Therapeutic Use of Medicinal Flora from Dune Cordon, Algeria

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Use of Medicinal Flora from Dune Cordon, Algeria © 2018 Journal of Pharmacy & Pharmacognosy Research, 6 (5), 358-373, 2018 ISSN 0719-4250 http://jppres.com/jppres Original Article | Artículo Original Therapeutic use of spontaneous medicinal flora from an extreme environment (dune cordon) in Djelfa region, Algeria [Uso terapéutico de la flora medicinal espontánea de un entorno extremo (cordón dunar) en la región de Djelfa, Argelia] Benalia Yabrir1*, Mostefa Touati1, Benzian Adli1, Elhadi Bezini1, Mounir Ghafoul1, Saoussane Khalifa2, Brahim Guit1 1Faculty of Nature Sciences and Life, University of Djelfa, 17000 Djelfa, Algeria. 2Faculty of Nature Sciences and Life, University of Bordj-Bou Arréridj, 34000 Bordj-Bou Arréridj, Algeria. *E-mail: [email protected]; [email protected] Abstract Resumen Context: In some extreme environments such as dune cordon in the Contexto: En algunos entornos extremos, como el cordón de dunas en la region of Djelfa, the ability of species to adapt to extreme conditions, región de Djelfa, la capacidad de las especies para adaptarse a especially climatic stresses, appears to be highly developed. condiciones extremas, especialmente las tensiones climáticas, parece Notwithstanding this importance from an ecophysiological point of estar muy desarrollada. A pesar de esta importancia desde un punto de view, the plant genetic resources of the Algerian steppe are very little vista ecofisiológico, los recursos fitogenéticos de la estepa argelina son known and especially poorly valued. muy poco conocidos y especialmente poco valorados. Aims: To inventorying the spontaneous species in an extreme "dune Objetivos: Hacer un inventario de las especies espontáneas en un entorno cordon" environment of the Algerian steppe and to collect information extremo del "cordón dunar" de la estepa argelina y recopilar on the ancestral know-how of the local populations in terms of información sobre los conocimientos ancestrales de las poblaciones therapeutic use of these species. locales en términos del uso terapéutico de estas especies. Methods: Foremost, a herbarium has been made which includes all Métodos: En primer lugar, se ha hecho un herbario que incluye todas las species inventoried in dune cordon, then an ethnobotanical survey especies inventariadas en el cordón dunar, luego se realizó una encuesta materialized by a direct questionnaire was conducted with different etnobotánica materializada mediante un cuestionario directo con actors involved in the field of medicinal plants. It concerns the diferentes actores involucrados en el campo de las plantas medicinales. traditional use of these species. Se declarael uso tradicional de estas especies. Results: Seventeen plants (20%) of the listed plant species have been Resultados: Diecisiete plantas (20%) de las especies de plantas listadas recognized and identified as medicinal species. These plants belong to han sido identificadas e identificadas como especies medicinales. Estas 13 families of which the Lamiaceae family is the most represented, plantas pertenecen a 13 familias de las cuales Lamiaceae es la más followed by Asteraceae and Poaceae. Several diseases are treated by these representada, seguida por Asteraceae y Poaceae. Estas especies son species by local populations, some have a definite therapeutic use while utilizadas por poblaciones locales en el tratamiento de varias others are used in the treatment of several diseases. The most enfermedades como reumatismo, diabetes, dolor dental, fiebre y función incriminated pathologies concern rheumatism, diabetes, dental pain, renal. Las hojas son las partes más utilizadas y la decocción como el fever and renal function. Leaves are most used with decoction as the modo de preparación más utilizado. most used mode. Conclusiones: Los resultados del estudio mostraron que el cordón dunar Conclusions: Results of the study showed that dune cordon contains a contiene una amplia variedad de plantas espontáneas que tienen un wide variety of spontaneous plants, which have a beneficial interest. It interés beneficioso. También indicó el vínculo entre los recursos also indicated the link between natural resources and humans and the naturales y los humanos y el uso terapéutico de estas especies para therapeutic use of these species for profit by local population. The rich beneficio de la población local. El rico conocimiento etno-farmacológico ethno-pharmacological knowledge of this population must be preserved de esta población debe ser preservado y valorado. Se necesita de and valued. A phytochemical screening and biological investigation are investigaciones fitoquímica y biológica para probar este conocimiento needed to test this ancestral know-how. ancestral. Keywords: Algerian steppe; ancestral know-how; ethnobotany survey; Palabras Clave: conocimiento ancestral; encuesta etnobotánica; estepa remedy. argelina; remedio. ARTICLE INFO Received: February 20, 2018. Received in revised form: June 28, 2018. Accepted: July 9, 2018. Available Online: July 24, 2018. Declaration of interests: The authors declare no conflict of interest. Funding: This study was supported by the Algerian Ministry of Higher Education and Scientific Research (Project CNEPRU code D04N01UN170120150002). _____________________________________ Yabrir et al. Therapeutic use of medicinal flora from dune cordon, Algeria INTRODUCTION threatened by human uses and practices (Snoussi et al., 2003). Synthetic products widely used, both in medi- cation and in the food industry, currently raise Although the region is mainly pastoral, the an- several questions as to their efficiency and safety. cestral knowledge of local populations attests to The return to nature is necessary then. Thus, me- the importance and efficiency of use of local plant dicinal plants are starting to gain interest as a po- genetic resources for various purposes (food, con- tential source of bioactive natural molecules. They diments, aromatics, medicinal, among others). are being studied for their possible use as an alter- Therefore, the know-how of local population, will native for the treatment of several diseases. In ad- be considered as a starter for the pharmacological dition, the search for plants of therapeutic interest and phytochemical investigation of medicinal is seen to take several general paths, among others plants. Thus, the best use of a plant would be one the empirical method (use of plants in folk medi- that preserves all its properties while allowing the cine, observation of certain ancestral practices) extraction and assimilation of active ingredients (Paris and Hurabielle, 1981). So, ethnobotany is (Dextreit, 1984) based on fundamental knowledge of plants and Several ethnobotanical studies were carried out human societies (Mousnier, 2013). according to various aims, some of them targeting The medicinal and aromatic plants that are the a specific pathology treated by the medicinal vectors of these substances are widespread in na- plants of the study area (El Rhaffari et al., 2002), ture. Algeria, with its different bioclimatic stages others aimed at the inventory and therapeutic use and the nature of its soils, shelters a whole range of medicinal plants by indigenous populations in of natural species with a large and varied phyto- the investigation areas (Salhi et al., 2010; genetic range and thus testifies to an undeniable Benkhnigue et al., 2011; Tahri et al., 2012; Daoudi floristic richness. The Algerian flora contains many et al., 2015; El Yahyaoui et al., 2015; Béné et al., economically important species. It has more than 2016; Mikou et al., 2016; Rhattas et al., 2016; Slima- 1000 species, subspecies and varieties with medic- ni et al., 2016). The Algerian pharmacopoeia is no inal properties (Chenouf, 2009). Among the Alge- exception to this rule (Maiza et al., 1993; Ham- rian geographical areas, the Algerian steppe is of miche and Maiza, 2006; Bouallala et al., 2014; Sarri particular importance both ecologically and eco- et al., 2014). To our knowledge no ethnobotanical nomically. Enjoying its privileged geographical study on the use of spontaneous plants of the dune position and immense space (9% of the total area cord in traditional therapy has been conducted of the country), it is characterized by an apprecia- before. In this sense, this work is part of a re- ble biological diversity. This is the result of an age- search-valorization and the objectives are to make old adaptation to particularly difficult agro- an inventory of the spontaneous species that shel- climatic conditions (Chenouf, 2009) especially in ters the dune environment of the Algerian steppe some extreme environments such as sebkhas and and then collect information on the know-how an- the dune cordon. cestral populations of local populations in the use of plant species of the region in the treatment of In these areas, the ability of species and genes various pathologies. to adapt to extreme conditions, especially climatic stresses, appears to be highly developed (Mélanie MATERIAL AND METHODS and Marc, 2002). Notwithstanding this importance Study area from an eco-physiological point of view, the plant genetic resources of the Algerian steppe are very The study area is located in the dune cordon at little known and especially poorly valued, if not 270 kilometers south of the capital Algiers at a place called El-Mesrane (region of Djelfa) whose http://jppres.com/jppres J Pharm Pharmacogn Res (2018) 6(5): 359 Yabrir et al. Therapeutic use of medicinal flora from dune cordon, Algeria geographical coordinates are Longitude: 3° 03’ E. surveys (position
Recommended publications
  • Assessment of the Physico-Chemical and Biological Quality of Surface Waters in Arid and Semi-Arid Regions of Algeria (North-Africa)
    Bull. Soc. zool. Fr., 2019, 144(4) : 157-178. Hydrobiologie ASSESSMENT OF THE PHYSICO-CHEMICAL AND BIOLOGICAL QUALITY OF SURFACE WATERS IN ARID AND SEMI-ARID REGIONS OF ALGERIA (NORTH-AFRICA) par Nassima SELLAM 1,4,*, Amador VIÑOLAS 2, Fatah ZOUGGAGHE 3,4 & Riadh MOULAÏ 4 An assessment of the physico-chemical and the biological quality of surface waters through the use of macroinvertebrates as bioindicators was conducted in two rivers in Algeria, located in semi-arid and arid regions. These are Wadi M’zi (Laghouat region) and Wadi Djedir (Djelfa region). The sampling strategy developed in this work is based on the analysis of the upstream and downstream waters of each watercourse. - 2- - 2+ Eleven physico-chemical parameters (T°C, pH, CE, OD, Cl , SO4 , NO3 , Salinity, Ca , 2+ - Mg and HCO3 ) were measured to establish a diagnosis of the state of health of these aquatic ecosystems. Macroinvertebrates were studied using kick-net sampling at eight study sites. The faunistic inventory of benthic macroinvertebrates identified 37 families, mostly represented by insect larvae (96%). Among these, Diptera and Ephemeroptera were the most dominant orders, with other groups being relatively poorly represented. The results obtained show that the physico-chemical quality of the water is slightly dete- riorated, but the quality is still evaluated as ‘good’ according to the biotic indices 1. Université d’Amar Thelidji. Faculté des Sciences. Département de Biologie. 03000 Laghouat. Algérie. 2. Museu de Ciències Naturals de Barcelona. Laboratori de Natura. Collecció d’artròpodes. Passeig Picasso s/n 08003 Barcelona. Catalunya. 3. Université AMO de Bouira. Faculté des Sciences de la Nature et la Vie et Sciences de la Terre.
    [Show full text]
  • Osmolyte Concentrations in Atriplex Halimus L
    Anales de Biología 33: 117-126, 2011 ARTICLE Osmolyte concentrations in Atriplex halimus L. and Atriplex canescens (Pursh) Nutt. adapted to salinity and low temperature (Chenopodiaceae) Miloud Aouissat1, David J. Walker2, Kheiria Hcini3, Moulay Belkhodja4 & Enrique Correal2 1 Département de Biologie, Faculté des Sciences et des Technologies: Université Dr Tahar Moulay. SAIDA 20000, Algérie. 2 Departamento de Recursos Naturales: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación Sericícola, Calle Mayor, s/n, La Alberca, 30150 Murcia, España. 3 Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université de Tunis 2092 El Manar, Tunisie. 4 Département de Biologie, Laboratoire de Physiologie Végétale, Faculté des Sciences Université d’Oran sénia, Algérie. Resumen Correspondence Concentración de osmolitos en Atriplex halimus L. y Atriplex K. Hcini canescens (Pursh) Nutt. adaptados a salinidad y bajas temperaturas E-mail: [email protected] (Chenopodiaceae) Received: 24 May 2010 En este trabajo hemos investigado los efectos de la tolerancia a la Accepted: 19 September 2011 congelación de Atriplex halimus y Atriplex canescens de diferentes po- Published on-line: 12 December 2011 blaciones de Argelia. La tolerancia al frío se determinó mediante ensa- yos de pérdida de electrolitos en hojas de plantas que crecieron duran- te tres meses en maceta más un mes de aclimatación al frío. Para A. halimus se determinó el efecto que producía el incremento de salini- dad en el suelo sobre la tolerancia al frío, comparando los niveles de cationes y osmolitos orgánicos en hojas de plantas que crecieron en soluciones salinas, con los de plantas que únicamente habían sido aclimatadas al frío.
    [Show full text]
  • Effect of Cement-Kiln Dust Pollution on the Vegetation in the Western Mediterranean Desert of Egypt
    World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:5, No:9, 2011 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt Amal, M. Fakhry, and M. M. Migahid Abstract—This study investigated the ecological effects of factories, especially down-wind areas, exhibit elevated pH particulate pollution from a cement factory on the vegetation in the levels which in turn affect vegetation growth, decreasing rates western Mediterranean coastal desert of Egypt. Variations in of photosynthesis, respiration, transpiration and growth rate vegetation, soil chemical characters, and some responses of Atriplex [6], [13], [14]. Dust accumulation from limestone cutting halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory seriously affects the vegetation composition of some plant between Burg El-Arab in the east and El-Hammam in the west. The communities on Abu-Sir ridge in the western desert of Egypt results showed an obvious decrease in vegetation diversity, in [15].The present study aims at investigating the ecological response to cement-kiln dust pollution, that accompanied by a high effect of cement-kiln dust pollution produced by a cement dominance attributed to the high contribution of Atriplex halimus. factory on the diversity of the surrounding natural vegetation Annual species were found to be more sensitive to cement dust in the Egyptian western Mediterranean region (between Burg pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were El-Arab and El-Hammam), and assessing the responses of increased greatly in response to cement dust pollution, and this was Atriplex halimus, as a dominant species in the study area, to accompanied by a reduction in the mature seeds and leaf-area of the such air pollutant.
    [Show full text]
  • Cuvier's Gazelle in Algeria
    Cuvier's gazelle in Algeria Koen de Smet Cuvier's gazelle Gazella cuvieri is endemic to North Africa and has been classified as Endangered by IUCN. Algeria holds most of the remnant population but little is known about its current status and distribution there. The author studied the gazelle between 1984 and 1988 and found that while populations have declined in some areas, at least 560 individuals survive, some in protected areas. Introduction where gazelles had been reported by a nation- al survey undertaken by the Algerian Forest The edmi or Cuvier's gazelle Gazella cuvieri is Service in 1983 or by other reliable persons. In a North African endemic, with its distribution all cases the habitat was described, the area limited to Morocco (including the Western searched for tracks and latrines, and local peo- Sahara), Algeria and Tunisia (Figure 1), ple were questioned to gain some idea of although De Beaux (1928) and Hufnagl (1980) group size and habits of the animals. believed that it also once existed in north-east- Furthermore, the regions where no informa- ern Libya. We knew very little about the tion was available but which were situated species in Algeria; it was considered to be within the geographical and ecological limits rare, but no information was available about of the species, were explored. Maps of north its numbers. The IUCN (1974) classified the Algeria were also examined for localities species as Endangered and believed that whose names referred to gazelles. Algeria held most of the remnant population. In addition, almost nothing was known about its whereabouts and its habitat preferences.
    [Show full text]
  • (Ammotragus Lervia) in Northern Algeria? Farid Bounaceur, Naceur Benamor, Fatima Zohra Bissaad, Abedelkader Abdi, Stéphane Aulagnier
    Is there a future for the last populations of Aoudad (Ammotragus lervia) in northern Algeria? Farid Bounaceur, Naceur Benamor, Fatima Zohra Bissaad, Abedelkader Abdi, Stéphane Aulagnier To cite this version: Farid Bounaceur, Naceur Benamor, Fatima Zohra Bissaad, Abedelkader Abdi, Stéphane Aulagnier. Is there a future for the last populations of Aoudad (Ammotragus lervia) in northern Algeria?. Pakistan Journal of Zoology, 2016, 48 (6), pp.1727-1731. hal-01608784 HAL Id: hal-01608784 https://hal.archives-ouvertes.fr/hal-01608784 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pakistan J. Zool., vol. 48(6), pp. 1727-1731, 2016. Is There a Future for the Last Populations of Aoudad (Ammotragus lervia) in Northern Algeria? Farid Bounaceur,1,* Naceur Benamor,1 Fatima Zohra Bissaad,2 Abedelkader Abdi1 and Stéphane Aulagnier3 1Research Team Conservation Biology in Arid and Semi Arid, Laboratory of Biotechnology and Nutrition in Semi-Arid. Faculty of Natural Sciences and Life, University Campus Karmane Ibn Khaldoun, Tiaret, Algeria 14000 2Laboratory Technologies Soft, Promotion, Physical Chemistry of Biological Materials and Biodiversity, Science Faculty, University M'Hamed Bougara, Article Information BP 35000 Boumerdes, Algeria Received 31 August 2015 3 Revised 25 February 2016 Behavior and Ecology of Wildlife, I.N.R.A., CS 52627, 31326 Accepted 23 April 2016 Castanet Tolosan Cedex, France Available online 25 September 2016 Authors’ Contribution A B S T R A C T FB conceived and designed the study.
    [Show full text]
  • Slender-Horned Gazelle Gazella Leptoceros Conservation Strategy 2020-2029
    Slender-horned Gazelle Gazella leptoceros Conservation Strategy 2020-2029 Slender-horned Gazelle (Gazella leptoceros) Slender-horned Gazelle (:Conservation Strategy 2020-2029 Gazella leptoceros ) :Conservation Strategy 2020-2029 Conservation Strategy for the Slender-horned Gazelle Conservation Strategy for the Slender-horned Conservation Strategy for the Slender-horned The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of any participating organisation concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations. Compiled and edited by David Mallon, Violeta Barrios and Helen Senn Contributors Teresa Abaígar, Abdelkader Benkheira, Roseline Beudels-Jamar, Koen De Smet, Husam Elalqamy, Adam Eyres, Amina Fellous-Djardini, Héla Guidara-Salman, Sander Hofman, Abdelkader Jebali, Ilham Kabouya-Loucif, Maher Mahjoub, Renata Molcanova, Catherine Numa, Marie Petretto, Brigid Randle, Tim Wacher Published by IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland, Edinburgh, United Kingdom Copyright ©2020 IUCN SSC Antelope Specialist Group Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Recommended citation IUCN SSC ASG and RZSS. 2020. Slender-horned Gazelle (Gazella leptoceros): Conservation strategy 2020-2029. IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland.
    [Show full text]
  • Panthera Pardus) Range Countries
    Profiles for Leopard (Panthera pardus) Range Countries Supplemental Document 1 to Jacobson et al. 2016 Profiles for Leopard Range Countries TABLE OF CONTENTS African Leopard (Panthera pardus pardus)...................................................... 4 North Africa .................................................................................................. 5 West Africa ................................................................................................... 6 Central Africa ............................................................................................. 15 East Africa .................................................................................................. 20 Southern Africa ........................................................................................... 26 Arabian Leopard (P. p. nimr) ......................................................................... 36 Persian Leopard (P. p. saxicolor) ................................................................... 42 Indian Leopard (P. p. fusca) ........................................................................... 53 Sri Lankan Leopard (P. p. kotiya) ................................................................... 58 Indochinese Leopard (P. p. delacouri) .......................................................... 60 North Chinese Leopard (P. p. japonensis) ..................................................... 65 Amur Leopard (P. p. orientalis) ..................................................................... 67 Javan Leopard
    [Show full text]
  • Gazella Leptoceros
    Gazella leptoceros Tassili N’Ajjer : Erg Tihodaïne. Algeria. © François Lecouat Pierre Devillers, Roseline C. Beudels-Jamar, , René-Marie Lafontaine and Jean Devillers-Terschuren Institut royal des Sciences naturelles de Belgique 71 Diagram of horns of Rhime (a) and Admi (b). Pease, 1896. The Antelopes of Eastern Algeria. Zoological Society. 72 Gazella leptoceros 1. TAXONOMY AND NOMENCLATURE 1.1. Taxonomy. Gazella leptoceros belongs to the tribe Antilopini, sub-family Antilopinae, family Bovidae, which comprises about twenty species in genera Gazella , Antilope , Procapra , Antidorcas , Litocranius , and Ammodorcas (O’Reagan, 1984; Corbet and Hill, 1986; Groves, 1988). Genus Gazella comprises one extinct species, and from 10 to 15 surviving species, usually divided into three sub-genera, Nanger , Gazella, and Trachelocele (Corbet, 1978; O’Reagan, 1984; Corbet and Hill, 1986; Groves, 1988). Gazella leptoceros is either included in the sub-genus Gazella (Groves, 1969; O’Reagan, 1984), or considered as forming, along with the Asian gazelle Gazella subgutturosa , the sub-genus Trachelocele (Groves, 1988). The Gazella leptoceros. Sidi Toui National Parks. Tunisia. species comprises two sub-species, Gazella leptoceros leptoceros of © Renata Molcanova the Western Desert of Lower Egypt and northeastern Libya, and Gazella leptoceros loderi of the western and middle Sahara. These two forms seem geographically isolated from each other and ecologically distinct, so that they must, from a conservation biology point of view, be treated separately. 1.2. Nomenclature. 1.2.1. Scientific name. Gazella leptoceros (Cuvier, 1842) Gazella leptoceros leptoceros (Cuvier, 1842) Gazella leptoceros loderi (Thomas, 1894) 1.2.2. Synonyms. Antilope leptoceros, Leptoceros abuharab, Leptoceros cuvieri, Gazella loderi, Gazella subgutturosa loderi, Gazella dorcas, var.
    [Show full text]
  • The Tolerance of Atriplex Halimus L. to Environmental Stresses
    Emir. J. Food Agric. 2014. 26 (12): 1081-1090 doi: 10.9755/ejfa.v26i12.19116 http://www.ejfa.info/ REVIEW ARTICLE The tolerance of Atriplex halimus L. to environmental stresses David J. Walker1* and Stanley Lutts2 1Instituto Murciano de Investigación y Desarrollo Agricola y Alimentario, Calle Mayor s/n, La Alberca, 30150 Murcia, Spain 2Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy, ELIA – Université catholique de Louvain, Croix du sud 4-5 bte L7.07.13 à 1348 Louvain-la-Neuve, Belgium Abstract Atriplex halimus L. (Amaranthaceae) (Mediterranean Saltbush) is a perennial, halophytic shrub that possesses the C4 photosynthetic anatomy and physiology. It grows under semi-arid and arid conditions (annual rainfall < 600 mm) from Macaronesia, through the Mediterranean basin countries and into western Asia, being particularly common on saline and degraded soils. Many studies have shed light on the physiological and biochemical mechanisms that, together with the morphological and anatomical features of this species, contribute to its notable tolerance of important abiotic stresses: salinity, drought, extreme temperatures and soil contamination by trace elements. These will be discussed here, highlighting their shared and distinct features. Certain processes are common to two or more stress responses: for example, vacuolar accumulation of sodium and the cytoplasmic accumulation of compatible osmolytes - part of the process of osmotic adjustment - are vital components of the adaptation to drought, salinity and cold. Others, such as oxalate accumulation upon trace elements exposure, seem to be stress-specific, while leaf surface vesiculated hairs (trichomes) and abscisic acid have distinct functions according to the stress.
    [Show full text]
  • WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
    IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia).
    [Show full text]
  • Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia
    plants Article Ethnobotanical Study on Plant Used by Semi-Nomad Descendants’ Community in Ouled Dabbeb—Southern Tunisia Olfa Karous 1,2,* , Imtinen Ben Haj Jilani 1,2 and Zeineb Ghrabi-Gammar 1,2 1 Institut National Agronomique de Tunisie (INAT), Département Agronoime et Biotechnologie Végétale, Université de Carthage, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunisia; [email protected] (I.B.H.J.); [email protected] (Z.G.-G.) 2 Faculté des Lettres, Université de Manouba, des Arts et des Humanités de la Manouba, LR 18ES13 Biogéographie, Climatologie Appliquée et Dynamiques Environnementales (BiCADE), 2010 Manouba, Tunisia * Correspondence: [email protected] Abstract: Thanks to its geographic location between two bioclimatic belts (arid and Saharan) and the ancestral nomadic roots of its inhabitants, the sector of Ouled Dabbeb (Southern Tunisia) represents a rich source of plant biodiversity and wide ranging of ethnobotanical knowledge. This work aims to (1) explore and compile the unique diversity of floristic and ethnobotanical information on different folk use of plants in this sector and (2) provide a novel insight into the degree of knowledge transmission between the current population and their semi-nomadic forefathers. Ethnobotanical interviews and vegetation inventories were undertaken during 2014–2019. Thirty informants aged from 27 to 84 were interviewed. The ethnobotanical study revealed that the local community of Ouled Dabbeb perceived the use of 70 plant species belonging to 59 genera from 31 families for therapeutic (83%), food (49%), domestic (15%), ethnoveterinary (12%), cosmetic (5%), and ritual purposes (3%). Moreover, they were knowledgeable about the toxicity of eight taxa. Nearly 73% of reported ethnospecies were freely gathered from the wild.
    [Show full text]
  • Germination of Atriplex Halimuslinnaeus, 1753
    Biodiversity Journal , 2015, 6 (2): 663-668 Germination of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in North West Algeria Kerzabi Rachida, Abdessamad Merzouk *, Stambouli-Meziane Hassiba & Benabadji Noury Laboratory of ecology and management of natural ecosystems, Department of Biology, Faculty of Sciences, Université Abou Bekr Belkaid Tlemcen, BP 119, 13000, Algeria *Corresponding author, e-mail: [email protected] ABSTRACT In arid and semi-arid ambients, soil salinity is a constraint for the development of plants and a threat for balanced diet. Current data in the Mediterranean basin report up to 16 million hectares of salt soil, 3.2 million of which in Algeria. Germination in vitro of seeds of Atriplex halimus Linnaeus, 1753 (Caryophyllales Chenopodiaceae) in both synthetic media (nutrient agar, and Mueller Hinton) reached rates of 80% at 25 °C and 50% at 5 °C. The taxon shows a good resistance to salt; because of high salinity treatments (500 to 600 meq/l), there is a delay in germination but not complete inhibition of the process. KEY WORDS Atriplex halimus ; germination, salinity; North West Algeria. Received 01.06.2015; accepted 24.06.2015; printed 30.06.2015 INTRODUCTION vior under various environments conditions . If some works have addressed the germination pro - From the physiological point of view, germina - cess of Atriplex halimus Linnaeus, 1753 (Caryo - tion is a process that translates the passage of the phyllales Chenopodiaceae) (Belkhodja & Bidai, slow life of a seed to active life in the optimum 2004), however little work has been done on the conditions for germination. Several Authors (Côme, rootlets in synthetic culture media.
    [Show full text]