Mycorrhization Between Cistus Ladanifer L. and Boletus Edulis Bull Is Enhanced by the Mycorrhiza Helper Bacteria Pseudomonas Fluorescens Migula

Total Page:16

File Type:pdf, Size:1020Kb

Mycorrhization Between Cistus Ladanifer L. and Boletus Edulis Bull Is Enhanced by the Mycorrhiza Helper Bacteria Pseudomonas Fluorescens Migula Mycorrhiza (2016) 26:161–168 DOI 10.1007/s00572-015-0657-0 ORIGINAL ARTICLE Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula Olaya Mediavilla1,2 & Jaime Olaizola2 & Luis Santos-del-Blanco1,3 & Juan Andrés Oria-de-Rueda1 & Pablo Martín-Pinto1 Received: 30 April 2015 /Accepted: 16 July 2015 /Published online: 26 July 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Boletus edulis Bull. is one of the most economically work was to optimize an in vitro protocol for the mycorrhizal and gastronomically valuable fungi worldwide. Sporocarp synthesis of B. edulis with C. ladanifer by testing the effects of production normally occurs when symbiotically associated fungal culture time and coinoculation with the helper bacteria with a number of tree species in stands over 40 years old, Pseudomonas fluorescens Migula. The results confirmed suc- but it has also been reported in 3-year-old Cistus ladanifer cessful mycorrhizal synthesis between C. ladanifer and L. shrubs. Efforts toward the domestication of B. edulis have B. edulis. Coinoculation of B. edulis with P. fluorescens dou- thus focused on successfully generating C. ladanifer seedlings bled within-plant mycorrhization levels although it did not associated with B. edulis under controlled conditions. Micro- result in an increased number of seedlings colonized with organisms have an important role mediating mycorrhizal sym- B. edulis mycorrhizae. B. edulis mycelium culture time also biosis, such as some bacteria species which enhance mycor- increased mycorrhization levels but not the presence of my- rhiza formation (mycorrhiza helper bacteria). Thus, in this corrhizae. These findings bring us closer to controlled B. edulis study, we explored the effect that mycorrhiza helper bacteria sporocarp production in plantations. have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this Keywords MHB . Mycelium culture . Mycorrhizal plants . Sporocarps . Ectomycorrhizal fungi cultivation * Pablo Martín-Pinto [email protected] Introduction Olaya Mediavilla [email protected] The species belonging to the Boletus edulis Bull. complex, Jaime Olaizola commonly known as porcini, are currently among the most [email protected] appreciated fungi worldwide (Hall et al. 1998). The different Luis Santos-del-Blanco species in the complex occur frequently, and their combined [email protected] distribution range spans both hemispheres, from Scandinavia Juan Andrés Oria-de-Rueda to Southern Africa and Australia (Dentinger et al. 2010). As a [email protected] result, global marketed productions are high (Boa 2004)with their annual world market value exceeding $250 million (Catcheside and Catcheside 2012). In Spain alone, annual 1 Sustainable Forest Management Research Institute, Fire and Applied Mycology Laboratory, Departments of Agroforestry Sciences and harvested B. gr. edulis production widely ranges between Vegetal Production and Natural Resources, University of Valladolid 2000 and 20,000 Tm, depending on the year (Oria-de-Rueda (Palencia), Avda, Madrid 44, 34071 Palencia, Spain et al. 2008). However, a drastic decrease in the presence and 2 IDForest-Biotecnología Forestal Aplicada, Calle Tren Ter, s/n. productivity of B. gr. edulis has been reported in several parts Parcela 238, 34200 Venta de Baños, Palencia, Spain of Europe (Salerni and Perini 2004). Coupled by an ever- 3 Department of Ecology and Evolution, Univeristy of Lausanne, increasing demand of edible fungi (Sitta and Floriani 2008) CH-1015 Lausanne, Switzerland and considering that currently B. gr. edulis are only collected 162 Mycorrhiza (2016) 26:161–168 from the wild (Cannon and Kirk 2007), there is a high interest melanosporum Vitt. under the presence of P. fluorescens in achieving a controlled production of these fungi, similar to (Dominguez et al. 2012). that of the mycorrhizal fungus Tuber melanosporum Vitt. Also relevant to the feasibility of large-scale mycorrhized (Bonet et al. 2009). plant production is our ability to produce a large number of Most of the porcini only produce fruitbodies in association sterile plants ready to host ECM fungi (Diez et al. 2000). The with Pinus, Quercus,orCastanea (Olivier et al. 1997), micropropagation of plants is a fast method of propagation, reaching high productions in relatively mature forests (40+ which allows us to improve the quality of the plant by years old) (Díaz-Balteiro et al. 2003), thus limiting the feasi- selecting optimum plant material and provide genetic unifor- bility of their domestication. Interestingly, B. edulis species mity (Diez et al. 2000). Despite the high cost of preparing have recently been reported to occur in Cistus ladanifer L. vitroplants as the first step, it pays off with a higher number shrublands in Northwest Spain (Oria-de-Rueda et al. 2005; of mycorrhized plants. Once the in vitro production protocol Martín-Pinto et al. 2006). This finding is very relevant be- with a suitable plant genotype(s) for mycorrhization is cause sporocarp production occurs as early as in 3-year-old achieved, the cost per plant may be reduced, thus creating a C. ladanifer shrubs, and high yields have been reported in 8- profitable inoculation system. The positive results achieved year-old plants (Oria-de-Rueda et al. 2008). with MHB and ECM fungus coinoculations, paired with im- The first steps toward C. ladanifer controlled provements in plant propagation methods, open new expecta- mycorrhization with B. edulis have already been taken tions toward the domestication of valuable ECM fungus spe- (Águeda et al. 2008). However, we poorly understand how cies. Thus, in this study, we aimed to optimize a protocol for to efficiently produce a large number of plants that harbor the mycorrhizal synthesis of B. edulis with C. ladanifer the targeted ectomycorrhizal (ECM) fungi in their root system. vitroplants by assessing the qualitative and quantitative effects Several factors are known to influence the success of man- of coinoculation with MHB P. fluorescens. Our specific aims mediated ectomycorrhizal symbiosis, including fungal inocu- were (i) to assess the influence of P. fluorescens on the my- lum preparation, choice, and preparation of substrates, choice corrhizal presence (i.e., on the number of pots containing of nutrient solutions (Honrubia et al. 1994; Parladé et al. 2004; mycorrhized plants) and mycorrhizal colonization level of Pera and Parladé 2005), and the presence of other microor- C. ladanifer vitroplants inoculated with B. edulis and (ii) to ganisms in the rhizosphere (Walder et al. 2012). assess the influence of the culture time of fungal inoculum on Bacteria can enhance the ectomycorrhizal symbiosis in two mycorrhizal presence and colonization level alone and in in- ways (Frey-Klett et al. 2007), by helping the ectomycorrhizal teraction with P. fluorescens. symbiosis to take place, known as mycorrhization helper bac- teria, or by enhancing within-plant mycorrhization rate, known as mycorrhiza helper bacteria. In either case, they are Material and methods referred to as MHB (Garbaye 1994). The mechanisms by which bacteria interact with fungi involve the stimulation of Mycorrhizal synthesis protocol mycelial growth, the increase of contact points between roots and fungi, and the reduction of environmental stress on the The mycorrhizal synthesis protocol consisted of a preliminary mycelium (Brulé et al. 2001; Kurth et al. 2013). Nonetheless, step for fungal strain isolation and growth, in parallel with the activity of bacteria can also be detrimental to the mycor- propagation of C. ladanifer vitroplants. This step was follow- rhizal symbiosis in some cases (Kataoka et al. 2009). ed by the preparation of bacterial inoculum and finally Many different bacterial groups and genera have been re- coinoculation of vitroplants with MHB into a substrate colo- ported as MHB in both endomycorrhizal and ectomycorrhizal nized by B. edulis. Below, we provide a detailed description of symbiosis (Duponnois and Plenchette 2003). Among strains the different steps. isolated from ectomycorrhizae, Pseudomonas fluorescens Migula is among the most frequent (Garbaye and Bowen Fungal inoculum 1989; Garbaye et al. 1990 ). In addition, various studies have confirmed that P. fl uo re sc en s generally improves the symbi- Sporocarps of B. edulis were collected from pure C. ladanifer otic relationship of ectomycorrhizae by increasing the within- shrublands located in northwestern Spain. Immediately after plant ratio of mycorrhization, i.e., the percentage of mycorrhi- collection, sporocarps were stored in closed polyethylene bags zal short roots to total short roots (Duponnois and Garbaye until their processing in the laboratory within 24 h after col- 1991;Duponnois2006), and stimulating the ectomycorrhizal lection (Honrubia et al. 1994). Strain isolation was carried out fungus growth under experimental conditions (Frey-Klett under aseptic conditions in order to avoid contamination. A et al. 2007). Interestingly, in the context of ECM fungus do- small piece of inner flesh from the cap was placed on MMN mestication, a recent study reported a significant increase in nutritive medium plates (Modified Melin-Norkrans) (Marx colonization of Pinus halepensis Mill. roots by Tuber 1969)atpH5.5andkeptat22–24 °C in dark (Honrubia Mycorrhiza (2016) 26:161–168 163 et al. 1994). Mycelium was transferred to fresh MMN plates Tween 20® detergent.
Recommended publications
  • Biological Properties of Cistus Species
    Biological properties of Cistus species. 127 © Wydawnictwo UR 2018 http://www.ejcem.ur.edu.pl/en/ ISSN 2544-1361 (online); ISSN 2544-2406 European Journal of Clinical and Experimental Medicine doi: 10.15584/ejcem.2018.2.8 Eur J Clin Exp Med 2018; 16 (2): 127–132 REVIEW PAPER Agnieszka Stępień 1(ABDGF), David Aebisher 2(BDGF), Dorota Bartusik-Aebisher 3(BDGF) Biological properties of Cistus species 1 Centre for Innovative Research in Medical and Natural Sciences, Laboratory of Innovative Research in Dietetics Faculty of Medicine, University of Rzeszow, Rzeszów, Poland 2 Department of Human Immunology, Faculty of Medicine, University of Rzeszów, Poland 3 Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Poland ABSTRACT Aim. This paper presents a review of scientific studies analyzing the biological properties of different species of Cistus sp. Materials and methods. Forty papers that discuss the current research of Cistus sp. as phytotherapeutic agent were used for this discussion. Literature analysis. The results of scientific research indicate that extracts from various species of Cistus sp. exhibit antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, cytotoxic and anticancer properties. These properties give rise to the pos- sibility of using Cistus sp. as a therapeutic agent supporting many therapies. Keywords. biological properties, Cistus sp., medicinal plants Introduction cal activity which elicit healing properties. Phytochem- Cistus species (family Cistaceacea) are perennial, dicot- ical studies using chromatographic and spectroscopic yledonous flowering shrubs in white or pink depend- techniques have shown that Cistus is a source of active ing on the species. Naturally growing in Europe mainly bioactive compounds, mainly phenylpropanoids (flavo- in the Mediterranean region and in western Africa and noids, polyphenols) and terpenoids.
    [Show full text]
  • Ectomycorrhizal Fungal Communities at Forest Edges 93, 244–255 IAN A
    Journal of Blackwell Publishing, Ltd. Ecology 2005 Ectomycorrhizal fungal communities at forest edges 93, 244–255 IAN A. DICKIE and PETER B. REICH Department of Forest Resources, University of Minnesota, St Paul, MN, USA Summary 1 Ectomycorrhizal fungi are spatially associated with established ectomycorrhizal vegetation, but the influence of distance from established vegetation on the presence, abundance, diversity and community composition of fungi is not well understood. 2 We examined mycorrhizal communities in two abandoned agricultural fields in Minnesota, USA, using Quercus macrocarpa seedlings as an in situ bioassay for ecto- mycorrhizal fungi from 0 to 20 m distance from the forest edge. 3 There were marked effects of distance on all aspects of fungal communities. The abundance of mycorrhiza was uniformly high near trees, declined rapidly around 15 m from the base of trees and was uniformly low at 20 m. All seedlings between 0 and 8 m distance from forest edges were ectomycorrhizal, but many seedlings at 16–20 m were uninfected in one of the two years of the study. Species richness of fungi also declined with distance from trees. 4 Different species of fungi were found at different distances from the edge. ‘Rare’ species (found only once or twice) dominated the community at 0 m, Russula spp. were dominants from 4 to 12 m, and Astraeus sp. and a Pezizalean fungus were abundant at 12 m to 20 m. Cenococcum geophilum, the most dominant species found, was abundant both near trees and distant from trees, with lowest relative abundance at intermediate distances. 5 Our data suggest that seedlings germinating at some distance from established ecto- mycorrhizal vegetation (15.5 m in the present study) have low levels of infection, at least in the first year of growth.
    [Show full text]
  • Boletus Edulis and Cistus Ladanifer: Characterization of Its Ectomycorrhizae, in Vitro Synthesis, and Realised Niche
    UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche. Boletus edulis y Cistus ladanifer: caracterización de sus ectomicorrizas, síntesis in vitro y área potencial. Dª. Beatriz Águeda Hernández 2014 UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis AND Cistus ladanifer: CHARACTERIZATION OF ITS ECTOMYCORRHIZAE, in vitro SYNTHESIS, AND REALISED NICHE tesis doctoral BEATRIZ ÁGUEDA HERNÁNDEZ Memoria presentada para la obtención del grado de Doctor por la Universidad de Murcia: Dra. Luz Marina Fernández Toirán Directora, Universidad de Valladolid Dra. Asunción Morte Gómez Tutora, Universidad de Murcia 2014 Dª. Luz Marina Fernández Toirán, Profesora Contratada Doctora de la Universidad de Valladolid, como Directora, y Dª. Asunción Morte Gómez, Profesora Titular de la Universidad de Murcia, como Tutora, AUTORIZAN: La presentación de la Tesis Doctoral titulada: ‘Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche’, realizada por Dª Beatriz Águeda Hernández, bajo nuestra inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia. En Murcia, a 31 de julio de 2014 Dra. Luz Marina Fernández Toirán Dra. Asunción Morte Gómez Área de Botánica. Departamento de Biología Vegetal Campus Universitario de Espinardo. 30100 Murcia T. 868 887 007 – www.um.es/web/biologia-vegetal Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein Le petit prince, alors, ne put contenir son admiration: -Que vous êtes belle! -N´est-ce pas, répondit doucement la fleur. Et je suis née meme temps que le soleil..
    [Show full text]
  • Genus Cistus
    REVIEW ARTICLE published: 11 June 2014 doi: 10.3389/fchem.2014.00035 Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties Dimitra Papaefthimiou 1, Antigoni Papanikolaou 1†, Vasiliki Falara 2†, Stella Givanoudi 1, Stefanos Kostas 3 and Angelos K. Kanellis 1* 1 Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece 2 Department of Chemical Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA 3 Department of Floriculture, School of Agriculture, Aristotle University of Thessaloniki,Thessaloniki, Greece Edited by: The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with Matteo Balderacchi, Università 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum,and Cattolica del Sacro Cuore, Italy Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk Reviewed by: medicine as herbal tea infusions for healing digestive problems and colds, as extracts Nikoletta Ntalli, l’Università degli Studi di Cagliari, Italy for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the Carolyn Frances Scagel, United glandular trichomes of certain Cistus species contains a number of phytochemicals States Department of Agriculture, with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total USA leaf aqueous extracts possess anti-influenza virus activity. All these properties have Maurizio Bruno, University of Palermo, Italy been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type *Correspondence: diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, Angelos K. Kanellis, Group of several groups of alkaloids and other types of secondary metabolites.
    [Show full text]
  • Arbuscular Mycorrhizas: Producing and Applying Arbuscular Mycorrhizal Inoculum
    Arbuscular Mycorrhizas: Producing and Applying Arbuscular Mycorrhizal Inoculum M. Habte and N. W. Osorio Department of Tropical Plant and Soil Sciences Acknowledgments the United States Department of Agriculture, nor the We are grateful to Dr. Mark Brundrett, who generously author shall be liable for any damage or injury resulting gave us permission to use his drawings, including the from the use of or reliance on the information contained one on the cover, in this publication. in this publication or from any omissions to this publi­ This work was funded by the Hawaii Renewable cation. Mention of a company, trade, or product name Resources Extension Program, supported by RREA or display of a proprietary product does not imply ap­ Smith-Lever 3D funds from CSREES/USDA. proval or recommendation of the company or product to the exclusion of others that may also be suitable. About this publication This information may be updated in more recent The information contained herein is subject to change publications posted on the CTAHR Web site, <www2. or correction. Procedures described should be consid­ ctahr.hawaii.edu>. For information on obtaining addi­ ered as suggestions only. To the knowledge of the au­ tional copies of this book, contact the Publications and thor, the information given is accurate as of July 2001. Information Office, CTAHR–UHM, 3050 Maile Way Neither the University of Hawaii at Manoa, the UH (Gilmore Hall 119), Honolulu, HI 96822; 808-956-7036; College of Tropical Agriculture and Human Resources, 808-956-5966 (fax); e-mail <ctahrpub@ hawaii.edu>. Table of contents Arbuscular mycorrhizal associations .........................................................................
    [Show full text]
  • Chapter 20: Mycorrhiza Management in Bareroot Nurseries
    Chapter 20 Mycorrhiza Management in Bareroot Nurseries R. Molina and J. M. Trappe potential use of selected beneficial fungi for mycorrhizal Abstract inoculation of seedlings will help ensure the successful 20.1 Introduction production of vigorous planting stock. 20.2 Mycorrhizae Defined 20.2.1 Ectomycorrhizae 20.1 Introduction 20.2.2 Ectendomycorrhizae Nursery managers have long recognized the importance of 20.2.3 Vesicular-arbuscular mycorrhizae well-developed root systems for producing resilient planting 20.2.4 Benefits of mycorrhizae stock. We now realize that adequate development of mycorrhi- 20.3 Mycorrhiza Management zae on seedling roots is equally important—indeed, essential— 20.3.1 Mycorrhiza development and occurrence in for healthy seedling growth in the nursery and desired per- bareroot nurseries formance after outplanting. 20.3.2 The nursery soil system In this chapter, we focus on the major benefits seedlings 20.3.3 Uses and abuses of soil fumigation and other derive from mycorrhizae, how environmental factors and man- pesticides agement practices affect mycorrhizal fungus populations and 20.3.4 Hazards of crop rotation subsequent development of mycorrhizae, and methods to 20.3.5 Seedling manipulations foster mycorrhiza development in bareroot nurseries. We also 20.3.6 Managing VA mycorrhizal hosts provide an update on prospects for artificially inoculating seed- 20.4 Mycorrhizal Inoculations in Bareroot Nurseries lings with selected, highly beneficial mycorrhizal fungi. 20.4.1 Ectomycorrhizal inoculation 20.4.1.1 Soil inoculum 20.4.1.2 "Nurse" seedlings 20.2 Mycorrhizae Defined 20.4.1.3 Spores and sporocarps Mycorrhiza is a Greek word meaning "fungus-root." Nearly 20.4.1.4 Pure fungus cultures all land plants form some type of mycorrhiza with specialized 20.4.1.5 Selection criteria soil fungi.
    [Show full text]
  • Fall 2012 Mail Order Catalog Cistus Nursery
    Fall 2012 Mail Order Catalog Cistus Nursery 22711 NW Gillihan Road Sauvie Island, OR 97231 503.621.2233 phone order by phone 9 - 5 pst, visit 10am - 5pm, mail, or email: [email protected] 24-7-365 www.cistus.com Fall 2012 Mail Order Catalog 2 Abelia x grandiflora 'Margarita' margarita abelia New and interesting abelia with variegated leaves, green with bright yellow margins, on red stems, dressing up a smallish shrub, expected to be 4 ft tall and wide. A cheerful addition to the garden. Flowers are typical of the species, beginning in May and continuing sporadically throughout the season. Best in sun -- they tend to be leggy in shade -- with average summer water. Frost hardy to -20F, USDA zone 6. $14 Caprifoliaceae Abutilon 'Savitzii' flowering maple One of the few abutilons we sell that is quite tender. Grown since the 1800s for its wild variegation -- the leaves large and pale, almost white with occasional green blotches -- and long, salmon-orange, peduncled flowers. A medium grower, to 4-6 ft tall, needing consistent water and nutrients in sun to part shade. Winter mulch increases frost hardiness as does some overstory. Frost hardy to 25 F, mid USDA zone 9. Where temperatures drop lower, best in a container or as cuttings to overwinter. Well worth the trouble! $9 Malvaceae Acanthus sennii A most unusual and striking species from the highlands of Ethiopia, a shrub to 3 ft or more with silvery green leaves to about 3" wide, ruffle edged and spined, and spikes of nearly red flowers in summer and autumn.
    [Show full text]
  • Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields
    Microbes Environ. Vol. 34, No. 1, 23-32, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18109 Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields TURGUT YIGIT AKYOL1, RIEKO NIWA2, HIDEKI HIRAKAWA3, HayatO MARUyama4, TAKUMI SatO5, TAKAE SUZUKI6, AyaKO FUKUNAGA7, TAKASHI SatO8, SHIGENOBU YOSHIDA2, KEItaRO TAWARaya5, MASANORI SAITO6,9, TatsUHIRO EZAWA4, and SHUSEI SatO1* 1Graduate School of Life Sciences, Tohoku University, Sendai 980–8577, Japan; 2Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 2–1–18 Kannondai, Tsukuba 305–8666, Japan; 3Kazusa DNA Research Institute, Kisarazu 292–0818, Japan; 4Graduate School of Agriculture, Hokkaido University, Sapporo 060–8589, Japan; 5Faculty of Agriculture, Yamagata University, Tsuruoka 997–8555, Japan; 6Field Science Center, Graduate School of Agriculture, Tohoku University, Osaki 989–6711, Japan; 7Western Region Agricultural Research Center, NARO, Ayabe 623–0035, Japan; 8Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010–0195, Japan; and 9Department of Innovation Research, Japan Science and Technology Agency, Tokyo, 102–0076, Japan (Received July 31, 2018—Accepted October 22, 2018—Published online December 22, 2018) Arbuscular mycorrhizal (AM) fungi are important members of the root microbiome and may be used as biofertilizers for sustainable agriculture. To elucidate the impact of AM fungal inoculation on indigenous root microbial communities, we used high-throughput sequencing and an analytical pipeline providing fixed operational taxonomic units (OTUs) as an output to investigate the bacterial and fungal communities of roots treated with a commercial AM fungal inoculum in six agricultural fields. AM fungal inoculation significantly influenced the root microbial community structure in all fields.
    [Show full text]
  • Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome
    H OH metabolites OH Review Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome Sukhmanpreet Kaur and Vidya Suseela * Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 12 August 2020; Published: 18 August 2020 Abstract: Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant–AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products.
    [Show full text]
  • Molecular Systematics, Character Evolution, and Pollen Morphology of Cistus and Halimium (Cistaceae)
    Molecular systematics, character evolution, and pollen morphology of Cistus and Halimium (Cistaceae) Laure Civeyrel • Julie Leclercq • Jean-Pierre Demoly • Yannick Agnan • Nicolas Que`bre • Ce´line Pe´lissier • Thierry Otto Abstract Pollen analysis and parsimony-based phyloge- pollen. Two Halimium clades were characterized by yellow netic analyses of the genera Cistus and Halimium, two flowers, and the other by white flowers. Mediterranean shrubs typical of Mediterranean vegetation, were undertaken, on the basis of cpDNA sequence data Keywords TrnL-F ÁTrnS-G ÁPollen ÁExine ÁCistaceae Á from the trnL-trnF, and trnS-trnG regions, to evaluate Cistus ÁHalimium limits between the genera. Neither of the two genera examined formed a monophyletic group. Several mono- phyletic clades were recognized for the ingroup. (1) The Introduction ‘‘white and whitish pink Cistus’’, where most of the Cistus sections were present, with very diverse pollen ornamen- Specialists on the Cistaceae usually acknowledge eight tations ranging from striato-reticulate to largely reticulate, genera for this family (Arrington and Kubitzki 2003; sometimes with supratectal elements; (2) The ‘‘purple pink Dansereau 1939; Guzma´n and Vargas 2009; Janchen Cistus’’ clade grouping all the species with purple pink 1925): Cistus, Crocanthemum, Fumana, Halimium, flowers belonging to the Macrostylia and Cistus sections, Helianthemum, Hudsonia, Lechea and Tuberaria (Xolantha). with rugulate or microreticulate pollen. Within this clade, Two of these, Lechea and Hudsonia, occur in North the pink-flowered endemic Canarian species formed a America, and Crocanthemum is present in both North monophyletic group, but with weak support. (3) Three America and South America. The other genera are found in Halimium clades were recovered, each with 100% boot- the northern part of the Old World.
    [Show full text]
  • Fire Persistence Mechanisms in Mediterranean Plants: Ecological and Evolutionary Consequences
    Fire persistence mechanisms in Mediterranean plants: ecological and evolutionary consequences Memoria presentada por: Bruno Ricardo Jesus Moreira Para optar al grado de doctor en Ciencias Biológicas Departamento de Ecología, Universidad de Alicante Director de tesis: Dr. Juli G. Pausas Alicante, Diciembre de 2012. Acknowledgments Numerous people were involved and contributed in many ways to the completion of this thesis. Firstly I would like to thank to Juli, my scientific advisor. He is sincerely thanked for his good advices, the encouragement and help in this thesis. This thesis was definitively a starting point where first steps towards the realisation of my future career were taken. As I have written elsewhere, “I was supervised by an outstanding researcher which inculcated me independent thinking and encouraged to openly question his opinions and suggestions with scientific arguments (…) Although, under the careful supervision of my supervisor, I was expected to lead my research, define the project goals, methodologies and main milestones to achieve.” I am really glad and proud that all of this is true. Susana has been of utmost importance for my Ph.D. She has been my role model since from the beginning; a model for friendship, dedication, scientific rigour, suffering capacity and perseverance. I know I always could count on her and that I will always can. I would also like to thank the people at CEAM and CIDE for their company and support, especially to my office mates and all the students and research assistants that passed by and which help was invaluable. Particularly to the ones who had to work with me for endless hours in the field and/or laboratory.
    [Show full text]
  • Endofungal Bacteria Increase Fitness of Their Host Fungi and Impact Their Association with Crop Plants
    Impact of endofungal bacteria in fungus-plant interactions Alabid et al. Curr. Issues Mol. Biol. (2019) 30: 59-74. caister.com/cimb Endofungal Bacteria Increase Fitness of their Host Fungi and Impact their Association with Crop Plants Ibrahim Alabid1, Stefanie P. Glaeser2 and Karl- their role in supporting sustainable agriculture by Heinz Kogel1* promoting plant growth, improving plant resistance, and decreasing yield loss caused by many microbial 1Institute of Phytopathology, IFZ Research Centre pathogens. for Biosystems, Land Use and Nutrition, Justus Liebig University, D-35392 Giessen, Germany Endobacteria in plant-colonizing fungi 2Institute of Applied Microbiology, IFZ Research Endofungal bacteria inhabit the cytoplasm of fungal Centre for Biosystems, Land Use and Nutrition, cells (Figure 1). They commonly establish beneficial Justus Liebig University, D-35392 Giessen, relationships (positive symbioses) with their plant- Germany colonizing host fungi thereby forming tripartite interactions that comprise the bacterium, the fungus *[email protected] and the plant (Perotto and Bonfante, 1997; Bonfante and Anca, 2009; Desirò et al., 2014; Moebius et al., DOI: https://dx.doi.org/10.21775/cimb.030.059 2014; Erlacher et al., 2015; Glaeser et al., 2016; Salvioli et al., 2016). From the historical perspective, Abstract: Mosse (1970) was the first to describe intracellular Endofungal bacteria are bacterial symbionts of fungi structures very similar to bacteria, called Bacteria- that exist within fungal hyphae and spores. There is Like Organisms (BLOs) inside fungal hyphae increasing evidence that these bacteria, alone or in (Figure 2). Since then, BLOs and bacteria were combination with their fungal hosts play a critical detected in glomeromycotan arbuscular mycorrhiza role in tripartite symbioses with plants, where they may contribute to plant growth and disease resistance to microbial pathogens.
    [Show full text]