International Polar Year 2007-2008 the INTERNATIONAL POLAR YEAR in This Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Rapid Transport of Ash and Sulfate from the 2011 Puyehue-Cordón
PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Rapid transport of ash and sulfate from the 2011 10.1002/2017JD026893 Puyehue-Cordón Caulle (Chile) eruption Key Points: to West Antarctica • Ash and sulfate from the June 2011 Puyehue-Cordón Caulle eruption were Bess G. Koffman1,2 , Eleanor G. Dowd1 , Erich C. Osterberg1 , David G. Ferris1, deposited in West Antarctica 3 3 3,4 1 • Depositional phasing and duration Laura H. Hartman , Sarah D. Wheatley , Andrei V. Kurbatov , Gifford J. Wong , 5 6 3,4 4 suggest rapid transport through the Bradley R. Markle , Nelia W. Dunbar , Karl J. Kreutz , and Martin Yates troposphere • Ash/sulfate phasing, ash size 1Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA, 2Now at Department of Geology, Colby distributions, and geochemistry College, Waterville, Maine, USA, 3Climate Change Institute, University of Maine, Orono, Maine, USA, 4School of Earth and distinguish this midlatitude eruption Climate Sciences, University of Maine, Orono, Maine, USA, 5Department of Earth and Space Sciences, University of from low- and high-latitude eruptions Washington, Seattle, Washington, USA, 6New Mexico Bureau of Geology and Mineral Resources, Socorro, New Mexico, USA Supporting Information: • Supporting Information S1 Abstract The Volcanic Explosivity Index 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and Correspondence to: deposition of sulfate and ash from a midlatitude volcano to the Antarctic ice sheet. We present sulfate, B. G. Koffman, [email protected] microparticle concentrations of fine-grained (~5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn. -
Integrated Tephrochonology Copyedited
U.S. Geological Survey and The National Academies; USGS OFR-2007-xxxx, Extended Abstract.yyy, 1- Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core N.W. Dunbar,1 W.C. McIntosh,1 A.V. Kurbatov,2 and T.I Wilch 3 1NMGB/EES Department, New Mexico Tech, Socorro NM, 87801, USA ( [email protected] , [email protected] ) 2Climate Change Institute 303 Bryand Global Sciences Center, Orono, ME, 04469, USA ([email protected]) 3Department of Geological Sciences, Albion College, Albion MI, 49224, USA ( [email protected] ) Summary Mount Berlin and Mt. Takahe, two West Antarctica volcanic centers have produced a number of explosive, ashfall generating eruptions over the past 500,000 yrs. These eruptions dispersed volcanic ash over large areas of the West Antarctic ice sheet. Evidence of these eruptions is observed at two blue ice sites (Mt. Waesche and Mt. Moulton) as well as in the Siple Dome and Byrd (Palais et al., 1988) ice cores. Geochemical correlations between tephra sampled at the source volcanoes, at blue ice sites, and in the Siple Dome ice core suggest that at least some of the eruptions covered large areas of the ice sheet with a volcanic ash, and 40 Ar/ 39 Ar dating of volcanic material provides precise timing when these events occurred. Volcanic ash from some of these events expected to be found in the WAIS Divide ice core, providing chronology and inter-site correlation. Citation: Dunbar, N.W., McIntosh, W.C., Kurbatov, A., and T.I Wilch (2007), Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10 th ISAES X, edited by A. -
Perennial Ice and Snow Masses
" :1 i :í{' ;, fÎ :~ A contribution to the International Hydrological' Decade Perennial ice and snow masses A guide for , compilation and assemblage of data for a world inventory unesco/iash " ' " I In this series: '1 Perennial Ice and Snow Masses. A Guide for Compilation and Assemblage of Data for a World Inventory. 2 Seasonal Snow Cower. A Guide for Measurement, Compilation and Assemblage of Data. 3 Variations of Existing Glaciers. A Guide to International Practices for their Measurement.. 4 Antartie Glaciology in the International Hydrological Decade. S Combined Heat, Ice and Water Balances at Selected Glacier Basins. A Guide for Compilation and Assemblage of Data for Glacier Mass Balance ( Measurements. (- ~------------------ ", _.::._-~,.:- r- ,.; •.'.:-._ ': " :;-:"""':;-iij .if( :-:.:" The selection and presentation of material and the opinions expressed in this publication are the responsibility of the authors concerned 'and do not necessarily reflect , , the views of Unesco. Nor do the designations employed or the presentation of the material imply the expression of any opinion whatsoever on the part of Unesco concerning the legal status of any country or territory, or of its authorities, or concerning the frontiers of any country or territory. Published in 1970 by the United Nations Bducational, Scientific and Cultal al OrganIzatIon, Place de Fontenoy, 75 París-r-. Printed by Imprimerie-Reliure Marne. © Unesco/lASH 1970 Printed in France SC.6~/XX.1/A. ...•.•• :. ;'::'~~"::::'??<;~;~8~~~ (,: :;H,.,Wfuif:: Preface The International Hydrological Decade _(IHD) As part of Unesco's contribution to the achieve- 1965-1974was launched hy the General Conference ment of the objectives of, the IHD the General of Unesco at its thirteenth session to promote Conference authorized the Director-General to international co-operation in research and studies collect, exchange and disseminate information and the training of specialists and technicians in concerning research on scientific hydrology and to scientific hydrology. -
Perennial Ice and Snow Masses
Technical papers in hydrology 1 In this series: 1 Perennial Ice and Snow Masses. A Guide for Compilation and Assemblage of Data for a World Inventory. 2 Seasonal Snow Cower. A Guide for Measurement, Compilation and Assemblage of Data. 3 Variations of Existing Glaciers. A Guide to International Practices for their Measurement. 4 Antartic Glaciology in the International Hydrological Decade. 5 Combined Heat, Ice and Water Balances at Selected Glacier Basins. A Guide for Compilation and Assemblage of Data for Glacier Mass Balance Measurements. A contribution to the International Hydrological Decade Perennial ice and snow masses A guide for compilation and assemblage of data for a world inventory nesco/iash The selection and presentation of material and the opinions expressed in this publication are the responsibility of the authors concerned and do not necessarily reflect the views of Unesco. Nor do the designations employed or the presentation of the material imply the expression of any opinion whatsoever on the part of Unesco concerning the legal status of any country or territory, or of its authorities, or concerning the frontiers of any country or territory. Published in 1970 by the United Nations Educational, Scientific and Cultural Organization, Place de Fontenoy, 75 Paris-7C. Printed by Imprimerie-Reliure Mame. © Unesco/I ASH 1970 Printed in France SC.68/XX.1/A. Preface The International Hydrological Decade (IHD) As part of Unesco's contribution to the achieve 1965-1974 was launched by the General Conference ment of the objectives of the IHD the General of Unesco at its thirteenth session to promote Conference authorized the Director-General to international co-operation in research and studies collect, exchange and disseminate information and the training of specialists and technicians in concerning research on scientific hydrology and to scientific hydrology. -
The Human Footprint of the IPY 2007-2008 in Antarctica
IP 86 Agenda Item: ATCM 10 CEP 5 Presented by: ASOC Original: English The Human Footprint of the IPY 2007-2008 in Antarctica Attachments: 1 IP 86 The Human Footprint of the IPY 2007-2008 in Antarctica Information Paper Submitted by ASOC to ATCM XXX (CEP Agenda Item 5; ATCM Agenda Item 10) Abstract The International Polar Year (IPY) 2007-2008 is ambitious in scope and scale. At least 350 research activities with Antarctic or bipolar focus will take place during the IPY period of March 2007-March 2009. 82% (or 286) of them are planning to conduct fieldwork in Antarctica (Fig. 1a). 105 activities are planning to leave behind physical infrastructure, ranging from extensive arrays of instrumentation to new facilities. The Antarctic Treaty Secretariat’s database of environmental impact assessments lists only 7 completed assessments that are directly linked to science or logistics that are planned for the IPY. During the IPY, research and its corresponding logistical support activity will intensify around existing centers of research, such as the Antarctic Peninsula, Dronning Maud Land, Prydz Bay and the Weddell and Ross Seas. A number of large-scale research activities has also been planned in areas which have been hitherto seldom accessed, including the Gamburtsev Mountains in East Antarctica, the Amundsen Sea embayment and the West Antarctic ice sheet and subglacial lakes (Fig. 2). Many of them have been planned as the precursor of long-term research programs. In view of the ensemble of the research projects that have been endorsed, the IPY is likely to lead to: ! a direct increase in human activity in Antarctica; ! an increase in infrastructure in Antarctica; ! an increased pressure on Antarctica’s wilderness values; ! an increased level of interest in Antarctica, which can indirectly generate more activities other than scientific research, adding to the current trend of rapid growth and diversification of Antarctic tourism. -
U.S. Advance Exchange of Operational Information, 2005-2006
Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo. -
The WAIS Divide Deep Ice Core WD2014 Chronology – Part 2: Annual-Layer Counting (0–31 Ka BP)
Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/ doi:10.5194/cp-12-769-2016 © Author(s) 2016. CC Attribution 3.0 License. The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP) Michael Sigl1,2, Tyler J. Fudge3, Mai Winstrup3,a, Jihong Cole-Dai4, David Ferris5, Joseph R. McConnell1, Ken C. Taylor1, Kees C. Welten6, Thomas E. Woodruff7, Florian Adolphi8, Marion Bisiaux1, Edward J. Brook9, Christo Buizert9, Marc W. Caffee7,10, Nelia W. Dunbar11, Ross Edwards1,b, Lei Geng4,5,12,d, Nels Iverson11, Bess Koffman13, Lawrence Layman1, Olivia J. Maselli1, Kenneth McGwire1, Raimund Muscheler8, Kunihiko Nishiizumi6, Daniel R. Pasteris1, Rachael H. Rhodes9,c, and Todd A. Sowers14 1Desert Research Institute, Nevada System of Higher Education, Reno, NV 89512, USA 2Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland 3Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 4Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA 5Dartmouth College Department of Earth Sciences, Hanover, NH 03755, USA 6Space Science Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA 7Department of Physics and Astronomy, PRIME Laboratory, Purdue University, West Lafayette, IN 47907, USA 8Department of Geology, Lund University, 223 62 Lund, Sweden 9College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 10Department of Earth, Atmospheric, -
Hydrologic and Mass-Movement Hazards Near Mccarthy Wrangell-St
Hydrologic and Mass-Movement Hazards near McCarthy Wrangell-St. Elias National Park and Preserve, Alaska By Stanley H. Jones and Roy L Glass U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4078 Prepared in cooperation with the NATIONAL PARK SERVICE Anchorage, Alaska 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY ROBERT M. HIRSCH, Acting Director For additional information write to: Copies of this report may be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center 4230 University Drive, Suite 201 Open-File Reports Section Anchorage, Alaska 99508-4664 Box 25286, MS 517 Denver Federal Center Denver, Colorado 80225 CONTENTS Abstract ................................................................ 1 Introduction.............................................................. 1 Purpose and scope..................................................... 2 Acknowledgments..................................................... 2 Hydrology and climate...................................................... 3 Geology and geologic hazards................................................ 5 Bedrock............................................................. 5 Unconsolidated materials ............................................... 7 Alluvial and glacial deposits......................................... 7 Moraines........................................................ 7 Landslides....................................................... 7 Talus.......................................................... -
First International Polar Year, 1882-83
ARCTIC VOL. 34, NO. 4 (DECEMBER 1981), P. 370-376 First InternationalPolar Year, 1882-83 C .J . TAYLOR’ ABSTRACT. During 1882-83 eleven countries cooperated in a project to study the geophysics and geodesy of the polar regions by establishing 14 research stations. Three of these were located in Canada’s Arctic: one each by the United States, Germany and Britain. They accumulated dataon terrestial magnetism and boreal phenomena and brought back valuable informationon arctic living. This year will mark the 100th anniversary of the first mathematical work. With his colleague Wilhelm Weber he International Polar Year, probably the most ambitious of established in 1836 the Gottingen Magnetic Union(Mag- 19th-century international scientific projects and the fore- netische Verein) which united a world-wide network of runner of more recent cooperative ventures such as Inter- observatories. Gauss delineated the three categories of national Geophysical Year. Eleven countries launched 14 geomagnetic observations - declination, inclination, and expeditions - 12 in the Arctic and two in the southern intensity - and invented instruments for the accurate hemisphere - and the accumulated data furthered the measurement of these phenomena.He also deviseda sched- world’s knowledge of meteorology, geomagnetism and ule of observations so that data would be collected inthe boreal phenomena. Of the ten arctic researchstations that same way at identical times around the globe (Dictionary were ultimately established during IPY, three were in of Scientific Biography, 1972). Canada: Fort Rae (British), Lady FranklinBay, Ellesmere Meanwhile the British scientificestablishment was also Island (U.S.) and Clearwater Fiord,Baf€in Island (German). affected by positivist notions of fact gathering, and Auxiliary observatories were established by the German geomagnetic surveys became among the most ambitious polar year committeeat six Moravian missions Labradorin of its schemes. -
The Dynamics and Mass Budget of Aretic Glaciers
DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago -
West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology
WAIS DIVIDE SCIENCE COORDINATION OFFICE West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology A GUIDE FOR THE MEDIA AND PUBLIC Field Season 2011-2012 WAIS (West Antarctic Ice Sheet) Divide is a United States deep ice coring project in West Antarctica funded by the National Science Foundation (NSF). WAIS Divide’s goal is to examine the last ~100,000 years of Earth’s climate history by drilling and recovering a deep ice core from the ice divide in central West Antarctica. Ice core science has dramatically advanced our understanding of how the Earth’s climate has changed in the past. Ice cores collected from Greenland have revolutionized our notion of climate variability during the past 100,000 years. The WAIS Divide ice core will provide the first Southern Hemisphere climate and greenhouse gas records of comparable time resolution and duration to the Greenland ice cores enabling detailed comparison of environmental conditions between the northern and southern hemispheres, and the study of greenhouse gas concentrations in the paleo-atmosphere, with a greater level of detail than previously possible. The WAIS Divide ice core will also be used to test models of WAIS history and stability, and to investigate the biological signals contained in deep Antarctic ice cores. 1 Additional copies of this document are available from the project website at http://www.waisdivide.unh.edu Produced by the WAIS Divide Science Coordination Office with support from the National Science Foundation, Office of Polar Programs. 2 Contents