Characterization of Durham Virus, a Novel Rhabdovirus That Encodes Bothacand SH Protein

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Durham Virus, a Novel Rhabdovirus That Encodes Bothacand SH Protein Virus Research 155 (2011) 112–122 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Characterization of Durham virus, a novel rhabdovirus that encodes bothaCand SH protein A.B. Allison a,∗, G. Palacios b, A. Travassos da Rosa c, V.L. Popov c,L.Luc, S.Y. Xiao c,d, K. DeToy b, T. Briese b, W.I. Lipkin b, M.K. Keel a, D.E. Stallknecht a, G.R. Bishop e, R.B. Tesh c a Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States b Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, United States c Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, United States d Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, United States e Mississippi River Field Institute, National Audubon Society, 1208 Washington St., Vicksburg, MS 39183, United States article info abstract Article history: The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are dis- Received 13 May 2010 tributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of Received in revised form the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at 10 September 2010 both the antigenic and genetic level; hence, the phylogenetic relationships between many of the verte- Accepted 14 September 2010 brate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from Available online 21 September 2010 the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was Keywords: Rhabdovirus serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus Durham virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed Vesiculovirus in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the C protein phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix Small hydrophobic protein and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and Overprinting polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morpholog- ical, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. © 2010 Elsevier B.V. All rights reserved. 1. Introduction are spread by direct contact without any apparent arthropod com- ponent. The Rhabdoviridae is one of the four families classified within Of the presently recognized 114 vertebrate rhabdoviruses, 52 the order Mononegavirales (Pringle and Easton, 1997). The rhab- are classified as members (or tentative members) of one of the four dovirus genome, like those of paramyxoviruses, filoviruses, and existing genera (Tordo et al., 2005). Of the 62 remaining unclassi- Borna disease virus (BDV), is a non-segmented, single strand of fied vertebrate rhabdoviruses, 20 are placed within six serogroups negative-sense RNA, although the genome of Orchid fleck virus based on antigenic cross-reactivity, while 42 remain unassigned (OFV) has been proposed to be bipartite (Kondo et al., 2006). Six to any existing serogroup. Although the antigenic relationships genera are currently recognized within the Rhabdoviridae, four for many vertebrate rhabdoviruses have been determined through of which, Vesiculovirus, Lyssavirus, Ephemerovirus, and Novirhab- serological studies (Tesh et al., 1983; Calisher et al., 1989), the dovirus, infect vertebrates, while members of Cytorhabdovirus and phylogenetic relationships between many of these viruses remain Nucleorhabdovirus infect plants (Tordo et al., 2005). Many of the unknown due to the lack of available sequence data. Additionally, vertebrate and plant rhabdoviruses replicate in, and are transmit- as many of the unclassified vertebrate rhabdoviruses are repre- ted by, arthropod vectors, although some viruses (e.g., lyssaviruses) sented by only a single or few isolates, the normal host associations, transmission cycles, and geographical distributions of these viruses remain obscure. ∗ The prototypical rhabdovirus genome consists of five genes Corresponding author. Tel.: +1 706 542 1741; fax: +1 706 542 5865. E-mail address: [email protected] (A.B. Allison). [nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein 0168-1702/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.virusres.2010.09.007 A.B. Allison et al. / Virus Research 155 (2011) 112–122 113 (G), polymerase (L)] that are sequentially transcribed in decreasing 2.2. Virus isolation molar abundance according to their placement in the genome (i.e., 3-N>P>M>G>L-5)(Abraham and Banerjee, 1976). The genomic For virus isolation, samples of brain and liver (∼0.5 cm3) were 3 and 5 ends contain the untranslated leader and trailer sequences, mechanically homogenized in 650 ␮L of medium [1× minimum respectively, which exhibit some degree of terminal complemen- essential medium (MEM), 2.2 g/l NaHCO3, 20% fetal bovine serum tarity (Wertz et al., 1994; Rose and Whitt, 2001). Each of the five (FBS), and 4× antibiotic/antimycotic solution (400 units/mL peni- individual genes is flanked by transcription initiation and termi- cillin, 400 ␮g/mL streptomycin, 1 ␮g/mL amphotericin B) (Sigma, nation/polyadenylation signals, which may be conserved among St. Louis, MO)]. Homogenized tissues were centrifuged (6700 × g members of the same genus (Fu, 2005). Between each transcrip- for 10 min) to pellet debris, and an aliquot (100 ␮L) of clarified tion unit (gene and associated flanking signals) is a nontranscribed supernatant was used to inoculate 2-day-old cultures of Vero cells intergenic region that usually contains a single or dinucleotide in a 12-well plate format. For initial characterization, stock virus sequence [e.g., G or GG in Tupaia rhabdovirus (TUPV)] (Springfeld was inoculated into three 75 cm2 flasks of Vero cells at an m.o.i. et al., 2005). of 0.1 and virus was precipitated on day 4 post-inoculation with In addition to the five structural proteins (N–P–M–G–L) nor- polyethylene glycol (PEG) as described by Killington et al. (1996). mally encoded in the genome, a number of additional proteins, cDNA synthesis from extracted RNA was carried out using random either encoded in the same or overlapping open reading frame decamers, ImProm-II reverse transcriptase (Promega, Madison, (ORF) within an existing gene, or in a novel ORF, have been iden- WI), and GoTaq Flexi DNA polymerase (Promega), according to the tified in numerous rhabdoviruses. For instance, Wongabel virus manufacturer’s instructions. Amplicons were excised and purified (WONV), a putative member of the Hart Park serogroup, has from agarose using a QIAquick Gel Extraction Kit (Qiagen), cloned recently been demonstrated to encode three novel genes (U1, U2, using a PCR CloningPlus Kit (Qiagen), and subsequently purified U3) from three consecutive ORFs located between the P and M using a QIAprep Spin Miniprep Kit (Qiagen) according to the manu- genes, in addition to two genes (U4, U5) in overlapping ORFs facturer’s instructions. Sequencing of clones was performed using of the N and G genes, respectively (Bourhy et al., 2005; Gubala an Applied Biosystems Inc. 3100 Genetic Analyzer (Foster City, CA, et al., 2008). Other gene products in addition to N–P–M–G–L USA). have also been described for vesiculoviruses (Spiropoulou and Nichol, 1993; Springfeld et al., 2005), ephemeroviruses (Walker 2.3. Transmission electron microscopy et al., 1992; Wang et al., 1994), lyssaviruses (Chenik et al., 1995), novirhabdoviruses (Kurath and Leong, 1985; Alonso et al., 2004), Infected monolayers of Vero cells were fixed in a mixture of nucleorhabdoviruses (Scholthof et al., 1994; Huang et al., 2003), 2.5% formaldehyde and 0.1% glutaraldehyde containing 0.03% trini- and cytorhabdoviruses (Tao et al., 2000; Dietzgen et al., 2006). trophenol and 0.03% CaCl2 in 0.05 M cacodylate buffer. Cells were As the genomic sequences of a number of both vertebrate and scraped off the plastic, pelleted in buffer, post-fixed in 1% OsO4 in plant rhabdoviruses have become available in recent years, it 0.1 M cacodylate buffer, stained en bloc with 2% aqueous uranyl appears that many members of the family do not conform to acetate, dehydrated in ethanol, and embedded in Poly/Bed 812 the prototypical N–P–M–G–L genomic organization. Currently, the (Polysciences, Warrington, PA). Ultrathin sections were cut on a function of most of these novel genes remains unknown (Fu, Reichert-Leica Ultracut S ultramicrotome, stained with 0.4% lead 2005). citrate, and examined in a Philips 201 electron microscope at 60 kV. In November 2005, a novel rhabdovirus was isolated from the brain of a moribund American coot (Fulica americana) found in 2.4. Experimental infection of newborn mice Durham County, North Carolina. The virus was provisionally named Durham virus (DURV), after the county in North
Recommended publications
  • Virus Replication
    Introduction • Encompasses > 150 viruses Rhabdoviridae •Rabies –only important human Brian Wells pathogen • One of the most lethal of all infectious diseases History History • Adapted from Latin meaning “to rage” • 1885 – Louis Pasteur – rabies vaccine • Greeks – lyssa – “frenzy” – Attenuated form of virus produced by inoculation of rabbit spinal cord • Rabies represents one of the oldest and most feared diseases • Occurs throughout the world except in Australia, Japan, Great Britain, • Recognized in Egypt before 2300 B.C. and islands such as Hawaii • Well described by Aristotle • “Reportable” disease • Iliad – “canine madness” Taxonomy Viral Structure • 3 Genera – Ephemerovirus, Lyssavirus, • 170 nm x 70 nm Vesiculovirus • Bullet-shaped enveloped virion • Infect vertebrates, invertebrates, and – Glycoprotein peplomers & matrix protein plants under envelope • Genus Lyssavirus comprises rabies • Helical symmetry virus and 3 rabies-like viruses • Linear minus sense ssRNA – 11-12 kb • Each capable of causing rabies-like • Glycoprotein spikes in outer membrane disease in humans bilayer 1 Virus Replication • Receptor-mediated endocytosis • Uncoat and release nucleocapsid into cytoplasm • Production of 5 monocistronic mRNA species - N, P (NS), M, G, L – by L+P viral transcriptase • Each mRNA capped and poly-A’ed • dsRNA replicative intermediate Virus Replication Virus Replication • N+P+L and (-) ssRNA form core • M forms matrix around core • Virus buds from glycoprotein area of plasma membrane and thus acquires its envelope Transmission • Unstable
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Characterization of Perch Rhabdovirus (PRV) in Farmed Grayling Thymallus Thymallus
    Vol. 106: 117–127, 2013 DISEASES OF AQUATIC ORGANISMS Published October 11 doi: 10.3354/dao02654 Dis Aquat Org FREEREE ACCESSCCESS Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus Tuija Gadd1,*, Satu Viljamaa-Dirks2, Riikka Holopainen1, Perttu Koski3, Miia Jakava-Viljanen1,4 1Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland 2Finnish Food Safety Authority Evira, Neulaniementie, 70210 Kuopio, Finland 3Finnish Food Safety Authority Evira, Elektroniikkatie 3, 90590 Oulu, Finland 4Ministry of Agriculture and Forestry, PO Box 30, 00023 Government, Finland ABSTRACT: Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thy- mallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Viro- logical investigation detected an infection with an unknown rhabdovirus. Based on the entire gly- coprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike.
    [Show full text]
  • Characterization of Farmington Virus, a Novel Virus from Birds That Is Distantly Related to Members of the Family Rhabdoviridae
    Palacios et al. Virology Journal 2013, 10:219 http://www.virologyj.com/content/10/1/219 RESEARCH Open Access Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae Gustavo Palacios1†, Naomi L Forrester2,3,4†, Nazir Savji5,7†, Amelia P A Travassos da Rosa2, Hilda Guzman2, Kelly DeToy5, Vsevolod L Popov2,4, Peter J Walker6, W Ian Lipkin5, Nikos Vasilakis2,3,4 and Robert B Tesh2,4* Abstract Background: Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings: Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions: In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. Keywords: Farmington virus (FARV), Family Rhabdoviridae, Next generation sequencing, Phylogeny Background Results Therhabdovirusesarealargeanddiversegroupofsingle- Growth characteristics stranded, negative sense RNA viruses that infect a wide Three litters of newborn (1–2 day old) ICR mice with aver- range of vertebrates, invertebrates and plants [1]. The family agesizeof10pupswereinoculated intracerebrally (ic) with Rhabdoviridae is currently divided into nine approved ge- 15–20 μl, intraperitoneally (ip) with 100 μlorsubcutane- nera (Vesiculovirus, Perhavirus, Ephemerovirus, Lyssavirus, ously (sc) with 100 μlofastockofVero-grownFARV(CT Tibrovirus, Sigmavirus, Nucleorhabdovirus, Cytorhabdovirus AN 114) virus containing approximately 107 plaque and Novirhabdovirus);however,alargenumberofanimal forming units (PFU) per ml.
    [Show full text]
  • X-Ray Structure of the Arenavirus Glycoprotein GP2 in Its Postfusion Hairpin Conformation
    Corrections NEUROBIOLOGY Correction for “High-resolution structure of hair-cell tip links,” The authors note that Figure 3 appeared incorrectly. The by Bechara Kachar, Marianne Parakkal, Mauricio Kurc, Yi-dong corrected figure and its legend appear below. This error does not Zhao, and Peter G. Gillespie, which appeared in issue 24, affect the conclusions of the article. November 21, 2000, of Proc Natl Acad Sci USA (97:13336– 13341; 10.1073/pnas.97.24.13336). CORRECTIONS Fig. 3. Upper and lower attachments of the tip link. (A and B) Freeze-etch images of tip-link upper insertions in guinea pig cochlea (A) and (left to right) two from guinea pig cochlea, two from bullfrog sacculus, and two from guinea pig utriculus (B). Each example shows pronounced branching. (C and D) Freeze- etch images of the tip-link lower insertion in stereocilia from bullfrog sacculus (C) and guinea pig utriculus (D); multiple strands (arrows) arise from the stereociliary tip. (E) Freeze-fracture image of stereociliary tips from bullfrog sacculus; indentations at tips are indicated by arrows. (Scale bars: A = 100 nm, B = 25 nm; C–E = 100 nm.) www.pnas.org/cgi/doi/10.1073/pnas.1311228110 www.pnas.org PNAS | July 16, 2013 | vol. 110 | no. 29 | 12155–12156 Downloaded by guest on September 28, 2021 BIOCHEMISTRY BIOPHYSICS AND COMPUTATIONAL BIOLOGY, STATISTICS Correction for “X-ray structure of the arenavirus glycoprotein Correction for “Differential principal component analysis of GP2 in its postfusion hairpin conformation,” by Sébastien Igo- ChIP-seq,” by Hongkai Ji, Xia Li, Qian-fei Wang, and Yang net, Marie-Christine Vaney, Clemens Vonhrein, Gérard Bri- Ning, which appeared in issue 17, April 23, 2013, of Proc Natl cogne, Enrico A.
    [Show full text]
  • MARBURG HEMORRHAGIC FEVER (Marburg HF)
    MARBURG HEMORRHAGIC FEVER (Marburg HF) REPORTING INFORMATION • Class A: Report immediately via telephone the case or suspected case and/or a positive laboratory result to the local public health department where the patient resides. If patient residence is unknown, report immediately via telephone to the local public health department in which the reporting health care provider or laboratory is located. Local health departments should report immediately via telephone the case or suspected case and/or a positive laboratory result to the Ohio Department of Health (ODH). • Reporting Form(s) and/or Mechanism: o Immediately via telephone. o For local health departments, cases should also be entered into the Ohio Disease Reporting System (ODRS) within 24 hours of the initial telephone report to the ODH. • Key fields for ODRS reporting include: import status (whether the infection was travel-associated or Ohio-acquired), date of illness onset, and all the fields in the Epidemiology module. AGENT Marburg hemorrhagic fever is a rare, severe type of hemorrhagic fever which affects both humans and non-human primates. Caused by a genetically unique zoonotic RNA virus of the family Filoviridae, its recognition led to the creation of this virus family. The five species of Ebola virus are the only other known members of the family Filoviridae. Marburg virus was first recognized in 1967, when outbreaks of hemorrhagic fever occurred simultaneously in laboratories in Marburg and Frankfurt, Germany and in Belgrade, Yugoslavia (now Serbia). A total of 31 people became ill, including laboratory workers as well as several medical personnel and family members who had cared for them.
    [Show full text]
  • Borna Disease Virus Infection in Animals and Humans
    Synopses Borna Disease Virus Infection in Animals and Humans Jürgen A. Richt,* Isolde Pfeuffer,* Matthias Christ,* Knut Frese,† Karl Bechter,‡ and Sibylle Herzog* *Institut für Virologie, Giessen, Germany; †Institut für Veterinär-Pathologie, Giessen, Germany; and ‡Universität Ulm, Günzburg, Germany The geographic distribution and host range of Borna disease (BD), a fatal neuro- logic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell–mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuro- psychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephali- tis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious BDV in peripheral blood cells of psychiatric patients. Borna disease (BD), first described more predilection for the gray matter of the cerebral than 200 years ago in southern Germany as a hemispheres and the brain stem (8,19).
    [Show full text]
  • 1 Lujo Viral Hemorrhagic Fever: Considering Diagnostic Capacity And
    1 Lujo Viral Hemorrhagic Fever: Considering Diagnostic Capacity and 2 Preparedness in the Wake of Recent Ebola and Zika Virus Outbreaks 3 4 Dr Edgar Simulundu1,, Prof Aaron S Mweene1, Dr Katendi Changula1, Dr Mwaka 5 Monze2, Dr Elizabeth Chizema3, Dr Peter Mwaba3, Prof Ayato Takada1,4,5, Prof 6 Guiseppe Ippolito6, Dr Francis Kasolo7, Prof Alimuddin Zumla8,9, Dr Matthew Bates 7 8,9,10* 8 9 1 Department of Disease Control, School of Veterinary Medicine, University of Zambia, 10 Lusaka, Zambia 11 2 University Teaching Hospital & National Virology Reference Laboratory, Lusaka, Zambia 12 3 Ministry of Health, Republic of Zambia 13 4 Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis 14 Control, Sapporo, Japan 15 5 Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 16 Japan 17 6 Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy 18 7 World Health Organization, WHO Africa, Brazzaville, Republic of Congo 19 8 Department of Infection, Division of Infection and Immunity, University College London, 20 U.K 21 9 University of Zambia – University College London Research & Training Programme 22 (www.unza-uclms.org), University Teaching Hospital, Lusaka, Zambia 23 10 HerpeZ (www.herpez.org), University Teaching Hospital, Lusaka, Zambia 24 25 *Corresponding author: Dr. Matthew Bates 26 Address: UNZA-UCLMS Research & Training Programme, University Teaching Hospital, 27 Lusaka, Zambia, RW1X 1 28 Email: [email protected]; Phone: +260974044708 29 30 2 31 Abstract 32 Lujo virus is a novel old world arenavirus identified in Southern Africa in 2008 as the 33 cause of a viral hemorrhagic fever (VHF) characterized by nosocomial transmission 34 with a high case fatality rate of 80% (4/5 cases).
    [Show full text]
  • Past, Present, and Future of Arenavirus Taxonomy
    Arch Virol DOI 10.1007/s00705-015-2418-y VIROLOGY DIVISION NEWS Past, present, and future of arenavirus taxonomy Sheli R. Radoshitzky1 · Yīmíng Bào2 · Michael J. Buchmeier3 · Rémi N. Charrel4,18 · Anna N. Clawson5 · Christopher S. Clegg6 · Joseph L. DeRisi7,8,9 · Sébastien Emonet10 · Jean-Paul Gonzalez11 · Jens H. Kuhn5 · Igor S. Lukashevich12 · Clarence J. Peters13 · Victor Romanowski14 · Maria S. Salvato15 · Mark D. Stenglein16 · Juan Carlos de la Torre17 © Springer-Verlag Wien 2015 Abstract Until recently, members of the monogeneric Arenaviridae to accommodate reptilian arenaviruses and family Arenaviridae (arenaviruses) have been known to other recently discovered mammalian arenaviruses and to infect only muroid rodents and, in one case, possibly improve compliance with the Rules of the International phyllostomid bats. The paradigm of arenaviruses exclu- Code of Virus Classification and Nomenclature (ICVCN). sively infecting small mammals shifted dramatically when PAirwise Sequence Comparison (PASC) of arenavirus several groups independently published the detection and genomes and NP amino acid pairwise distances support the isolation of a divergent group of arenaviruses in captive modification of the present classification. As a result, the alethinophidian snakes. Preliminary phylogenetic analyses current genus Arenavirus is replaced by two genera, suggest that these reptilian arenaviruses constitute a sister Mammarenavirus and Reptarenavirus, which are estab- clade to mammalian arenaviruses. Here, the members of lished to accommodate mammalian and reptilian the International Committee on Taxonomy of Viruses arenaviruses, respectively, in the same family. The current (ICTV) Arenaviridae Study Group, together with other species landscape among mammalian arenaviruses is experts, outline the taxonomic reorganization of the family upheld, with two new species added for Lunk and Merino Walk viruses and minor corrections to the spelling of some names.
    [Show full text]
  • Study of Chikungunya Virus Entry and Host Response to Infection Marie Cresson
    Study of chikungunya virus entry and host response to infection Marie Cresson To cite this version: Marie Cresson. Study of chikungunya virus entry and host response to infection. Virology. Uni- versité de Lyon; Institut Pasteur of Shanghai. Chinese Academy of Sciences, 2019. English. NNT : 2019LYSE1050. tel-03270900 HAL Id: tel-03270900 https://tel.archives-ouvertes.fr/tel-03270900 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 341 – E2M2 Evolution, Ecosystèmes, Microbiologie, Modélisation Spécialité de doctorat : Biologie Discipline : Virologie Soutenue publiquement le 15/04/2019, par : Marie Cresson Study of chikungunya virus entry and host response to infection Devant le jury composé de : Choumet Valérie - Chargée de recherche - Institut Pasteur Paris Rapporteure Meng Guangxun - Professeur - Institut Pasteur Shanghai Rapporteur Lozach Pierre-Yves - Chargé de recherche - CHU d'Heidelberg Rapporteur Kretz Carole - Professeure - Université Claude Bernard Lyon 1 Examinatrice Roques Pierre - Directeur de recherche - CEA Fontenay-aux-Roses Examinateur Maisse-Paradisi Carine - Chargée de recherche - INRA Directrice de thèse Lavillette Dimitri - Professeur - Institut Pasteur Shanghai Co-directeur de thèse 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]
  • Characteristics of Three Rhabdoviruses from Snakehead Fish Ophicephalus Striatus
    DISEASES OF AQUATIC ORGANISMS Vol. 13: 89-94, 1992 Published July 23 Dis. aquat. Org. l Characteristics of three rhabdoviruses from snakehead fish Ophicephalus striatus 'Department of Microbiology, Oregon State University, Nash Hall 220, Corvallis, Oregon 97331-3804, USA Oregon Department of Fish and Wildlife, Department of Microbiology, Oregon State University, Nash Hall 220, Corvallis, Oregon 97331-3804, USA Laboratory for Fish Disease Research, Department of Microbiology, Oregon State University, Mark 0. Hatfield Marine Science Center, Newport, Oregon 97365-5296, USA ABSTRACT: Protein profiles and serological characteristics of 3 rhabdoviruses from snakehead fish Ophicephalus striatus were determined and compared to 5 known fish rhabdoviruses and 1 mammalian rhabdovirus. The snakehead rhabdovirus (SHRV) exhibited a bacilliform morphology and a Lyssavirus-type protein profile. The ulcerative disease rhabdovirus isolates (UDRV-BP and UDRV-19) were indistinguishable and exhibited bullet-shaped morphology and a Vesiculovirus-type protein profile. At present, none of the 3 viruses is known to be the cause of disease in any species of fish. UDRV-BP and UDRV-19 were serologically identical but distinct from SHRV and from 5 other fish rhabdoviruses. SHRV was serologically unrelated to any of the fish rhabdoviruses examined. INTRODUCTION have been conducted. In this report, the morphology, structural proteins and serological characteristics of Since 1980, a severe epizootic disease, often charac- 3 isolates (SHRV, UDRV-BP and UDRV-19) are de- terized by necrotic ulcerations, has occurred among scribed and compared to each other and to other both wild and cultured snakehead fish Ophicephalus rhabdoviruses. striatus in southeast Asia, Malaysia, Thailand, Lao People's Democratic Republic and Burma (Boonyarat- palin 1989).
    [Show full text]
  • Virus Pathogen Resource (Vipr) March 2019 New Features in Vipr
    Virus Pathogen Resource (ViPR) March 2019 New Features in ViPR New Genome Annotation Tool New RNA Structure Data VIGOR4, a new genome annotation tool is In collaboration with the NIAID-funded Loading Virus Pathogen Database and AnalysisAbout Resource Us Community (ViPR)... Announcements Links Resources Support now available on the Zika virus portal. VIGOR4 Orfeome project, we have released new RNA News & Events (Viral Genome ORF Reader) is developed by structure data for MERS-CoV on the ViPR • June 9-13, 2019: Positive Strand J. Craig Venter Institute. VIGOR 4 predicts site. This new dataset is generated as part RNA Viruses, Killarney, Ireland. Oral protein sequences encoded in a viral of the effort to identify, characterize and presentation. genomes by sequences similarity searching then determine the role of uncharacterized against curated viral protein databases. viral genesSearch that may function to auto- Analyze• July 21-25, 2019: Annual Conference Save to Workbench regulate virus replication efficiency and host In the next few releases, we will enhance the Search our comprehensive database for: Analyzeon Intelligent data online: Systems for Molecular Use your workbench to: responses. The structure data is predicted Biology, Basel, Switzerland. current VIGOR4 implementation and make it Sequences & strains Sequence Alignment Store and share data available for other virus familes. using SHAPE chemical reactivity data (PMID: 22475022Immune). epitopes • AugustPhylogenetic 4-9, T2019:ree 24th International Combine working sets 3D protein
    [Show full text]