ASM Sentinel Level Clinical Laboratory Guideline for B. Anthracis

Total Page:16

File Type:pdf, Size:1020Kb

ASM Sentinel Level Clinical Laboratory Guideline for B. Anthracis SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Bacillus anthracis and Bacillus cereus biovar anthracis American Society for Microbiology (ASM) Revised August 2017 For last revision, see website below https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Experts: James W. Snyder, Ph.D. Steven D. Mahlen, Ph.D. University of Louisville Affiliated Laboratory, Inc. Louisville, KY Bangor, ME [email protected] [email protected] ASM Sentinel Level Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS Mike.Saubolle@bannerh Association of Public Health Peter H. Gilligan, Ph.D. ealth.com Laboratories University of North [email protected] Carolina Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic [email protected] [email protected] Laboratory at the University of Iowa Larry Gray, Ph.D. Alice Weissfeld, Ph.D. [email protected] TriHealth Laboratories and Microbiology Specialists Inc. University of Cincinnati Houston, TX Harvey Holmes, PhD College of Medicine alice@microbiologyspecialist. Centers for Disease Cincinnati, OH com Control and Prevention [email protected] [email protected] David Welch, Ph.D. Major Todd Kijek, Ph.D. Medical Microbiology Kara MacKeil US Army Medical Research Consulting Association of Public Institute for Infectious Diseases Dallas, TX Health Laboratories Ft. Detrick, MD [email protected] [email protected] [email protected] Mary K. York, Ph.D. Chris Mangal, MPH Michael J. Loeffelholz, Ph.D. MKY Microbiology Association of Public Department of Pathology Consultants Health Laboratories Univ. Texas Medical Branch Walnut Creek, CA [email protected] Galveston, TX [email protected] [email protected] Amanda Moore, BS Coordinating Editor: South Carolina Department of Judith C. Lovchik, Ph.D. Health and Environmental Indiana State Department of Steven D. Mahlen, Ph.D. Control Health Laboratories Affiliated Laboratory, Inc. [email protected] Indianapolis, IN Bangor, ME [email protected] [email protected] James Rudrik, PhD, Michigan Department of Scott W. Riddell, Ph.D. Administrative Support Community Health Department of Pathology [email protected] SUNY Upstate Medical Kimberly E. Walker, Ph.D. University American Society for Maureen Sullivan, MPH Syracuse, NY Microbiology Minnesota Department [email protected] [email protected] of Health [email protected] PREANALYTICAL CONSIDERATIONS I. PRINCIPLE A. Introduction Bacillus anthracis, the agent of anthrax, is a zoonotic disease that is transmissible to humans through consumption or handling of contaminated products, is an aerobic, spore-forming, nonmotile, large Gram-positive bacterium (4). Bacillus cereus biovar anthracis strains were identified in the early 2000’s in Cameroon (strains CA) and Côte d’Ivoire (strains CI) (1,17). These strains were recovered from gorillas and chimpanzees with anthrax-like disease. The organism has since been recovered from an elephant and goats in other countries of Africa (1). B. cereus biovar anthracis CA strains are non-hemolytic, motile, and resistant to penicillin G, while B. cereus biovar anthracis CI strains are non-hemolytic, motile, and sensitive to pencillin G (17); some B. cereus biovar anthracis strains may exhibit weak beta-hemolysis upon extended incubation (48 h) and may be more hemolytic when incubated in CO2 at 48 h (see Table 1). B. anthracis and B. cereus biovar anthracis strains are classified as Tier I, Category A agents because of their suitability for use as biothreat agents in an attack or commission of a biocrime. At this time no human infections caused by B. cereus biovar anthracis have been described. This procedure describes steps to recognize, presumptively identify, and rule out these organisms from clinical specimens in Sentinel Clinical Laboratories. Such laboratories are defined as those who are certified to perform high complexity testing under the Clinical Laboratory Improvement Amendment of 1988 (CLIA’88) by the Centers for Medicare and Medicaid Services (CMS) for the applicable Microbiology specialty. Laboratory in-house testing includes Gram stains, and at least one of the following: lower respiratory tract, wound, or blood cultures. Sentinel clinical laboratories are not required to register with the Select Agent Program to conduct diagnostic testing for Select Agents, both Tier I and non-Tier 1. Testing for Select Agents may be performed by laboratories as long as the laboratory follows the policies listed in the reporting section of this document when a Select Agent cannot be ruled out. Consult with your designated LRN Reference Laboratory or refer to the CDC Division of Select Agents and Toxins website at http://www.selectagents.gov for questions. NOTE: To rule out B. anthracis and B. cereus biovar anthracis requires a combination of morphological assessment including Gram stain characteristics, and three simple, conventional tests. Automated systems and manual multi-test kit identification methods have no place in the identification of this organism due to the danger of misidentification and its close relationship to other species within the Bacillus genera. Table 1. Comparison of B. anthracis, B. cereus, and B. cereus biovar anthracis characteristics (adapted from reference 17) Characteristic B. B. cereus B. cereus biovar B. cereus biovar anthracis anthracis CI1 anthracis CA2 Hemolysis3 - + - - Motility4 - + +/- +/- Gamma-phage + - - - susceptibility5 Penicillin G6 S R S R Capsule + Absent in + + vitro 1: CI = Côte d’Ivoire strains, from chimpanzees 2: CA = Cameroon strains, from gorillas/chimpanzees 3: Hemolysis: + = beta hemolytic on sheep blood agar; - = non-hemolytic 4: Motility: + = motile; - = non-motile. +/- = B. cereus biovar anthracis strains are usually motile, including those recovered from gorillas, chimpanzees, and elephants; B. cereus biovar anthracis goat strains from Democratic Republic of the Congo were non-motile (3). 5: Gamma phage susceptibility: + = susceptible; - = resistant. 6: S= susceptible; R = resistant B. Geographic distribution Anthrax is endemic in southern Europe, parts of Africa, Australia, Asia, and North and South America. Its persists in arid deserts of the Middle East, Asia, Africa, Australia and South America with the majority of cases reported from Iran, Turkey, Pakistan, and Sudan. Although relatively rare in the United States, over 500 cases in Texas were reported in White Tailed Deer since 2006. Cases have also been reported in livestock in South Dakota, Nebraska, Arkansas, Mississippi, Louisiana, and California. Currently, B. cereus biovar anthracis strains have only been found in certain African countries, including Cameroon and Côte d’Ivoire. These strains are known to cause an anthrax-like disease in gorillas and chimpanzees, and have been isolated from other animals, including elephants and goats. B. cereus biovar anthracis strains are genetically similar to B. anthracis and produce all of the primary B. anthracis virulence factors, thus, they are now considered to be select agents in the United States. The use of B. anthracis as a bioterrorism agent to inflict disease and death following contact with or inhalation of spores has dominated recorded history for centuries (6, 19). Primarily used by many countries, including the United States, for military purposes in the conduct of biowarfare, it gained notoriety in the commission of biocrimes, determined to be hoaxes, throughout the 1990s. Although the LRN was created in late 1999, its role and responsibilities in preparing for, and responding to bioterrorism increased dramatically during and after the 2001 outbreak. The lessons learned from this national event demonstrated the serious need for training Sentinel Level Clinical Laboratories and preparing them to play a key role in the LRN. Three naturally occurring cases of anthrax have been reported within the past five years, one case respectively of gastrointestinal, cutaneous, and inhalational (20, 22, 23). These incidences are examples in which Sentinel Level Clinical Laboratories will be challenged by ensuring that all suspicious Bacillus spp., have been ruled out based on the use of the LRN designated tests and algorithm for B. anthracis and B. cereus biovar anthracis discussed in this protocol. C. Diseases and Clinical Presentation Anthrax is a zoonotic disease that occurs most frequently in herbivorous animals (e.g., cattle, sheep, and goats), which acquire endospores from contaminated soil. Human disease is less common and results from contact with infected animals or with commercial products derived from them, such as wool and hides. Infection can occur in one of three forms: 1. Cutaneous, responsible for >95% of naturally occurring cases, is initiated when
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Equine Biosecurity and Biocontainment Practices on U.S
    Veterinary Services Centers for Epidemiology and Animal Health November 2006 _________________________________________________________________________________________________________________________ Equine Biosecurity and Biocontainment Practices on U.S. Equine Operations With the globalization of animal industries, biosecurity General Practices and biocontainment practices play a vital role in the health of domestic animals. Biosecurity practices include General biosecurity measures taken on equine measures that reduce the risk of disease introduction on operations include isolation protocols, infection-control an operation. Biocontainment practices include precautions for visitors, and use of separate or measures that reduce the spread of disease on an disinfected equipment. Other general management operation and from one operation to another. practices address contact with other animals, potential Vaccination, another important aid in infection control, contamination of feed and water, insect control, and will be addressed in a separate information sheet. manure management. Equine diseases are spread in a variety of ways, including direct contact between equids and contact with Separation for isolation or infection control feces, insect or animal vectors, aerosol particles, and contaminated needles. Often overlooked but equally Overall, 65.1 percent of operations separated important modes of disease transmission include contact animals for isolation or infection control. For this study, with contaminated equipment, tack, transport
    [Show full text]
  • Amerithrax Investigative Summary
    The United States Department of Justice AMERITHRAX INVESTIGATIVE SUMMARY Released Pursuant to the Freedom of Information Act Friday, February 19, 2010 TABLE OF CONTENTS I. THE ANTHRAX LETTER ATTACKS . .1 II. EXECUTIVE SUMMARY . 4 A. Overview of the Amerithrax Investigation . .4 B. The Elimination of Dr. Steven J. Hatfill as a Suspect . .6 C. Summary of the Investigation of Dr. Bruce E. Ivins . 6 D. Summary of Evidence from the Investigation Implicating Dr. Ivins . .8 III. THE AMERITHRAX INVESTIGATION . 11 A. Introduction . .11 B. The Investigation Prior to the Scientific Conclusions in 2007 . 12 1. Early investigation of the letters and envelopes . .12 2. Preliminary scientific testing of the Bacillus anthracis spore powder . .13 3. Early scientific findings and conclusions . .14 4. Continuing investigative efforts . 16 5. Assessing individual suspects . .17 6. Dr. Steven J. Hatfill . .19 7. Simultaneous investigative initiatives . .21 C. The Genetic Analysis . .23 IV. THE EVIDENCE AGAINST DR. BRUCE E. IVINS . 25 A. Introduction . .25 B. Background of Dr. Ivins . .25 C. Opportunity, Access and Ability . 26 1. The creation of RMR-1029 – Dr. Ivins’s flask . .26 2. RMR-1029 is the source of the murder weapon . 28 3. Dr. Ivins’s suspicious lab hours just before each mailing . .29 4. Others with access to RMR-1029 have been ruled out . .33 5. Dr. Ivins’s considerable skill and familiarity with the necessary equipment . 36 D. Motive . .38 1. Dr. Ivins’s life’s work appeared destined for failure, absent an unexpected event . .39 2. Dr. Ivins was being subjected to increasing public criticism for his work .
    [Show full text]
  • Investigation of Anthrax Associated with Intentional Exposure
    October 19, 2001 / Vol. 50 / No. 41 889 Update: Investigation of Anthrax Associated with Intentional Exposure and Interim Public Health Guidelines, October 2001 893 Recognition of Illness Associated with the Intentional Release of a Biologic Agent 897 Weekly Update: West Nile Virus Activity — United States, October 10–16, 2001 Update: Investigation of Anthrax Associated with Intentional Exposure and Interim Public Health Guidelines, October 2001 On October 4, 2001, CDC and state and local public health authorities reported a case of inhalational anthrax in Florida (1 ). Additional cases of anthrax subsequently have been reported from Florida and New York City. This report updates the findings of these case investigations, which indicate that infections were caused by the intentional release of Bacillus anthracis. This report also includes interim guidelines for postexposure pro- phylaxis for prevention of inhalational anthrax and other information to assist epidemi- ologists, clinicians, and laboratorians responding to intentional anthrax exposures. For these investigations, a confirmed case of anthrax was defined as 1) a clinically compatible case of cutaneous, inhalational, or gastrointestinal illness* that is laboratory confirmed by isolation of B. anthracis from an affected tissue or site or 2) other labora- tory evidence of B. anthracis infection based on at least two supportive laboratory tests. A suspected case was defined as 1) a clinically compatible case of illness without isola- tion of B. anthracis and no alternative diagnosis, but with laboratory evidence of B. anthracis by one supportive laboratory test or 2) a clinically compatible case of an- thrax epidemiologically linked to a confirmed environmental exposure, but without cor- roborative laboratory evidence of B.
    [Show full text]
  • 2001 Anthrax Letters
    Chapter Five: 2001 Anthrax Letters Author’s Note: The analysis and comments regarding the communication efforts described in this case study are solely those of the authors; this analysis does not represent the official position of the FDA. This case was selected because it is one of the few major federal efforts to distribute medical countermeasures in response to an acute biological incident. These events occurred more than a decade ago and represent the early stages of US biosecurity preparedness and response; however, this incident serves as an excellent illustration of the types of communication challenges expected in these scenarios. Due in part to the extended time since these events and the limited accessibility of individual communications and messages, this case study does not provide a comprehensive assessment of all communication efforts. In contrast to the previous case studies in this casebook, the FDA’s role in the 2001 anthrax response was relatively small, and as such, this analysis focuses principally on the communication efforts of the CDC and state and local public health agencies. The 2001 anthrax attacks have been studied extensively, and the myriad of internal and external assessments led to numerous changes to response and communications policies and protocols. The authors intend to use this case study as a means of highlighting communication challenges strictly within the context of this incident, not to evaluate the success or merit of changes made as a result of these events. Abstract The dissemination of Bacillus anthracis via the US Postal Service (USPS) in 2001 represented a new public health threat, the first intentional exposure to anthrax in the United States.
    [Show full text]
  • Distribution and Characteristics of Bacillus Bacteria Associated with Hydrobionts and the Waters of the Peter the Great Bay, Sea of Japan I
    ISSN 0026-2617, Microbiology, 2008, Vol. 77, No. 4, pp. 497–503. © Pleiades Publishing, Ltd., 2008. Original Russian Text © I.A. Beleneva, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 4, pp. 558–565. EXPERIMENTAL ARTICLES Distribution and Characteristics of Bacillus Bacteria Associated with Hydrobionts and the Waters of the Peter the Great Bay, Sea of Japan I. A. Beleneva1 Zhirmunskii Institute of Marine Biology, Far East Division, Russian Academy of Sciences, ul. Pal’chevskogo, 17, Vladivostok 690041, Russia Received May 28, 2007 Abstract—Bacilli of the species Bacillus subtilis, B. pumilus, B. mycoides, B. marinus and B. licheniformis (a total of 53 strains) were isolated from 15 invertebrate species and the water of the Vostok Bay, Peter the Great Bay, Sea of Japan. Bacilli were most often isolated from bivalves (22.7%) and sea cucumbers (18.9%); they occurred less frequently in sea urchins and starfish (13.2 and 7.5%, respectively). Most of bacilli strains were isolated from invertebrates inhabiting silted sediments. No Bacillus spp. strains were isolated from invertebrates inhabiting stony and sandy environments. The species diversity of bacilli isolated from marine objects under study was low. Almost all bacterial isolates were resistant to lincomycin. Unlike B. pumilus, B. subtilis isolates were mostly resistant to benzylpenicillin and ampicillin. Antibiotic sensitivity of B. licheniformis strains was variable (two strains were resistant to benzylpenicillin and oxacillin, while one was sensitive). A significant fraction of isolated bacilli contained pigments. Pigmented strains were more often isolated from seawater sam- ples, while colorless ones predominated within hydrobionts. B. subtilis colonies had the broadest range of co- lors.
    [Show full text]
  • Bacillus Cereus Pneumonia
    ‘Advances in Medicine and Biology’, Volume 67, 2013 Nova Science Publisher Inc., Editor: Berhardt LV To Alessia, my queen, and Giorgia, my princess Chapter BACILLUS CEREUS PNEUMONIA Vincenzo Savini* Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara (PE), Italy ABSTRACT Bacillus cereus is a Gram positive/Gram variable environmental rod, that is emerging as a respiratory pathogen; particularly, pneumonia it causes may be serious and can resemble the anthrax disease. In fact, the organism is strictly related to the famous Bacillus anthracis, with which it shares genotypical, fenotypical, and pathogenic features. Treatment of B. cereus lower airway infections is becoming increasingly hard, due to the spread of multidrug resistance traits among members of the species. Hence, the present chapter’s scope is to shed a light on this bacterium’s lung pathogenicity, by depicting salient microbiological, epidemiological and clinical features it shows. Also, we would like to explore virulence determinants and resistance mechanisms that make B. cereus a life-threatening, potentially difficult-to-treat agent of airway pathologies. * Email: [email protected]. 2 Vincenzo Savini INTRODUCTION The genus Bacillus includes spore-forming species, strains of which are not usually considered to be clinically relevant when isolated from human specimens; in fact, these bacteria are known to be ubiquitously distributed in the environment and may easily contaminate culture material along with improperly handled sample collection devices (Miller, 2012; Brooks, 2001). Bacillus anthracis is the prominent agent of human pathologies within the genus Bacillus, although it is uncommon in most clinical laboratories (Miller, 2012). It is a frank pathogen, as it causes skin and enteric infections; above all, however, it is responsible for a serious lung disease (the ‘anthrax’) that is frequently associated with bloodstream infection and a high mortality rate (Frankard, 2004).
    [Show full text]
  • Medical Management of Biological Casualties Handbook
    USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 U.S. ARMY MEDICAL RESEARCH INSTITUTE OF INFECTIOUS DISEASES FORT DETRICK FREDERICK, MARYLAND Emergency Response Numbers National Response Center: 1-800-424-8802 or (for chem/bio hazards & terrorist events) 1-202-267-2675 National Domestic Preparedness Office: 1-202-324-9025 (for civilian use) Domestic Preparedness Chem/Bio Helpline: 1-410-436-4484 or (Edgewood Ops Center – for military use) DSN 584-4484 USAMRIID’s Emergency Response Line: 1-888-872-7443 CDC'S Emergency Response Line: 1-770-488-7100 Handbook Download Site An Adobe Acrobat Reader (pdf file) version of this handbook can be downloaded from the internet at the following url: http://www.usamriid.army.mil USAMRIID’s MEDICAL MANAGEMENT OF BIOLOGICAL CASUALTIES HANDBOOK Sixth Edition April 2005 Lead Editor Lt Col Jon B. Woods, MC, USAF Contributing Editors CAPT Robert G. Darling, MC, USN LTC Zygmunt F. Dembek, MS, USAR Lt Col Bridget K. Carr, MSC, USAF COL Ted J. Cieslak, MC, USA LCDR James V. Lawler, MC, USN MAJ Anthony C. Littrell, MC, USA LTC Mark G. Kortepeter, MC, USA LTC Nelson W. Rebert, MS, USA LTC Scott A. Stanek, MC, USA COL James W. Martin, MC, USA Comments and suggestions are appreciated and should be addressed to: Operational Medicine Department Attn: MCMR-UIM-O U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) Fort Detrick, Maryland 21702-5011 PREFACE TO THE SIXTH EDITION The Medical Management of Biological Casualties Handbook, which has become affectionately known as the "Blue Book," has been enormously successful - far beyond our expectations.
    [Show full text]
  • Concepts of Biocontainment & Biosafety Training
    Concepts of Biocontainment & Biosafety Training UNIVERSITY OF NORTH CAROLINA - CHARLOTTE/ APRIL 30, 2014 CLIENT NAME / DATE Regulatory Guidance . OSHA Bloodborne Pathogen Standard . NIH Recombinant Guidelines – Apply to all institutions receiving NIH funding – Covers rDNA work, but also includes risk group listing . Biosafety in Microbiological and Biomedical Laboratories (BMBL) . Select Agent and Toxin regulations . Dangerous goods shipping regulations . North Carolina Dept. of Environment and Natural Resources CLIENT NAME / DATE US Guidance for Laboratories . BMBL Outlines: – Standard Microbiological Practices – Special Microbiological Practices – Safety Equipment – Facilities . Includes – Agent summary statements – BSC design and use – Toxin handling http://www.cdc.gov/biosafety/publications/bmbl5/index.htm CLIENT NAME / DATE Layers of Protection CLIENT NAME / DATE Definitions . Biohazard – A biological agent capable of self- replication that can cause disease in humans, animals, or plants – Generally, a microorganism, or toxins and allergens derived from those organisms . Biocontainment Class III cabinets at the U.S. Biological Warfare Laboratories, Camp Detrick, Maryland (Photo, 1940s) – the physical containment of pathogenic organisms or agents to prevent accidental infection of workers or release into the surrounding community . CLIENT NAME / DATE Biosafety . Fundamental objective: – Containment of potentially harmful biological agents . Risk assessment: – Helps to assign the biosafety level that reduces to an absolute minimum the worker’s exposure to agents, their risk of an LAI (lab associated infection), and potential impact on the community and the environment CLIENT NAME / DATE Biosafety Levels (BSLs) . Combinations of lab practices and techniques, safety equipment, and laboratory facilities . Appropriate level determined by risk assessment . Specifically appropriate for: – Organism in use – Operations performed in the laboratory – Known or suspected routes of infection CLIENT NAME / DATE Determining BSLs .
    [Show full text]
  • Lessons from the Anthrax Attacks Implications for US
    Lessons from the Anthrax Attacks Implications for US. Bioterrorism Preparedness A Report on a National Forum on Biodefense Author David Heymart Research Assistants Srusha Ac h terb erg, L Joelle Laszld Organized by the Center for Strategic and International Studies and the Defense Threat Reduction Agency --CFr”V? --.....a DlSTRf BUTION This report ISfor official use only; distribution authorized to U S. government agencies, designated contractors, and those with an official need Contains information that may be exempt from public release under the Freedom of Information Act. exemption number 2 (5 USC 552); exemption number 3 (’lo USC 130).Approvalof the Defense Threat Reduction Agency prior to public release is requrred Contract Number OTRAM-02-C-0013 For Official Use Only About CSIS For four decades, the Center for Stravgic and Internahonal Studies (CSIS)has been dedicated 10 providing world leaders with strategic insights on-and pohcy solubons tcurrentand emergtng global lssues CSIS IS led by John J Hamre, former L S deputy secretary of defense It is guided by a board of trustees chaired by former U S senator Sam Nunn and consistlng of prominent individuals horn both the public and private sectors The CSIS staff of 190 researchers and support staff focus pnrnardy on three subjecr areas First, CSIS addresses the fuU spectrum of new challenges to national and mternabonal security Second, it maintains resident experts on all of the world's myor geographical regions Third, it IS committed to helping to develop new methods of governance for the global age, to this end, CSIS has programs on technology and pubhc policy, International trade and finance, and energy Headquartered in Washington, D-C ,CSIS IS pnvate, bipartlsan, and tax-exempt CSIS docs not take specific policy positions, accordygly, all views expressed herein should be understood to be solely those ofthe author Spousor.
    [Show full text]
  • Chapter 11: Bacteria Bacterial Groups
    Bacterial Groups u Most widely accepted taxonomic classification for bacteria is Bergey’s Manual of Systematic Bacteriology. u 5000 bacterial species identified, 3100 classified. Chapter 11: Bacteria u Bacteria are divided into four divisions (phyla) according to the characteristics of their cell walls. u Each division is divided into sections according to: u Gram stain reaction u Cell shape u Cell arrangements u Oxygen requirements u Motility u Nutritional and metabolic properties u Each section contains several genera. Four Divisions of Bacteria Classification of Bacteria Procaryotes Gram-Negative Division II Wall-Less Archaea Bacteria Bacteria Bacteria Bacteria (Gracilicutes) (Firmicutes) (Tenericutes) (Mendosicutes) Thin Cell Walls Thick cell Walls Lack cell walls Unusual cell walls Division I. Gram-Negative Bacteria Gram Negative Bacteria Spirochetes 1. Spirochetes u Helical shape. Flexible. u Contain two or more axial filaments (endoflagella). u Move in corkscrew pattern. u Medically important members: F Treponema pallidum: Syphilis F Borrelia spp.: Lyme disease, relapsing fever F Leptospira: Leptospirosis 1 Syphilis is Caused by a Spirochete Lyme Disease is Caused by a Spirochete Primary syphilitic chancre and secondary rash. Source: Tropical Medicine and Parasitology, 1997 Lyme Disease early lesion at tick bite site. Source: Medical Microbiology, 1998 2. Aerobic, Motile, Helical/Vibroid Gram- Negative Bacteria Gram Negative Bacteria u Rigid helical shape or curved rods. Aerobic, Motile, Helical/Vibroid u Lack axial filaments (endoflagella); have polar Gram-Negative Bacteria flagella instead. u Most are harmless aquatic organisms. u Genus Azospirillum fixes nitrogen in soil. u Genus Bdellovibrio attacks other bacteria. u Important pathogens include: F Campylobacter jejuni: Most common bacterial food- borne intestinal disease in the United States (2 million cases/year).
    [Show full text]
  • 2019 Biodefense Public Report Implementation of the National Biodefense Strategy PREFACE
    2019 Biodefense Public Report Implementation of the National Biodefense Strategy PREFACE The National Biodefense Strategy (NBS or the Strategy) was released on September 18, 2018 and guides the U.S. government’s efforts to reduce the risk of, prepare for, respond to, and recover from biological incidents, whether naturally occurring, deliberate, or accidental in origin. National Security Presidential Memorandum-14 (NSPM-14) directs implementation of the Strategy, including the development of this Biodefense Public Report. This report does not primarily address activities related to the coronavirus disease 2019 (COVID-19) pandemic because the data collection period concluded well before the HHS Secretary’s declaration of a public health emergency regarding the COVID-19 pandemic. Therefore, the content of this report is diverse and highlights some of the efforts across the U.S. government to address all biological threats. Development of this report followed the timeline laid out in NSPM-14. Work began among federal departments and agencies to collect biodefense data in late 2018, the first year to capture biodefense programs and activities across the federal government, and continued through the first half of 2019. This report describes a sampling of specific achievements and programs undertaken by federal agencies that reduce the risk of biological threats to the American people. In addition to the specific programs captured here, many other activities continue to be implemented across the federal government to protect the United States from a wide range of biological threats. Some of the efforts that have been described within this report, and many activities that have not been reported here, support the ongoing COVID-19 response.
    [Show full text]