Deckblatt Zum Programmheft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1207.2292V3 [Physics.Ins-Det] 29 Apr 2013
Preprint typeset in JINST style - HYPER VERSION Liquid noble gas detectors for low energy particle physics Vitaly Chepela∗ and Henrique Araújob aLIP–Coimbra & Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal Email: [email protected] bHigh Energy Physics Group, Imperial College London, Blackett Laboratory, London SW7 2AZ, United Kingdom ABSTRACT: We review the current status of liquid noble gas radiation detectors with energy thresh- old in the keV range, which are of interest for direct dark matter searches, measurement of coherent neutrino scattering and other low energy particle physics experiments. Emphasis is given to the op- eration principles and the most important instrumentation aspects of these detectors, principally of those operated in the double-phase mode. Recent technological advances and relevant develop- ments in photon detection and charge readout are discussed in the context of their applicability to those experiments. KEYWORDS: Noble liquid detectors (scintillation, ionization, double phase); Dark matter detectors (WIMPs, axions, etc.); Neutrino detectors; Charge transport, multiplication and electroluminescence in rare gases and liquids. arXiv:1207.2292v3 [physics.ins-det] 29 Apr 2013 ∗Corresponding author. Contents 1. Introduction 2 2. Elastic scattering of dark matter particles and neutrinos off nuclei 2 3. Overview of detection principles 4 4. Relevant properties of the liquefied rare gases 13 4.1 Particle energy transfer to the liquid 13 4.2 Primary scintillation 15 4.2.1 Emission mechanism and yields 15 4.2.2 The role of recombination 26 4.2.3 Light propagation 32 4.3 Ionization charge 34 4.3.1 Ionization yields and transport properties in the liquid 34 4.3.2 Liquid purity 38 4.4 Combined signal 39 4.5 Electron emission from liquid to gas 40 4.6 Electrons in the gas phase 43 5. -
The Darkside Experiment for Direct Dark Matter Search with Liquid Argon
The DarkSide experiment for direct dark matter search with liquid argon Alexander Kish University of Hawaii on behalf of the DarkSide collaboration 3rd South American Dark Matter Workshop, December 3, 2020 Outline ・DarkSide-50 (DS-50) dual-phase argon TPC and its latest physics results ・Status of the DarkSide-20k (DS-20k) experiment and associated R&D ・Global Argon Dark Matter Collaboration (GADMC) and ARGO ・Coherent neutrino-nucleus scattering (CEνNS) and sensitivity of the future large argon TPCs to core-collapse supernova neutrinos Alex Kish, University of Hawaii DarkSide @ DMW2020, December 3, 2020 2 The DarkSide-50 Experiment Water Cherenkov detector ・stainless steel cylinder (D 11m, H 10m) ・1kT of ultra-pure H20 ・80 PMTs (8”) ➝ passive shield for external radiation ➝ active veto for muons Liquid scintillator detector ・stainless steel sphere (D 4m) ・30t of 10B-loaded liquid scintillator ・110 PMTs (8”) ➝ active gamma and neutron veto Inner argon TPC ・PTFE cylinder with 46kg LAr target ・38 Hamamatsu PMTs (3”, R11065) ・TPB-coated inner surfaces ・fused silica diving bell with 1cm gas pocket ・transparent silica cathode and anode coated by ITO (indium tin oxide) Alex Kish, University of Hawaii DarkSide @ DMW2020, December 3, 2020 3 DarkSide-50 TPC ・38 Hamamatsu PMTs (3”, R11065) ・TPB-coated inner surfaces ・PTFE cylinder with 46kg LAr target ・fused silica diving bell with 1cm gas pocket ・transparent silica cathode and anode coated by ITO (indium tin oxide) Cryogenic pre-amplifier Alex Kish, University of Hawaii DarkSide @ DMW2020, December -
Heavy Ion Accelerator Symposium 2019
Heavy Ion Accelerator Symposium 2019 Book of Abstracts and Program Contents HIAS 2019 Schedule. 1 Foreword................................................................................. 2 Code of Conduct . 3 Organisation . 4 Acknowledgements . 5 ANUMap................................................................................ 6 Program.................................................................................. 7 Abstracts . 16 List of Participants. .79 Australian National HIAS University will be held at University House, across the road Bull at University Centre. acrossfrom the road held Hedley will the House, be of Nuclear held will Department be the is a ~5-10at Physics, Hedley which the symposiumreception Bull min Centre. dinner from The walk theatre. the The of will lecture welcome breaks be held the inHedley just tea the foyer all Bull outside Centre, and lunch and Registration 18:00 18:00 17:30 17:10 16:50 16:30 16:00 15:30 15:10 14:50 14:30 14:00 12:40 12:20 12:00 11:30 11:00 10:30 10:00 9:40 9:40 9:30 8:30 AcceleratorHeavy Ion Symposium 2019 Schedule S1 chair: J.M. Allmond Allmond J.M. S1 chair: Welcome/Opening: K. Nugent Welcome/Opening: S4 chair: R. Golser Golser R. S4 chair: S3 S2 Country to Welcome Senden T. chair: Opening Registration chair: P. Collon Collon P. chair: Courtin S. chair: Walk to Nuclear Physics Nuclear to Walk C. Müller-Gatermann C. Welcome Reception Reception Welcome Nuclear Physics Physics Nuclear A.E. Stuchbery Stuchbery A.E. M. Martschini Martschini M. E. J. Stuchbery Stuchbery J. L.T. Bezzina Bezzina L.T. Tea break Tea break Tea break J.L. Wood Wood J.L. A. K.J. Cook K.J. -
SNOLAB Construction Status and Experimental Program
M. Chen Queen’s University SNOLAB Construction Status and Experimental Program SNOLAB located 2 km underground in an active nickel mine near Sudbury, Canada it’s an expansion of the underground facility on the same level as the SNO experiment Surface Facility Excavation Status (Today) -Blasting for Phase I Excavation complete. - Shotcrete walls complete - Concrete floors almost finished. BLADDER ROOM BLADDER ROOM SHOWER ROOM SHOWER ROOM DOUBLE TRACKS DOUBLE TRACKS LADDER LABS LADDER LABS CUBE HALL CUBE HALL Phase I - Cube Hall (18x15x15 m) - Ladder Labs (~7mx~7mx60m) Utility Area - Chiller, generator, Lab Entrance water systems Existing SNO - Personnel Areas Facilities -Material Handling -SNO Cavern (30m x 22m dia) - Utility & Control Rms SNOLAB Workshop V, 21 August 2006 Phase II -Cryopit Phase I (15m x15m dia) - Cube Hall (18x15x15 m) - Ladder Labs (~7mx~7mx60m) Utility Area - Chiller, generator, Lab Entrance water systems Existing SNO - Personnel Areas Facilities -Material Handling -SNO Cavern (30m x 22m dia) - Utility & Control Rms Rectangular Hall Control Rm Utility Drift Staging Area Rectangular Hall 60’L x 50’W 50’ (shoulder) 65’ (back) SNOLAB Workshop IV, 15 Aug 2005 Ladder Labs Wide Drift Electrical, 20’x12’ AHUs (19’ to back) Wide Drift 25’x17’ (25’ to back) Access Drift 15’x10’ (15’ to back) Chemistry Lab SNOLAB Workshop IV, 15 Aug 2005 SNOLAB Experiments z Some 20 projects submitted Letters of Interest in locating at SNOLAB. Of these, 10 have been encouraged by the Experiment Advisory Committee as being both scientifically important and particularly suited to the SNOLAB location. z The experimental physics program includes − Neutrinos: Low energy solar neutrinos, geo-neutrinos, reactor neutrinos, supernova neutrino detection z Tests of neutrino properties, precision measurements of solar neutrinos, radiogenic heat generation in the earth, stellar evolution. -
Recommended Conventions for Reporting Results from Direct Dark Matter Searches
Recommended conventions for reporting results from direct dark matter searches D. Baxter1, I. M. Bloch2, E. Bodnia3, X. Chen4,5, J. Conrad6, P. Di Gangi7, J.E.Y. Dobson8, D. Durnford9, S. J. Haselschwardt10, A. Kaboth11,12, R. F. Lang13, Q. Lin14, W. H. Lippincott3, J. Liu4,5,15, A. Manalaysay10, C. McCabe16, K. D. Mor˚a17, D. Naim18, R. Neilson19, I. Olcina10,20, M.-C. Piro9, M. Selvi7, B. von Krosigk21, S. Westerdale22, Y. Yang4, and N. Zhou4 1Kavli Institute for Cosmological Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 USA 2School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel 3University of California, Santa Barbara, Department of Physics, Santa Barbara, CA 93106, USA 4INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, MOE Key Lab for Particle Physics, Astrophysics and Cosmology, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China 5Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, China 6Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, Stockholm SE-10691, Sweden 7Department of Physics and Astronomy, University of Bologna and INFN-Bologna, 40126 Bologna, Italy 8University College London, Department of Physics and Astronomy, London WC1E 6BT, UK 9Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada 10Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA 11STFC Rutherford Appleton Laboratory (RAL), Didcot, OX11 0QX, UK 12Royal Holloway, -
Ultra-Weak Gravitational Field Theory Daniel Korenblum
Ultra-weak gravitational field theory Daniel Korenblum To cite this version: Daniel Korenblum. Ultra-weak gravitational field theory. 2018. hal-01888978 HAL Id: hal-01888978 https://hal.archives-ouvertes.fr/hal-01888978 Preprint submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultra-weak gravitational field theory Daniel KORENBLUM [email protected] April 2018 Abstract The standard model of the Big Bang cosmology model ΛCDM 1 considers that more than 95 % of the matter of the Universe consists of particles and energy of unknown forms. It is likely that General Relativity (GR)2, which is not a quantum theory of gravitation, needs to be revised in order to free the cosmological model of dark matter and dark energy. The purpose of this document, whose approach is to hypothesize the existence of the graviton, is to enrich the GR to make it consistent with astronomical observations and the hypothesis of a fully baryonic Universe while maintaining the formalism at the origin of its success. The proposed new model is based on the quantum character of the gravitational field. This non-intrusive approach offers a privileged theoretical framework for probing the properties of the regime of ultra-weak gravitational fields in which the large structures of the Universe are im- mersed. -
Light Dark Matter at Boulby Liquid Argon Liquid Xenon MAGIS Dark Matter Summary Comments
Summary of Dark Matter Kimberly Palladino Inputs to the Roadmap Light Dark Matter at Boulby Liquid Argon Liquid Xenon MAGIS Dark Matter Summary Comments ‣ Dark Matter and other new physics are strong physics motivations (STFC C:4) ‣ A quickly growing subfield both in membership in individual projects, and new projects ‣ Input submissions highlight opportunities for leadership if funding is expanded in this area ‣ Difficult to judge purely by numbers of researchers, as existing funding also shapes the field ‣ UKRI Quantum Technology for Fundamental Physics interest and results (recent HEP Forum discussions) highlight this breadth ‣ Boulby Underground Laboratory is a key facility ‣ Summarising 4 inputs now, encourage more! 2 Light DM at Boulby: EFCu and DarkSPHERE ‣ Rare-event search experiments rely upon electroformed copper for their physics goals (dark matter and neutrinoless double-beta decay) ‣ ECUME at SNOLAB, partnered with PNNL, bring experience to Boulby ‣ Low-mass dark matter searches with NEWS-G ‣ Dark Matter search in 0.05 -10 GeV mass range, aiming for the neutrino ‘floor’ ‣ motivated by hidden sectors, asymmetric dark matter, and effective field theory ‣ Cu Spherical Proportional Counter filled with light gas mixtures ‣ SEDINE at LSM 60 cm dia., SNOGLOBE at SNOLAB 1.4 m dia, DarkSPHERE at Boulby 3m dia. ‣ swappable targets, single ionization electron sensitivity, background rejection and fiducialisation 3 Light DM at Boulby: UK spotlight ‣ UK groups: Boulby, KCL, RAL, RHUL, UCL, Birmingham, Liverpool ‣ Build EFCu expertise -
The Eternal Original Fundamental Particle of the Universe
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 The Eternal Original Fundamental Particle of the Universe Dadarao Dhone B. E. Electrical (1971) Retiree Exe. Engr., Electric. & Mechanical, Gov. Maharashtra in India (2005) & Retd. Electrical Engg. Faculty. (2007 to 2013), Nanded, M.S., India Abstract: Till now, There are found four fundamental forces in the Nature/universe. They are, (1) Gravity, (2) The Weak Force, (3) Electromagnetism and (4) The Strong Force. But, since 2000, thinking on the most original, eternal, fundamental particles, it is found by the author through meditation of octo-microscopic nature, (1) self-conscious, (2) Intellect, (3) Mind, (4) Space, and Principle Properties of each of the following, (5) Air, (6) Light, (7) Water, (8) Earth; from the Modern Science and the Hindu Phylosophy particularly, ShriMadBhagWadGeeta. that, there must be some fundamental ever existing original particles as building blocks of the Nature, the Universe. Yethakashashthito nityam Vayuh… means as there is air always attached to space, all objects and events in the universe are attached to the space. Space is also self conscious as per the Geeta. The Dark Energy matter in astronomy corresponds to the Vayuh in Geeta. Something moving is energy, Dark photons, always in motion in space is energy and that's the Dark Energy in space. The particles of the Dark Energy are named 'Dark Photons' by the author. These particles represent all above fundamental four forces of the nature and also the properties of mass, electricity and magnetism, And a mesh of neutral field lines which, assume any field according to respective particles coming into existence in space-Domains. -
S. Ting June 17, 2014
The Latest Results from The Alpha Magnetic Spectrometer on the International Space Station June 17, 2014 S. Ting AMS: a U.S. DOE led International Collaboration 15 Countries, 44 Institutes and 600 Physicists FINLAND UNIV. OF TURKU RUSSIA ITEP NETHERLANDS KURCHATOV INST. ESA-ESTEC GERMANY NIKHEF RWTH-I. KIT - KARLSRUHE KOREA USA FRANCE EWHA MIT - CAMBRIDGE LUPM MONTPELLIER KYUNGPOOK NAT.UNIV. NASA GODDARD SPACE FLIGHT CENTER LAPP ANNECY CHINA NASA JOHNSON SPACE CENTER LPSC GRENOBLE TURKEY CALT (Beijing) UNIV. OF HAWAII METU, ANKARA IEE (Beijing) UNIV. OF MARYLAND - DEPT OF PHYSICS IHEP (Beijing) YALE UNIVERSITY - NEW HAVEN PORTUGAL SWITZERLAND ETH-ZURICH NLAA (Beijing) LAB. OF INSTRUM. LISBON SJTU (Shanghai) UNIV. OF GENEVA SEU (Nanjing) SPAIN SYSU (Guangzhou) CIEMAT - MADRID SDU (Jinan) I.A.C. CANARIAS. ITALY TAIWAN ASI ACAD. SINICA (Taipei) IROE FLORENCE CSIST (Taipei) MEXICO INFN & UNIV. OF BOLOGNA NCU (Chung Li) UNAM INFN & UNIV. OF MILANO-BICOCCA INFN & UNIV. OF PERUGIA INFN & UNIV. OF PISA INFN & UNIV. OF ROMA INFN & UNIV. OF TRENTO D. Goldin, former NASA Administrator realized the unique potential of ISS for fundamental science and has supported AMS from the beginning May 16, 2011 May 15, 2011 May 09, 1994 NASA support Mr. William Gerstenmaier has visited AMS regularly More than 10 times, at CERN, KSC, ESTEC . Mr. Mike Suffredini and Mr. Rod Jones have also strongly supported AMS. Their support has made it possible for AMS to collect data continuously The construction of AMS was, and AMS operations are, supervised continuously by NASA-JSC team of Trent Martin, Ken Bollweg and many others. 4 Strong support of STS-134 astronauts (Mark Kelly, Gregory H. -
Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination: Results from DEAP-1 and Status of DEAP-3600
Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination: Results from DEAP-1 and Status of DEAP-3600 P. Gorel, for the DEAP Collaboration Centre for Particle Physics, University of Alberta, Edmonton, T6G2E1, CANADA In the last decade, Direct Dark Matter searches has become a very active research program, spawning dozens of projects world wide and leading to contradictory results. It is on this stage that the Dark matter Experiment with liquid Argon and Pulse shape discrimination (DEAP) is about to enter. With a 3600 kg liquid argon target and a 1000 kg fiducial mass, it is designed to run background free during 3 years, reaching an unprecedented sensitivity of 10−46 cm2 for a WIMP mass of 100 GeV. In order to achieve this impressive feat, the collaboration followed a two-pronged approach: a careful selection of every material entering the construction of the detector in order to suppress the backgrounds, and optimum use of the pulse shape discrimination (PSD) technique to separate the nuclear recoils from the electronic recoils. Using the experience acquired ffrom the 7 kg-prototype DEAP-1, a 3600 kg detector is being completed at SNOLAB (Sudbury, CANADA) and is expected to start taking data in mid-2014. 1 Dark matter detection using liquid argon For decades, liquid argon (LAr) has been a candidate of choice for large scintillating detectors. It is easy to purify and boasts a high light yield, which makes it ideal for low background, low threshold experiments. The scintillating process involves the creation of excimer, either directly or through ionization/recombination. -
Science Vision Draft
A Science Vision for European Astronomy ASTRONET SVWG DRAFT December 19, 2006 ii Contents 1 Introduction 1 1.1 The role of science in society . ............................. 1 1.2 Astronomy . ........................................ 3 1.3 Predicting the future .................................... 5 1.4 This document ........................................ 6 2 Do we understand the extremes of the Universe? 7 2.1 How did the Universe begin? . ............................. 8 2.1.1 Background . .................................... 8 2.1.2 Key observables . ............................. 9 2.1.3 Future experiments . ............................. 9 2.2 What is dark matter and dark energy? . ......................... 10 2.2.1 Current status .................................... 10 2.2.2 Experimental signatures . ............................. 11 2.2.3 Future strategy . ............................. 12 2.3 Can we observe strong gravity in action? . ..................... 13 2.3.1 Background . .................................... 13 2.3.2 Experiments . .................................... 15 2.4 How do supernovae and gamma-ray bursts work? . ................. 17 2.4.1 Current status .................................... 17 2.4.2 Key questions .................................... 18 2.4.3 Future experiments . ............................. 19 2.5 How do black hole accretion, jets and outflows operate? . .......... 20 2.5.1 Background . .................................... 20 2.5.2 Experiments . .................................... 21 2.6 What do we learn -
27. Dark Matter
1 27. Dark Matter 27. Dark Matter Written August 2019 by L. Baudis (Zurich U.) and S. Profumo (UC Santa Cruz). 27.1 The case for dark matter Modern cosmological models invariably include an electromagnetically close-to-neutral, non- baryonic matter species with negligible velocity from the standpoint of structure formation, gener- ically referred to as “cold dark matter” (CDM; see The Big-Bang Cosmology—Sec. 22 of this Re- view). For the benchmark ΛCDM cosmology adopted in the Cosmological Parameters—Sec. 25.1 of this Review, the DM accounts for 26.4% of the critical density in the universe, or 84.4% of the total matter density. The nature of only a small fraction, between at least 0.5% (given neutrino os- cillations) and at most 1.6% (from combined cosmological constraints), of the non-baryonic matter content of the universe is known: the three Standard Model neutrinos (see the Neutrino Masses, Mixing, and Oscillations—Sec. 14 of this Review) ). The fundamental makeup of the large majority of the DM is, as of yet, unknown. Assuming the validity of General Relativity, DM is observed to be ubiquitous in gravitation- ally collapsed structures of size ranging from the smallest known galaxies [1] to galaxies of size comparable to the Milky Way [2], to groups and clusters of galaxies [3]. The mass-to-light ratio is observed to saturate at the largest collapsed scales to a value indicative, and close to, what inferred from other cosmological observations for the universe as a whole [4]. In such collapsed structures, the existence of DM is inferred directly using tracers of mass enclosed within a certain radius such as stellar velocity dispersion, rotation curves in axisymmetric systems, the virial theorem, gravitational lensing, and measures of the amount of non-dark, i.e.