sailcraft Requirements Space Segment Requirements Launch Vehicle Requirements Product Mission Requirements Requirements Space/Ground Interface Requirements Carrier (Deployed View) Ground Segment Figure 3. Spacecraft Architecture Requirements Ground Control Software Requirements The Sailcraft is an atypical spacecraft, utilizing Figure 2. Requirements Flowdown an extremely light-weight gossamer structure, a suspended membrane, and deployment Space Segment Overview mechanism. The Sailcraft utilizes an autonomous attitude determination and control The space segment consists of the Spacecraft system that features dual-pitch attitude modes and Launch Vehicle . As shown in Fig. 1-1, the for trajectory and visibility optimization. It spacecraft consists of two major elements: the generates its own power through solar sail Carrier and the Sailcraft. The Carrier mounted thin-film solar array panels, and power propulsively transports the Sailcraft beyond the distribution and control is handled via an on- earth’s gravity well. Therefore, the Sailcraft is board avionics system. the Carrier’s payload until they separate. The Sailcraft, which is completely autonomous after The major mission phases for the Carrier separation from the Carrier, transports its 3-kg spacecraft are: payload out of the solar system. It is fully dependant on the solar sail to provide the · Launch propulsion needed for its mission. These major · Separation elements are shown in Fig. 3. · GTO/Secondary Payload Mission · Earth Escape The Carrier provides typical spacecraft resources · Sail Deployment to the payload, namely ADCS, power, · Sailcraft Separation propulsion, and a protective structure. It also · Sailcraft Cruise provides several mission unique services, such as a stable platform for deployment of a 76 m x The Encounter spacecraft will be launched on an 76 m solar sail, jitter-free imaging of the solar Ariane 5, accommodated by the flight proven sail separation and initial trajectory, as well as Ariane Structure for Auxiliary Payloads accommodation of secondary payloads. (ASAP). As a result, all launch operations will take place at the Centre Spatial Guyanese (CSG) Cohen, Dan 2 16th Annual/USU Conference on Small Satellites in Kourou, French Guiana. At CSG pre-launch The top plate of the Carrier structure acts as the spacecraft testing, hazardous operations (such as integration platform and interface plane for the pressurization of the cold-gas propulsion system Sailcraft and associated hardware. These and installation of the solid rocket motor), and components may be found in Fig. 5. Sailcraft (Sailcraft, Cover, combined operations that follow installation on Payload, and Ballast) the ASAP ring adapter will take place. Star Camera Electronics S&A Device Batteries Transponder Ground Segment Overview IMU Solar Panels Combiner/Diplexer And Cameras Cold Gas The Ground Segment is composed of two major Primary and Secondary System Structure (assembled elements: the Team Encounter Mission around structure) Operations Center (TEMOC) and the Global NanoCore Star Tracker Electronics Bundle Tracking Network. TEMOC will provide all the Secondary Payload command and control resources for the Solid Motor Encounter mission, and will be located at the Team Encounter headquarters in Houston, TX. It Figure 5. Encounter Exploded View will also provide for communications connectivity between the global tracking network and the launch site, as shown in Fig. 4. The Encounter spacecraft total mass allocation is constrained by Ariane. The maximum mass Spacecraft allowed for an ASAP payload is 120 kg. The Team Encounter Mission mass estimate as of PDR is 111.3 kg, which Operations Center Space – Ground (TEMOC) Interface allows for only 8.7 kg margin (7.2%) during the Guiana Space Space Center Segment ongoing detail design process. The Carrier mass breakdown is provided in Fig. 6. TCP/IP Comm to tracking network Thermal Mission • Ground control Software Sailcraft • Telemetry Processing 1% Payload • Mission Analysis Structural & 5% 16% Sec. Payload • Command Generation Global Tracking Mechanisms 2% Network (DSN) 8% Comms Ground Segment 2% Power 10% Imagers Figure 4. Ground Segment Architecture 4% ADCS C&DH 1% The global tracking network will make use of 3% the proven capabilities of the 26 m antenna Propulsion 48% resources of the Deep Space Network (DSN) managed by JPL. Figure 6. Carrier Mass Breakdown Carrier Description The power generation capability is in turn driven by the peak power requirement. The total power The Carrier primary structure (and load carrying capability (peak load) is approximately ~295 member) is the centrally located solid motor, Watts. The power usage distribution is provided baselined as an ATK Star 12G. Lightweight in Fig. 7. secondary structure carries all support Sailcraft (htrs) Sec. Payload 9% equipment including ADCS, communications, 2% Comms 15% Imagers 12% command and data handling (C&DH), Thermal 9% propulsion, imaging, and power subsystems. Deployable solar panels not only meet Structural & ADCS 8% Mechanical Encounter’s power requirements, but also 22% provide for stabilization during the high-rate Power 1% Propulsion spin mode necessary for the motor burn phase. C&DH 3% 19% Figure 7. Carrier Power Breakdown Cohen, Dan 3 16th Annual/USU Conference on Small Satellites Carrier Mission Phases appropriate perigee burn attitude. Operations will include 3-axis stabilization, slewing of the The Carrier mission begins at separation from spacecraft to burn attitude, spinning up to 120 the launch vehicle, and ends after completing to RPM (about the motor thrust vector axis), final downlink imaging data of the Sailcraft pre-burn orbit determination and telemetry separation event. However nothing in its design verification, and the perigee motor burn. The precludes the possibility of an extended mission, total duration of the Escape Burn phase is including secondary payload operations after estimated at 300 minutes, though the perigee this time. The Carrier mission may be broken burn itself will take only about 15 seconds to down into the following four major mission complete. phases: th In the 4 and final Carrier phase, Sailcraft 1. Post-Launch Check out and Configuration Deployment, the most critical mission activities 2. GTO Operations take place. These activities must be completed 3. Escape Burn per a strict mission timeline,
Recommended publications
  • Call for M5 Missions
    ESA UNCLASSIFIED - For Official Use M5 Call - Technical Annex Prepared by SCI-F Reference ESA-SCI-F-ESTEC-TN-2016-002 Issue 1 Revision 0 Date of Issue 25/04/2016 Status Issued Document Type Distribution ESA UNCLASSIFIED - For Official Use Table of contents: 1 Introduction .......................................................................................................................... 3 1.1 Scope of document ................................................................................................................................................................ 3 1.2 Reference documents .......................................................................................................................................................... 3 1.3 List of acronyms ..................................................................................................................................................................... 3 2 General Guidelines ................................................................................................................ 6 3 Analysis of some potential mission profiles ........................................................................... 7 3.1 Introduction ............................................................................................................................................................................. 7 3.2 Current European launchers ...........................................................................................................................................
    [Show full text]
  • The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions
    The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions Les Johnson*, Frank M. Curran**, Richard W. Dissly***, and Andrew F. Heaton* * NASA Marshall Space Flight Center ** MZBlue Aerospace NASA Image *** Ball Aerospace Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. NASA Image 2 Solar Sail Missions Flown (as of October 2019) NanoSail-D (2010) IKAROS (2010) LightSail-1 (2015) CanX-7 (2016) InflateSail (2017) NASA JAXA The Planetary Society Canada EU/Univ. of Surrey Earth Orbit Interplanetary Earth Orbit Earth Orbit Earth Orbit Deployment Only Full Flight Deployment Only Deployment Only Deployment Only 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 3U CubeSat 10 m2 196 m2 32 m2 <10 m2 10 m2 3 Current and Planned Solar Sail Missions CU Aerospace (2018) LightSail-2 (2019) Near Earth Asteroid Solar Cruiser (2024) Univ. Illinois / NASA The Planetary Society Scout (2020) NASA NASA Earth Orbit Earth Orbit Interplanetary L-1 Full Flight Full Flight Full Flight Full Flight In Orbit; Not yet In Orbit; Successful deployed 6U CubeSat 90 Kg Spacecraft 3U CubeSat 86 m2 >1200 m2 3U CubeSat 32 m2 20 m2 4 Near Earth Asteroid Scout The Near Earth Asteroid Scout Will • Image/characterize a NEA during a slow flyby • Demonstrate a low cost asteroid reconnaissance capability Key Spacecraft & Mission Parameters • 6U cubesat (20cm X 10cm X 30 cm) • ~86 m2 solar sail propulsion system • Manifested for launch on the Space Launch System (Artemis 1 / 2020) • 1 AU maximum distance from Earth Leverages: combined experiences of MSFC and JPL Close Proximity Imaging Local scale morphology, with support from GSFC, JSC, & LaRC terrain properties, landing site survey Target Reconnaissance with medium field imaging Shape, spin, and local environment NEA Scout Full Scale EDU Sail Deployment 6 Solar Cruiser Mission Concept Mission Profile Solar Cruiser may launch as a secondary payload on the NASA IMAP mission in October, 2024.
    [Show full text]
  • Orbit Transfer Problems and the Results You Obtained
    MS&E 315 and CME 304 Solar sailing between Earth and Mars 1 Overview In this project, you will use your knowledge of nonlinear optimization to help a space agency design a cargo mission. The mission consists of making a cargo spacecraft perform interplanetary orbit transfers between Earth and Mars, and the agency is considering using a solar sail to propel the spacecraft. They need you to determine how the spacecraft should be operated to perform these orbit transfers in the shortest possible time for different solar sail technologies. 2 Mission information 2.1 Simplifications The agency has determined that the following simplifications are acceptable for your analysis: 1. Orbits are heliocentric, circular and co-planar. 2. Gravitational effects due to celestial bodies other than the Sun are ignored. 3. The Sun and spacecraft are modeled as point masses. 4. The Sun has spherically symmetric gravitational and radiation fields. 2.2 Problem description The problem you have to solve consists of determining how the solar sail of the spacecraft should be oriented to make the spacecraft perform each of the interplanetary orbit transfers Earth-Mars and Mars-Earth in the shortest possible time. You have to perform this analysis for some, say three, of the available solar sail technologies so that the agency can choose the most appropriate one in terms of cost and performance. Each solar sail technology is identified by a characteristic acceleration, as described in the next subsection. Figure1 shows a diagram of the orbits of interest, where rE and !E denote the radius and angular velocity, respectively, of Earth's orbit around the Sun, and rM and !M denote the radius and angular velocity, respectively, of Mars's orbit around the Sun.
    [Show full text]
  • Hybrid Solar Sails for Active Debris Removal Final Report
    HybridSail Hybrid Solar Sails for Active Debris Removal Final Report Authors: Lourens Visagie(1), Theodoros Theodorou(1) Affiliation: 1. Surrey Space Centre - University of Surrey ACT Researchers: Leopold Summerer Date: 27 June 2011 Contacts: Vaios Lappas Tel: +44 (0) 1483 873412 Fax: +44 (0) 1483 689503 e-mail: [email protected] Leopold Summerer (Technical Officer) Tel: +31 (0)71 565 4192 Fax: +31 (0)71 565 8018 e-mail: [email protected] Ariadna ID: 10-6411b Ariadna study type: Standard Contract Number: 4000101448/10/NL/CBi Available on the ACT website http://www.esa.int/act Abstract The historical practice of abandoning spacecraft and upper stages at the end of mission life has resulted in a polluted environment in some earth orbits. The amount of objects orbiting the Earth poses a threat to safe operations in space. Studies have shown that in order to have a sustainable environment in low Earth orbit, commonly adopted mitigation guidelines should be followed (the Inter-Agency Space Debris Coordination Committee has proposed a set of debris mitigation guidelines and these have since been endorsed by the United Nations) as well as Active Debris Removal (ADR). HybridSail is a proposed concept for a scalable de-orbiting spacecraft that makes use of a deployable drag sail membrane and deployable electrostatic tethers to accelerate orbital decay. The HybridSail concept consists of deployable sail and tethers, stowed into a nano-satellite package. The nano- satellite, deployed from a mothership or from a launch vehicle will home in towards the selected piece of space debris using a small thruster-propulsion firing and magnetic attitude control system to dock on the debris.
    [Show full text]
  • Propulsion Systems for Interstellar Exploration
    The Future of Electric Propulsion: A Young Visionary Paper Competition 35th International Electric Propulsion Conference October 8-12, 2017 Atlanta, Georgia Propulsion Systems for Interstellar Exploration Steven L. Magnusen Embry-Riddle Aeronautical University, Daytona Beach, FL, USA Alfredo D. Tuesta∗ National Research Council Postdoctoral Associate, Washington, DC, USA [email protected] August 4, 2017 Abstract The idea of manned spaceships exploring nearby star systems, although difficult and unlikely in this generation or the next, is becoming less a tale of science fiction and more a concept of rigorous scientific interest. In 2003, NASA sent two rovers to Mars and returned images and data that would change our view of the planet forever. Already, scientists and engineers are proposing concepts for manned missions to the Red Planet. As we prepare to visit the planets in our solar system, we dare to explore the possibilities and venues to travel beyond. With NASA’s count of known exoplanets now over 3,000 and growing, interest in interstellar science is being renewed as well. In this work, the authors discuss the benefits and deficiencies of current and emerging technologies in electric propulsion for outer planet and extrasolar exploration and propose innovative and daring concepts to further the limits of present engineering. The topics covered include solar and electric sails and beamed energy as propulsion systems. I. Introduction Te Puke is the name for the voyaging canoe that the Polynesians developed to sail across vast distances in the Pacific Ocean at the turn of the first millennium. This primitive yet sophisticated canoe, made of two hollowed out tree trunks and crab claw sails woven together from leaves, allowed Polynesian sailors to navigate the open ocean by studying the stars.
    [Show full text]
  • Advancing Asteroid Surface Exploration Using Sublimate- Based Regenerative Micropropulsion and 3D Path Planning
    Advancing Asteroid Surface Exploration Using Sublimate- Based Regenerative Micropropulsion And 3D Path Planning Item Type text; Electronic Thesis Authors Wilburn, Greg Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 15:36:40 Link to Item http://hdl.handle.net/10150/636641 ADVANCING ASTEROID SURFACE EXPLORATION USING SUBLIMATE-BASED REGENERATIVE MICROPROPULSION AND 3D PATH PLANNING by Greg Wilburn ____________________________ Copyright © Greg Wilburn 2019 A Thesis Submitted to the Faculty of the DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2019 Acknowledgements The author would first like to thank his thesis committee members for their help and direction in solving some of the complex problems in this work. The author acknowledges the time and effort of his advisor, Dr. Jekan Thangavelauthum, for his guidance over the entire course of the project. Recognition is deserved for Dr. Erik Asphaug and Dr. Stephen Schwarz for their development of the AMIGO robot concept. The development of MEMS systems presented could not have been done without the coursework and guidance from Dr. Eniko Enikov. Special thanks goes to my friends and family who have supported and encouraged me through my graduate studies. I couldn’t have done it without you, Emilia! 3 Table of Contents I.
    [Show full text]
  • Space Propulsion Technology for Small Spacecraft
    Space Propulsion Technology for Small Spacecraft The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Krejci, David, and Paulo Lozano. “Space Propulsion Technology for Small Spacecraft.” Proceedings of the IEEE, vol. 106, no. 3, Mar. 2018, pp. 362–78. As Published http://dx.doi.org/10.1109/JPROC.2017.2778747 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114401 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ PROCC. OF THE IEEE, VOL. 106, NO. 3, MARCH 2018 362 Space Propulsion Technology for Small Spacecraft David Krejci and Paulo Lozano Abstract—As small satellites become more popular and capa- While designations for different satellite classes have been ble, strategies to provide in-space propulsion increase in impor- somehow ambiguous, a system mass based characterization tance. Applications range from orbital changes and maintenance, approach will be used in this work, in which the term ’Small attitude control and desaturation of reaction wheels to drag com- satellites’ will refer to satellites with total masses below pensation and de-orbit at spacecraft end-of-life. Space propulsion 500kg, with ’Nanosatellites’ for systems ranging from 1- can be enabled by chemical or electric means, each having 10kg, ’Picosatellites’ with masses between 0.1-1kg and ’Fem- different performance and scalability properties. The purpose tosatellites’ for spacecrafts below 0.1kg. In this category, the of this review is to describe the working principles of space popular Cubesat standard [13] will therefore be characterized propulsion technologies proposed so far for small spacecraft.
    [Show full text]
  • Comparison of the Solar Sail with Electric Propulsion Systems
    .:- .:- &,, NASA CONTRACTOR REPORT *o Qo COMPARISON OF THE SOLAR SAIL WITH ELECTRIC PROPULSION SYSTEMS Prepared by . -... THE MACNEAL-SCHWENDLER CORPORATION Los Angeles, Calif. 90041 for . .. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. WASHINGTON, D. c. ea FEBRUARY 1972 TECH LIBRARY KAFB, NM 1. Report No. 2. Government Accession No. NASA CR-1986 I 4. Title and Subtitle 5. Report Date COMPARISON OF THE SOLAR SAIL WITH ELECTRIC February 1972 PROPULSIONSYSTEMS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Richard H. MacNeal 'EMSR 13A 10. Work Unit No. 9. Performing Organization Name and Address The MacNeal-SchwendlerCorpmTtkCm ~-~ 74.42 NO. FigueroaStreet 11. Contract or Grant No. Los Angeles , California90041 NAS7-699 13. Type of Re rt and Period Covered 2. Sponsoring AgencyName and Address ContracGr NationalAeronautics and Space Administration FinalReport Washington, D. C. 20546 14. Sponsoring AgencyCade RWS 5. Supplementary Notes 6. Abstract A studyof the propulsive efficiencies of solar sails and electric propulsionsystems which shows increasing efficiency for solar sails for. launch mission durations. 7. Key- Words (Suggested by Author(s) 1 18. Distribution Statement Solar sails, electricpropulsion systems Unlimited advancedspace concepts. i ~~ "- .. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price' Unclassified Unclassified 13 $3 .?70 For sale by the National Technical InformationService, Springfield, Virginia 22151 COMPARISON OF THE SOLAR SA1 L WITHELECTRIC PROPULSION SYSTEMS By Richard H. MacNeal The MacNeal-SchwendlerCorporation ABSTRACT The propulsiveefficiencies of the solar sail and ofelectric propul- sion systemsare compared on the basis of specificimpulse. It is shown thatthe solar sail is more efficientat onea.u.
    [Show full text]
  • Beam Powered Propulsion Systems
    Beam Powered Propulsion Systems Nishant Agarwal University of Colorado, Boulder, 80309 While chemical rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drives, and other principles have been considered from the earliest days of the field with the goal to improve efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry. However, the gap between technology to reach orbit from surface and from orbit to interplanetary travel still remains open considering both economics of time and money. In addition, methods have been tested over the years to reach the orbit with single stage rocket from earth’s surface which will eventually result in drastic cost savings. Reusable SSTO vehicles offer the promise of reduced launch expenses by eliminating recurring costs associated with hardware replacement inherent in expendable launch systems. No Earth- launched SSTO launch vehicles have ever been constructed till date. Beam Powered Propulsion has emerged as a promising concept that is capable to fulfill all regimes of space travel. This paper takes a look at these concepts and studies the feasibility of Microwave Propulsion for possibility of SSTO vehicle. Nomenclature At = nozzle throat area C* = characteristic velocity Cf = Thrust Coefficient Cp = Specific heat constant Dt, Dexit = Diameter of nozzle throat, Nozzle exit diameter g = acceleration due to gravity Gamma = Specific heat ratio LOX/LH = Liquid Oxygen/Liquid Hydrogen MR = mass ratio Mi,Ms,Mp = total mass, structural mass, propellant mass, payload mass Mpayl = payload mass Mdot = flow rate Isp = Specific Impulse Ve = exhaust velocity I.
    [Show full text]
  • High Speed AB-Solar Sail*
    1 Article High Reflective Solar Sail after Cathcarth 6 3 06 AIAA-2006-4806 High Speed AB-Solar Sail* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract The Solar sail is a large thin film used to collect solar light pressure for moving of space apparatus. Unfortunately, the solar radiation pressure is very small about 9 N/m2 at Earth's orbit. However, the light force significantly increases up to 0.2 - 0.35 N/m2 near the Sun. The author offers his research on a new revolutionary highly reflective solar sail which flyby (after special maneuver) near Sun and attains velocity up to 400 km/sec and reaching far planets of the Solar system in short time or enable flights out of Solar system. New, highly reflective sail-mirror allows avoiding the strong heating of the solar sail. It may be useful for probes close to the Sun and Mercury and Venus. Key words: AB-solar sail, highly reflective solar sail, high speed propulsion. * This work is presented as paper AIAA-2006-4806 for 42 Joint Propulsion Conference, Sacramento, USA, 9-12 July, 2006. Introduction A solar sail is a thin film reflector that uses solar energy for propulsion. The spacecraft deploys a large, lightweight sail which reflects light from the Sun (or some other source). The radiation pressure on the sail provides thrust by reflecting photons. The solar radiation pressure is very small 6.7 Newtons per gigawatt.
    [Show full text]
  • Novel Solar Sail Mission Concepts for Space Weather Forecasting
    AAS 14-239 NOVEL SOLAR SAIL MISSION CONCEPTS FOR SPACE WEATHER FORECASTING Jeannette Heiligers,* and Colin R. McInnes† This paper proposes two novel solar sail concepts for space weather forecasting: heliocentric Earth-following orbits and Sun-Earth line confined solar sail mani- folds. The first concept exploits a solar sail acceleration to rotate the argument of perihelion such that aphelion, where extended observations can take place, is always located along the Sun-Earth line. The second concept exploits a solar sail acceleration to keep the unstable, sunward manifolds of a solar sail Halo orbit around a sub-L1 point close to the Sun-Earth line. By travelling upstream of space weather events, these manifolds then allow early warnings for such events. The orbital dynamics involved with both concepts will be investigated and the observation conditions in terms of the time spent within a predefined surveillance zone are evaluated. All analyses are carried out for current sail technology (i.e. Sunjammer sail performance) to make the proposed concepts feasible in the near-term. The heliocentric Earth-following orbits show a reason- able increase in useful observation time over inertially fixed, Keplerian orbits, while the manifold concept enables a significant increase in the warning time for space weather events compared to existing satellites at the classical L1 point. INTRODUCTION Solar coronal mass ejections are believed to be the cause of magnetic storms that can have detrimental effects on vital assets on ground and in space: destruction of power grids leading to power outages, damage to oil pipelines, need for aviation re-routing, damage to Earth-orbiting satellites and hazardous conditions for astronauts onboard the International Space Station.
    [Show full text]
  • NASA Range Capabilities Roadmap
    NASA Transformational Spaceport and Range Capabilities Roadmap Interim Review to National Research Council External Review Panel March 31, 2005 Karen Poniatowski NASA Space Operation Mission Directorate Asst. Assoc. Administrator, Launch Services Agenda • Overview/Introduction • Roadmap Approach/Considerations – Roadmap Timeline/Spirals – Requirements Development • Spaceport/Range Capabilities – Mixed Range Architecture • User Requirements/Customer Considerations – Manifest Considerations – Emerging Launch User Requirements • Capability Breakdown Structure/Assessment • Roadmap Team Observations – Transformational Range Test Concept • Roadmap Team Conclusions • Next Steps 2 National Space Transportation Policy Signed December 2004 • National Policy Focus on Assuring Access to Space “The Federal space launch bases and ranges are vital components of the U.S. space transportation infrastructure and are national assets upon which access to space depends for national security, civil, and commercial purposes. The Secretary of Defense and the Administrator of the National Aeronautics and Space Administration shall operate the Federal launch bases and ranges in a manner so as to accommodate users from all sectors; and shall transfer these capabilities to a predominantly space-based range architecture to accommodate, among others, operationally responsive space launch systems and new users.” • NASA seeks to link the Transformational Spaceport and Range Capability Roadmap activity with the new National Space Transportation Policy direction as we
    [Show full text]