Page Numbers in Italics Refer to Figures, Those in Bold to Tables Abontorok Ring Complex 365-6 Absarokite 104 Acid Porphyrites 1

Total Page:16

File Type:pdf, Size:1020Kb

Page Numbers in Italics Refer to Figures, Those in Bold to Tables Abontorok Ring Complex 365-6 Absarokite 104 Acid Porphyrites 1 Index Page numbers in italics refer to figures, those in bold to tables Abontorok ring complex 365-6 post-magmatic 138 absarokite 104 by seawater 394 acid porphyrites 196 alumina saturation 370 acmite 63, 149, 341,405,417 alvikite 53, 72, 73, 75, 77, 78 actinolite 387 AmbaDongar, carbonatite 71 adamellite 449 amphibole 2, 3, 7, 8, 9, 34, 45, 72, 77, 90, 92, 108, 137, Admapluton 388, 389 138, 160, 161, 170, 193, 198,202, 243,258, 271, Adrar Bous ring-complex 366 337, 338, 341,364, 386, 387, 388, 405,409-11, aegirine 71, 75, 77, 156, 338,386, 387,405,409, 411, 420, 437,439, 451,466, 520, 521,527 452, 479,484, 539, 541 alkali 133, 135, 156, 160, 479, 540 Zr-rich 461 Ba-K-amphibole 198 aegirine-augite 71, 75, 337, 338, 339, 405,409, 411 Ca-amphibole 387 aenigmatite 387, 417,452, 461,479, 539, 541 crystallization of 387 African Plate, movement of 282-3 pargasitic 63 agglomerate 136, 403,404, 502 secondary formation 465-6 agglutinate tuff see piperno sodi-calcic 370 agpaites 473,476, 539 stability of in basaltic magma 228 agpaitic rocks (Ilimaussaq intrusion) Ti-amphibole 198 bottom rocks 481-3 amphibole fractionation 523 mineralogy and layering 481-2 amphibolite 360 theories of formation of kakortokite layering amygdales 213 482-3 analcime 108, 120, 123, 132, 133, 138, 160, 163,202, roof rocks 478-80 217, 338, 405,484, 517,519 layering 479-80 origin of 48 mineralogy 478-9 primary 29 AillikBay, Labrador 128, 163 analcite basalt 140 aillikite 128, 198,465 anatase 131,133, 135, 138, 163 akerite 437 anatectic melts 508, 509 gtkermanite 31,32 anatexis 48,468 albanites 107 crustal 468 albite 48, 65, 72, 77, 109, 137, 149, 164, 198, 370, 373, andesine 388 387, 484 andesite generation, models for 394 destabilization of 374 andesite 68, 104, 128, 381,504 secondary formation 465-6 basaltic 233 albite-aegirine schists 77 continental margin 261 albitites 77 potassic 140 albitization 78,370, 374, 387 subduction-derived 132 alkali enrichment 92, 93 ankaramite 234, 495 alkali gain 317 ankaratrite 295, 301,303 alkali loss 72, 76, 78, 86, 87, 88, 92, 282, 317, 324, annite 371,373 420, 465 anorogenic complexes, within-plate 395 Zomba-Malosa complex 341 anorogenic magmatism alkali-depletion, volume requirements of 89 effect of late-stage fluids on 370-6 alkaline lamprophyre branch 196, 198, 200, 203,204, acid metasomatism 374-6 205,212, 214, 215,218,219 biotite granites and their mineralization 370 allanite 305, 387, 388 potassic metasomatism 373-4 zoned 387 sodic metasomatism 370, 373 Aln6 complex (Sweden) 53, 66 petrogenesis 366-70 aln6ite 68, 128, 136, 138,219, 337, 339, 349, 442, 463, Phanerozoic anorthosite association, Air, Niger 464-5 363-6 CO2-rich 444 tectonic and structural controls 358-70 Ile Bizard 442 anorogenicmagmaticevolution 361-3 incompatible element concentrations 443 influence of Pan-African orogeny 358, 360-1 alteration 255,257, 337 tectonic constraints on alkaline magmatism 361 hydrothermal 135, 271,370, 407, 465,503, 524 anorthite 149 K-silicate 374 anorthoclase 420 metasomatic 170, 351 anorthoclase trachyte 234 Na-silicate 370 anorthosite 361,363, 364, 450, 466, 531 545 546 Index anorthosite (cont.) Baikal-Aldan Belt, USSR 140, 143 Air 363,364 Baltic Shield (Kola Peninsula), alkaline rocks of 531- labradorite-andesine 461 43 massif-type 449 Palaeozoic alkaline complexes 533-43 anorthositic complexes, evolution of 366 Proterozoic alkaline complexes 531-3 anorthositic enclaves 368 Bambouto, Cameroon 278 apatite 57, 66, 67, 68, 71, 72, 73, 77, 90, 91, 97, 108, barite 71, 74, 78, 109, 133, 138,462 109, 114, 122, 129, 13l, 132, 133, 138, 139, 164, Sr-barite 120, 122, 164 166, 168, 234, 243,305, 337, 338,339, 349, 387, barroisite 387 388,405,409, 451,462, 465, 468,475,479,492, bartonite 200 521,541-3 baryte see barite early-crystallizing 466 basalt 5, 8, 35, 68, 104, 107, 139, 154, 255,259, 271, Na-REE-rich 462 273,278, 279,280, 281,282, 284, 309, 314-15, apatite deposits 534, 541-3 317, 318, 321,323,423, 442, 452, 454, 459,465, apatite glimmerite 139, 163 504, 520, 521,524 aplite 405 alkali 19, 30, 45, 103-4, 148, 151,167, 179, 196, aplogranite 407, 409 232, 258, 262, 293,294, 296, 297,298, 300, 301, albite 373 302, 307, 417,444, 493, 517 aqueous fluid phase, separation of 92, 93 evolved 37 aqueous fluids 23 fissure-fed 303 and alkali loss 86, 88 genesis of, Massif Central 526-7 development from magma 88 alkali olivine 15, 32, 33, 34-6, 298,442, 444 arfvedsonite 71, 72, 77, 337, 386, 387, 411,417,479, alkaline, transitional 296, 298-9, 303, 304, 307, 309 481,482, 483,484, 539 analcite 140 K-Ti-Mg-arfvedsonite 156 continental margin 261 Mg-arfvedsonite 77 ferrobasalt 296, 298,303 arfvedsonite-riebeckite 452 Gardar 456, 460 Argorintrusion (Canada) 90 genesis of 30 Argyle, E Kimberleys, W Australia 131,142, 144, K-rich 128 148, 149, 151,163 leucite 140 diamondiferous tuff 104 oceanic 381 armalcolite 108, 123, 163, 165 olivine 294, 298 Ascension Island 253-61,269-71 olivine-augite 303 Ascutney Mountain complex 441 primary 443 ash-flows 421,423 shoshonitic 135 comendite 303 subduction-derived 132 assimilation 313,425,452, 508,524 tholeiitic 230, 232, 241,435,444, 495 asthenosphere 4, 21,284 trachybasalt 315 generation of parental magmas 357 Walvis Ridge 263,264 partial melting of 64, 65, 283-4 basalt-trachyte relationships 320-3 as primitive mantle source 398 fractional crystallization of basaltic magma 320-2 asthenospheric bulge 517 partial melting of mafic deep continental crust 323 asthenospheric plumes 24 significance of composition gaps 322-3 astrophyllite 387,405,452 basanite 2, 3, 4, 10, 15, 32, 36-7, 196, 232, 277, 278, augite 61, 71,107, 128, 135, 137, 234, 282, 339, 386, 280, 282, 294, 296, 297, 301,317, 442, 504, 506, 409 517, 519, 524, 526 Fe-augite 387 leucite 135 sodian 410 nodules in 6 T-Al-augite 62 olivine 39 augite syenite 451,452, 474, 499 bastnaesite 71, 73-4 Australia, generalized map 129 batholiths 381 autometasomatism 370 calc-alkaline, Iforas 398 Azores 10-11 Sierra Nevada 127 Azzaba, Algeria 136-7 unroofing of 394-5, 398 W Iforas (composite calc-alkaline) 382, 388,398 White Mountain 433-4, 435 Ba mineralization 57 beforsite 53,465 Ba-K-amphibole 198 Belknap Mountain complex, geology of 434-5 Ba-K-feldspars 198 Benfontein (S Africa) 65 Ba-K-phlogopite 198 Benin-Nigeria shield 360 Ba-Ti-phlogopite 198 Benioffzones 144, 381 back-arc spreading 427 fossil 143, 168 baddeleyite 71,405,424 benmoreite 37, 234, 296, 298,303, 304, 321,322, 323, Bagnold effect 306, 369 417, 521 Index 547 Benue trough 362 Ca-amphibole 403 related to Cameroon line 283 calc-alkaline lamprophyre branch 196, 198, 200, 202, bimodal suites 278 203, 204, 205,212, 214, 215, 217, 218, 219 bimodality 65, 67, 304, 307, 308, 309, 341 calcite 54, 66, 67, 69-70, 71, 73, 89, 90, 91,133, 135, basalt-trachyte volcanism (Gregory rift) 299 138,203,462, 467 magmatic 5-6 in lamproite 97 transitionally alkaline suites (Kenya) 293, 303, calcite carbonatite 53, 72, 73 304 caldera collapse 228, 234, 278, 305,308, 309, 315, Bioko (Fernando P6o) 280 320, 322, 324, 325,330, 331 biotite 37, 71, 72-3;73, 77, 90, 104, 137, 200, 214, caldera complexes 433 320, 337, 338,339, 349, 383, 387, 405,420, 451, caldera formation 314 465, 521 Krakatoa-type 315, 331 annite-rich 462 caldera volcanoes 313-15 castellated 193 calderas 271,278,299,421,422, 423,425,428 F-bearing 466 trachytic 315 green 388 Cameroonline, W Africa 273-89 Mg-biotite 387 age 273-4, 277 biotite granite 436, 452 geology and petrology 277-82 mineralization of 370, 371,372 continental sector 277-80 biotite mafurite 39, 42, 165 oceanic sector 280-2 biotite peridotite 464 mantle sources and generation of the basic magmas biotite pyroxenite 464 283-6 biotite ugandite 165 origin of 282-3 biotite-annite 387 salic rocks, origin of 286-9 biotite-phlogopite 193,202 Cameroon, Mount 279 Biu Plateau, Nigeria 277-8 camptonite 212, 219, 339, 349, 352, 442, 493, 508 blairmorite 335 Canary Islands 54, 63 block faulting 144 Canaveseline 133 Blosseville Kyst shelf 489-90 cancarixite 132 Bobi-Sequela, Ivory Coast 136, 144, 149, 163 cancrinite 65, 66, 338,405,467, 534 Bohemian Massif, Czechoslovakia 135 Canning Basin, W Australia 129, 130 Borrolan syenite (NW Scotland) 75 Cape Verde Islands 54, 64, 67, 69, 143 bottom cumulates 479 carbonate 3, 7, 8, 9, 132, 193, 203, 338,349, 468 boundary layer 308 primary magmatic 467 boundary-layer liquids 306 secondary formation 465-6 boundary-layer migration 331 stability of 166 Bouvet Island 253-61 carbonate-saturated system ((Si + A1) - (Na + K) - Ca) Brazil 140 68 Brazilian Precambrianshield 403 carbonatite olivines 90 breccia 122, 123, 136, 139, 144, 212, 405,437, 498, carbonatites 29, 38, 44, 68, 69-74, 86, 109, 128, 196, 499, 502, 503, 508,542 215,296, 297, 306, 336, 337, 339, 354, 376, 383, autolithic 142 442, 444, 462-5,492, 534, 535 contact intrusive 124 alkalic, development of 92 hyaloclastite 280, 282 calcitic-dolomitic 89 igneous 437 calcite 53, 72, 73 intrusive 436 calcitic toankeritic 86 lamprophyric 8 defined 53 pyroclastic 142 dolomite 53, 72, 73, 75 quartz porphry 499 intrusive 71-3 rheomorphic 441 liquid immiscibility and genesis of 45, 47 syenite 365, 501 mineralization 73-4 volcanic 503 natrocarbonatite magma 69-71 breccia pipes 436 and nephelinites 53-79 breccia plugs 503 normal, development of 91-2 brecciated greisens 375 carbonatization 535 brecciation 67, 79 Cargillcomplex (N Ontario) 65 of roof 484 cassiterite 277, 375, 376, 405 roof cumulates 474 catapleiite 417,424 breunnerite 203 cauldron subsidence 383,452, 499, 503 britholite 405,409 cedricite 108 BultfonteinMine
Recommended publications
  • Bulletin of the Geological Society of America Vol. 80. Pp. 1541-1596, 11 Figs. Octobber 1949 Hawaiian Petrographic Province by G
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 80. PP. 1541-1596, 11 FIGS. OCTOBBER 1949 HAWAIIAN PETROGRAPHIC PROVINCE BY GORDON A. MACDONALD CONTENTS Page Page Abstract 1541 Kahoolawe 1561 Introduction 1542 Maui 1562 Previous work 1542 West Maui Volcano 1562 Description of rock types 1544 Haleakala Volcano 1562 Classification of rocks 1544 Hawaii 1562 Olivine basalt 1545 Kohala Volcano 1562 Picrite-basalt, oceanite type 1548 Mauna Kea 1564 Picrite-basalt, ankaramite type 1548 Hualalai 1565 Picrite-basalt, mimosite type 1548 Mauna Loa 1565 Basalt 1549 Kilauea 1566 Andesine andesite 1549 Summary of stratigraphic relations 1566 Oligoclase andesite 1550 Petrogenesis 1567 Trachyte 1550 General statement 1567 Nepheline basanite 1551 Parent magma 1567 Nepheline basalt 1551 Chemical composition of major rock types. 1570 Gabbro 1552 Order of crystallization in plivine basalt... 1570 Ultrabasic rocks 1553 Crystallization differentiation 1574 Distribution and structural relationships of Evidences of crystal settling 1574 rocks 1553 Origin of dunite inclusions 1575 Leeward Islands 1553 Origin of rock types more salic than olivine Niihau 1555 basalt 1575 Origin of picrite-basalts of oceanite type. 1576 Kauai 1555 Origin of picrite-basalts of ankaramite type 1577 Oahu 1558 Origin of nepheline-bearing rocks and Waianae Volcano 1558 picrite-basalt of mimosite type 1580 Koolau Volcano 1559 Effects of volatile transfer 1584 Honolulu volcanic series 1559 Effects of selective remelting 1584 Molokai 1559 Theory of limestone assimilation 1585 West Molokai Volcano 1559 Conclusions 1586 East Molokai Volcano 1561 Comparison with other central Pacific islands 1588 Lanai 1561 Bibliography 1592 ILLUSTRATIONS Figure Page Figure Page 1. Map of the Hawaiian Archipelago 1554 8.
    [Show full text]
  • FERROMAGNESIAN MINERALS /ROM the VOLCANIC SUITE of TENERIFE a Thesis Submitted for the Degree of Doctor of Philosophy of The
    FERROMAGNESIAN MINERALS /ROM THE VOLCANIC SUITE OF TENERIFE A thesis submitted for the degree of Doctor of Philosophy of the University of London by Peter Wright Scott October 1970. Dept. of Geology, Imperial College, London, S.W.7. ABSTRACT The Tenerife rocks have been classified as ankaramites, alkali basalts, trachybasalts, trachyandesites, trachytes and phonolites on the basis of their chemical and petrographic characteristics. Wet chemical and microprobe analyses and some optical data for olivines, pyroxenes, micas, garnets and sphene are presented; and, cell parameters for olivines, pyroxenes, garnet and sphene are also given. Olivine is restricted in its occurrence to the more basic rocks and is always forsterite rich (approx. Fo 80), although it may become more fayalitic in the groundmasses. A salitic clinopyroxene is present throughout the suite but aegirine is developed in the groundmass of some phonolites and in a nepheline-syenite boulder. The salites show only limited enrichment in hedenbergite with magmatic differentiation whilst the aegirines are enriched in diopside relative to hedenbergite. This is thought to be due to the limited amounts 2+ of Fe present in the "parental" magmas after the removal of varying proportions of olivine and kaersutite. Seven types of zoning have been recognised in the salites: normal, reversed, irregular, large scale oscillatory, minute scale oscillatory, hourglass, and a special "zoning" caused by the presence of green cores. The origin of most types of zoning can be explained by changes in conditions during crystallisation, but it appears unlikely that hourglass crystals have formed as suggested by Strong (1969). A kaersutite of uniform composition occurs in most rock types although it becomes barkevikitic in the salic differentiates.
    [Show full text]
  • Geology of Three Late Quaternary Stratovolcanoes on Sao Miguel, Azores
    Geology of Three Late Quaternary Stratovolcanoes on Sao Miguel, Azores U.S. GEOLOGICAL SURVEY BULLETIN 1900 Prepared in cooperation with the Regional Government of the Azores AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey Books and Open-File Reports Sales, Box 25425, Denver, CO 80225. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ • ANCHORAGE, Alaska-4230 University Dr., Rm.
    [Show full text]
  • Comparative Analysis of Plagioclase in the Eyjafjöll Ankaramites
    Comparative analysis of plagioclase in the Eyjafjöll ankaramites Þrúður Helgadóttir Faculty of Earth Science University of Iceland 2016 Comparative analysis of plagioclase in the Eyjafjöll ankaramites Þrúður Helgadóttir 10 ETCS thesis submitted in partial fulfilment of Baccalaureus Scientiarum degree in Geology Advisor Enikő Bali Faculty of Earth Science School of Engineering and Natural Sciences University of Iceland Reykjavík, May 2016 Comparative analysis of plagioclase in the Eyjafjöll ankaramites Analysis of plagioclase in Eyjafjöll ankaramites 10 ECTS thesis submitted in partial fulfilment of Baccalaureus Scientiarum degree in Geology Copyright © 2016 Þrúður Helgadóttir All rights reserved Faculty of Earth Science School of Engineering and Natural Sciences University of Iceland Askja, Sturlugata 7 101 Reykjavík Telephone: 525 4000 Registration information: Þrúður Helgadóttir, 2016, Comparative analysis of plagioclase in the Eyjafjöll ankaramites, BSc thesis, Faculty of Earth Science, University of Iceland, 67 pages. Printing: Háskólaprent Reykjavík, May 2016 Útdráttur Ankaramít er einkennisbergtegund Eyjafjallajökuls. Það er útbasískt, dílótt, basanít berg með miklu magni klínópýroxen- og ólivíndíla ásamt miklu magni plagioklas í grunnmassa, en einnig er talsvert magn af oxíðum í grunnmassa. Ankaramít bergsýni í þessari rannsókn eru frá Hamragarðaheiði, Hvammsnúpi, Brattaskjóli og Arnarhóli í Eyjafjöllum. Handsýni voru skoðuð lauslega og plagioklas kristallar voru rannsakaðir í þunnsneiðum með bergsmásjá og efnagreiningar framkvæmdar í rafeindasmásjá. Steindasamsetning grunnmassa var fundin með CIPW-norm útreikningum út frá meðalefnasamsetningu grunnmassa. Grunnmassasamsetning Arnarhóls er 60.5% plagioklas, 11% pýroxen, 24.9% ólivín og 5.8% oxíð, Hamragarðaheiði 54.5% plagioklas, 35.1% pýroxen, 3.3% ólivín og 5.3% oxíð, Brattaskjóls 50.5% plagioklas, 33.3% pýroxen, 13.3% ólivín og 4.1% oxíð og Hvammsnúpi 57.5% plagioklas, 28.4% pýroxen, 8.6% ólivín og 4.4% oxíð.
    [Show full text]
  • Haleakalā National Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Haleakalā National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2011/453 ON THE COVER A bird’s eye view over Ka Moa o Pele cinder cone, flanked by dark and light lava flows descending through the Ko‘olau Gap to the Ke‘anae Valley. ON THE COVER National Park Service photograph courtesy Description of image/photo used on front cover Russell Shurtz (Haleakalā National Park) National Park Service photograph courtesy xxxxx (Team Awesome NP) (or other credit line) THIS PAGE THIS PAGE One of the many waterfalls along the Pipiwai Description of image/photo used on front cover Trail in the Kīpahulu section of Haleakalā National Park Service photograph courtesy xxxxx (Team Awesome NP) (or otherNational credit Park. line) Layer after layer of volcanic rock built up the island of Maui. National Park Service photograph. Haleakalā National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2011/453 National Park Service Geologic Resources Division PO Box 25287 Denver, CO 80225 September 2011 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application.
    [Show full text]
  • Magmatic Evolution of the Shira Volcanics, Mt Kilimanjaro, Tanzania
    School of Natural Resource Sciences Queensland University of Technology MAGMATIC EVOLUTION OF THE SHIRA VOLCANICS, MT KILIMANJARO, TANZANIA By Stephen John Hayes B.App.Sc. (QUT) 2004 Supervisor: Associate Professor David A. Gust Queensland University of Technology A Thesis submitted for the degree of Master of Applied Science (Queensland University of Technology) KEYWORDS Kilimanjaro, East African Rift, alkalic magmatism, petrogenesis, magma evolution, fractional crystallisation ABSTRACT Mt Kilimanjaro, Africa’s highest mountain (5895m), is a large, young (<1.6Ma) stratovolcano at the southern end of the East African Rift, in northern Tanzania. Consisting of three distinct volcanic centres, Shira, Mawenzi and Kibo, Shira contains the highest proportion of mafic rocks. Shira samples are strongly silica under-saturated rocks, ranging from picro-basalt, to nephelinite and hawaiite (Mg numbers (Mg #) ranging from 77.2–35.5). Phenocrysts constitute up to 55% of some samples, and include aluminous augite (often containing abundant fluid and/or melt inclusions), olivine (Fo92-Fo49), plagioclase (An75- An42), nepheline (Ne77-Ne68), magnesiochromite and ulvöspinel. Groups identified on the basis of phenocryst assemblages and textures correlate with location. East Shira Hill samples contain olivine and clinopyroxene phenocrysts + microphenocrysts of plagioclase (Group 1), or plagioclase and clinopyroxene phenocrysts + microphenocrysts of olivine (Group 2). Samples with high Mg #’s contain abundant cumulate clinopyroxene and olivine (Fo92-Fo85). Group 3 samples (Shira Ridge) contain nepheline phenocrysts and Group 4 samples (Platzkegel) have distinct intergranular textures. Chondrite normalised REE patterns are steep, with light REE-enrichment up to 400x chondrite. Spider diagrams, normalised to OIB for primitive Shira samples have strong K depletions and Pb enrichments.
    [Show full text]