Comparative Analysis of Plagioclase in the Eyjafjöll Ankaramites

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analysis of Plagioclase in the Eyjafjöll Ankaramites Comparative analysis of plagioclase in the Eyjafjöll ankaramites Þrúður Helgadóttir Faculty of Earth Science University of Iceland 2016 Comparative analysis of plagioclase in the Eyjafjöll ankaramites Þrúður Helgadóttir 10 ETCS thesis submitted in partial fulfilment of Baccalaureus Scientiarum degree in Geology Advisor Enikő Bali Faculty of Earth Science School of Engineering and Natural Sciences University of Iceland Reykjavík, May 2016 Comparative analysis of plagioclase in the Eyjafjöll ankaramites Analysis of plagioclase in Eyjafjöll ankaramites 10 ECTS thesis submitted in partial fulfilment of Baccalaureus Scientiarum degree in Geology Copyright © 2016 Þrúður Helgadóttir All rights reserved Faculty of Earth Science School of Engineering and Natural Sciences University of Iceland Askja, Sturlugata 7 101 Reykjavík Telephone: 525 4000 Registration information: Þrúður Helgadóttir, 2016, Comparative analysis of plagioclase in the Eyjafjöll ankaramites, BSc thesis, Faculty of Earth Science, University of Iceland, 67 pages. Printing: Háskólaprent Reykjavík, May 2016 Útdráttur Ankaramít er einkennisbergtegund Eyjafjallajökuls. Það er útbasískt, dílótt, basanít berg með miklu magni klínópýroxen- og ólivíndíla ásamt miklu magni plagioklas í grunnmassa, en einnig er talsvert magn af oxíðum í grunnmassa. Ankaramít bergsýni í þessari rannsókn eru frá Hamragarðaheiði, Hvammsnúpi, Brattaskjóli og Arnarhóli í Eyjafjöllum. Handsýni voru skoðuð lauslega og plagioklas kristallar voru rannsakaðir í þunnsneiðum með bergsmásjá og efnagreiningar framkvæmdar í rafeindasmásjá. Steindasamsetning grunnmassa var fundin með CIPW-norm útreikningum út frá meðalefnasamsetningu grunnmassa. Grunnmassasamsetning Arnarhóls er 60.5% plagioklas, 11% pýroxen, 24.9% ólivín og 5.8% oxíð, Hamragarðaheiði 54.5% plagioklas, 35.1% pýroxen, 3.3% ólivín og 5.3% oxíð, Brattaskjóls 50.5% plagioklas, 33.3% pýroxen, 13.3% ólivín og 4.1% oxíð og Hvammsnúpi 57.5% plagioklas, 28.4% pýroxen, 8.6% ólivín og 4.4% oxíð. Öll sýni voru dílótt. Sýni frá Arnarhóli og Hamragarðaheiði eru mjög plagioklas dílótt, sýni frá Hvammsnúpi eru með mun minna af plagioklas dílum og Brattaskjól með enga slíka. Samkvæmt efnagreiningu á plagioklas í grunnmassa sem framkvæmd var fyrir þetta verkefni var anorþíthlutfall í sýni frá Brattaskjóli An73-77. Plagioklas í grunnmassa bergs frá Arnarhóli og Hvammsnúpi er með svipað anorþíthlutfall, á bilinu An58-72 og An41-70 á meðan hlutfallið er á bilinu An51-60 í bergsýnum frá Hamragarðaheiði. Anorþíthlutfall í plagioklas dílum í sýnum frá Arnarhóli, Hamragarðaheiði og Hvammsnúpi er An79-90, An79-82 og An87-94. Efnagreining var gerð á ólivíndílum í sýni frá Brattaskjóli og borið saman við gögn frá Kristjánssyni (2015) fyrir Hamragarðaheiði og Hvammsnúp. Þessi þrjú sýni voru með forsteríthlutfall á bilinu Fo85-89, Fo67-78 og Fo70-70. Abstract Eyjafjallajökull is the type locality for ankaramite in Iceland. This is an ultrabasic, porphyritic melanocratic basanite rock with abundant phenocrysts of clinopyroxene and olivine and plagioclase rich groundmass which also contains a considerable amount of oxides. Rock samples used in this study are from the ankaramitic outcrops in Hamragarðaheiði, Hvammsnúpur, Brattaskjól and Arnarhóll in Eyjafjöll. Hand specimens were briefly examined and plagioclase in thin sections were analysed by polarization microscope and SEM-EDS. Groundmass mineral assemblage according to CIPW norm calculation from average groundmass compositions showed Arnarhóll containing 60.5% plagioclase, 11% pyroxene, 24.9% olivine and 5.8% oxides, Hamragarðaheiði 54.5% plagioclase, 35.1% pyroxene, 3.3% olivine and 5.3% oxides. Brattaskjól contains 50.5% plagioclase, 33.3% pyroxene, 13.3% olivine and 4.1% oxides while Hvammsnúpur contains 57.5% plagioclase, 28.4% pyroxene, 8.6% olivine and 4.4% oxides. All samples were porphyritic. Arnarhóll and Hamragarðaheiði rock samples are rich in plagioclase phenocrysts, Hvammsnúpur samples have plagioclase phenocrysts in much less quantities and Brattaskjól sample had none. According to plagioclase chemical analysis in this study, anorthite content for plagioclase in the groundmass of the Brattaskjól samples is An73-77. Arnarhóll and Hvammsnúpur groundmass contain similar ranges, An58-72 and An41-70 respectively while the range is An51-60 in Hamragarðaheiði. Anorthite content range for plagioclase phenocrysts in Arnarhóll, Hamragarðaheiði and Hvammsnúpur samples is An79-90, An79-82 and An87-94 respectively. Olivine phenocryst chemical analysis was made for Brattaskjól and compared to olivine phenocryst data from Kristjánsson (2015) for Hamragarðaheiði and Hvammsnúpur. These three samples contained forsterite content range of Fo85-89, Fo67-78 and Fo70-70 respectively. Table of Contents List of figures ...................................................................................................................... xi List of tables ...................................................................................................................... xiii Abbreviations ..................................................................................................................... xv Acknowledgements .......................................................................................................... xvii 1 Introduction ................................................................................................................... 19 1.1 Plagioclase ............................................................................................................. 19 1.2 Ankaramite ............................................................................................................ 21 2 Geological setting .......................................................................................................... 23 2.1 Localities ............................................................................................................... 26 3 Methods .......................................................................................................................... 29 3.1 Hand specimen ...................................................................................................... 29 3.2 Microscopic analysis ............................................................................................. 29 3.3 SEM analysis ......................................................................................................... 29 4 Results ............................................................................................................................ 31 4.1 Hand specimen ...................................................................................................... 31 4.2 Thin sections.......................................................................................................... 34 4.2.1 Arnarhóll ...................................................................................................... 35 4.2.2 Hamragarðaheiði .......................................................................................... 36 4.2.3 Brattaskjól .................................................................................................... 37 4.2.4 Hvammsnúpur .............................................................................................. 38 4.3 SEM results ........................................................................................................... 39 4.3.1 Arnarhóll ...................................................................................................... 39 4.3.2 Hamragarðaheiði .......................................................................................... 42 4.3.3 Brattaskjól .................................................................................................... 47 4.3.4 Hvammsnúpur .............................................................................................. 50 5 Discussion ...................................................................................................................... 53 6 Conclusions .................................................................................................................... 59 References........................................................................................................................... 61 Appendix A ......................................................................................................................... 63 Appendix B ......................................................................................................................... 67 ix x List of figures Figure 1: Volcanism and tectonics in Iceland. .................................................................... 23 Figure 2: Geologic map of the western Eyjafjöll ................................................................ 25 Figure 3: Map of Eyjafjallajökull volcano and localities. ................................................... 26 Figure 4: Geologic map of the ankaramite locality in Hvammsnúpur. ............................... 28 Figure 5: Stereomicroscopic images of hand specimens ..................................................... 31 Figure 6: Arnarhóll hand specimen. .................................................................................... 32 Figure 7: Hamragarðaheiði hand specimen. ........................................................................ 32 Figure 8: Brattaskjól hand specimen. .................................................................................. 33 Figure 9: Hvammsnúpur hand
Recommended publications
  • Bulletin of the Geological Society of America Vol. 80. Pp. 1541-1596, 11 Figs. Octobber 1949 Hawaiian Petrographic Province by G
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 80. PP. 1541-1596, 11 FIGS. OCTOBBER 1949 HAWAIIAN PETROGRAPHIC PROVINCE BY GORDON A. MACDONALD CONTENTS Page Page Abstract 1541 Kahoolawe 1561 Introduction 1542 Maui 1562 Previous work 1542 West Maui Volcano 1562 Description of rock types 1544 Haleakala Volcano 1562 Classification of rocks 1544 Hawaii 1562 Olivine basalt 1545 Kohala Volcano 1562 Picrite-basalt, oceanite type 1548 Mauna Kea 1564 Picrite-basalt, ankaramite type 1548 Hualalai 1565 Picrite-basalt, mimosite type 1548 Mauna Loa 1565 Basalt 1549 Kilauea 1566 Andesine andesite 1549 Summary of stratigraphic relations 1566 Oligoclase andesite 1550 Petrogenesis 1567 Trachyte 1550 General statement 1567 Nepheline basanite 1551 Parent magma 1567 Nepheline basalt 1551 Chemical composition of major rock types. 1570 Gabbro 1552 Order of crystallization in plivine basalt... 1570 Ultrabasic rocks 1553 Crystallization differentiation 1574 Distribution and structural relationships of Evidences of crystal settling 1574 rocks 1553 Origin of dunite inclusions 1575 Leeward Islands 1553 Origin of rock types more salic than olivine Niihau 1555 basalt 1575 Origin of picrite-basalts of oceanite type. 1576 Kauai 1555 Origin of picrite-basalts of ankaramite type 1577 Oahu 1558 Origin of nepheline-bearing rocks and Waianae Volcano 1558 picrite-basalt of mimosite type 1580 Koolau Volcano 1559 Effects of volatile transfer 1584 Honolulu volcanic series 1559 Effects of selective remelting 1584 Molokai 1559 Theory of limestone assimilation 1585 West Molokai Volcano 1559 Conclusions 1586 East Molokai Volcano 1561 Comparison with other central Pacific islands 1588 Lanai 1561 Bibliography 1592 ILLUSTRATIONS Figure Page Figure Page 1. Map of the Hawaiian Archipelago 1554 8.
    [Show full text]
  • FERROMAGNESIAN MINERALS /ROM the VOLCANIC SUITE of TENERIFE a Thesis Submitted for the Degree of Doctor of Philosophy of The
    FERROMAGNESIAN MINERALS /ROM THE VOLCANIC SUITE OF TENERIFE A thesis submitted for the degree of Doctor of Philosophy of the University of London by Peter Wright Scott October 1970. Dept. of Geology, Imperial College, London, S.W.7. ABSTRACT The Tenerife rocks have been classified as ankaramites, alkali basalts, trachybasalts, trachyandesites, trachytes and phonolites on the basis of their chemical and petrographic characteristics. Wet chemical and microprobe analyses and some optical data for olivines, pyroxenes, micas, garnets and sphene are presented; and, cell parameters for olivines, pyroxenes, garnet and sphene are also given. Olivine is restricted in its occurrence to the more basic rocks and is always forsterite rich (approx. Fo 80), although it may become more fayalitic in the groundmasses. A salitic clinopyroxene is present throughout the suite but aegirine is developed in the groundmass of some phonolites and in a nepheline-syenite boulder. The salites show only limited enrichment in hedenbergite with magmatic differentiation whilst the aegirines are enriched in diopside relative to hedenbergite. This is thought to be due to the limited amounts 2+ of Fe present in the "parental" magmas after the removal of varying proportions of olivine and kaersutite. Seven types of zoning have been recognised in the salites: normal, reversed, irregular, large scale oscillatory, minute scale oscillatory, hourglass, and a special "zoning" caused by the presence of green cores. The origin of most types of zoning can be explained by changes in conditions during crystallisation, but it appears unlikely that hourglass crystals have formed as suggested by Strong (1969). A kaersutite of uniform composition occurs in most rock types although it becomes barkevikitic in the salic differentiates.
    [Show full text]
  • Geology of Three Late Quaternary Stratovolcanoes on Sao Miguel, Azores
    Geology of Three Late Quaternary Stratovolcanoes on Sao Miguel, Azores U.S. GEOLOGICAL SURVEY BULLETIN 1900 Prepared in cooperation with the Regional Government of the Azores AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey Books and Open-File Reports Sales, Box 25425, Denver, CO 80225. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ • ANCHORAGE, Alaska-4230 University Dr., Rm.
    [Show full text]
  • Page Numbers in Italics Refer to Figures, Those in Bold to Tables Abontorok Ring Complex 365-6 Absarokite 104 Acid Porphyrites 1
    Index Page numbers in italics refer to figures, those in bold to tables Abontorok ring complex 365-6 post-magmatic 138 absarokite 104 by seawater 394 acid porphyrites 196 alumina saturation 370 acmite 63, 149, 341,405,417 alvikite 53, 72, 73, 75, 77, 78 actinolite 387 AmbaDongar, carbonatite 71 adamellite 449 amphibole 2, 3, 7, 8, 9, 34, 45, 72, 77, 90, 92, 108, 137, Admapluton 388, 389 138, 160, 161, 170, 193, 198,202, 243,258, 271, Adrar Bous ring-complex 366 337, 338, 341,364, 386, 387, 388, 405,409-11, aegirine 71, 75, 77, 156, 338,386, 387,405,409, 411, 420, 437,439, 451,466, 520, 521,527 452, 479,484, 539, 541 alkali 133, 135, 156, 160, 479, 540 Zr-rich 461 Ba-K-amphibole 198 aegirine-augite 71, 75, 337, 338, 339, 405,409, 411 Ca-amphibole 387 aenigmatite 387, 417,452, 461,479, 539, 541 crystallization of 387 African Plate, movement of 282-3 pargasitic 63 agglomerate 136, 403,404, 502 secondary formation 465-6 agglutinate tuff see piperno sodi-calcic 370 agpaites 473,476, 539 stability of in basaltic magma 228 agpaitic rocks (Ilimaussaq intrusion) Ti-amphibole 198 bottom rocks 481-3 amphibole fractionation 523 mineralogy and layering 481-2 amphibolite 360 theories of formation of kakortokite layering amygdales 213 482-3 analcime 108, 120, 123, 132, 133, 138, 160, 163,202, roof rocks 478-80 217, 338, 405,484, 517,519 layering 479-80 origin of 48 mineralogy 478-9 primary 29 AillikBay, Labrador 128, 163 analcite basalt 140 aillikite 128, 198,465 anatase 131,133, 135, 138, 163 akerite 437 anatectic melts 508, 509 gtkermanite 31,32 anatexis
    [Show full text]
  • Haleakalā National Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Haleakalā National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2011/453 ON THE COVER A bird’s eye view over Ka Moa o Pele cinder cone, flanked by dark and light lava flows descending through the Ko‘olau Gap to the Ke‘anae Valley. ON THE COVER National Park Service photograph courtesy Description of image/photo used on front cover Russell Shurtz (Haleakalā National Park) National Park Service photograph courtesy xxxxx (Team Awesome NP) (or other credit line) THIS PAGE THIS PAGE One of the many waterfalls along the Pipiwai Description of image/photo used on front cover Trail in the Kīpahulu section of Haleakalā National Park Service photograph courtesy xxxxx (Team Awesome NP) (or otherNational credit Park. line) Layer after layer of volcanic rock built up the island of Maui. National Park Service photograph. Haleakalā National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRSS/GRD/NRR—2011/453 National Park Service Geologic Resources Division PO Box 25287 Denver, CO 80225 September 2011 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application.
    [Show full text]
  • Magmatic Evolution of the Shira Volcanics, Mt Kilimanjaro, Tanzania
    School of Natural Resource Sciences Queensland University of Technology MAGMATIC EVOLUTION OF THE SHIRA VOLCANICS, MT KILIMANJARO, TANZANIA By Stephen John Hayes B.App.Sc. (QUT) 2004 Supervisor: Associate Professor David A. Gust Queensland University of Technology A Thesis submitted for the degree of Master of Applied Science (Queensland University of Technology) KEYWORDS Kilimanjaro, East African Rift, alkalic magmatism, petrogenesis, magma evolution, fractional crystallisation ABSTRACT Mt Kilimanjaro, Africa’s highest mountain (5895m), is a large, young (<1.6Ma) stratovolcano at the southern end of the East African Rift, in northern Tanzania. Consisting of three distinct volcanic centres, Shira, Mawenzi and Kibo, Shira contains the highest proportion of mafic rocks. Shira samples are strongly silica under-saturated rocks, ranging from picro-basalt, to nephelinite and hawaiite (Mg numbers (Mg #) ranging from 77.2–35.5). Phenocrysts constitute up to 55% of some samples, and include aluminous augite (often containing abundant fluid and/or melt inclusions), olivine (Fo92-Fo49), plagioclase (An75- An42), nepheline (Ne77-Ne68), magnesiochromite and ulvöspinel. Groups identified on the basis of phenocryst assemblages and textures correlate with location. East Shira Hill samples contain olivine and clinopyroxene phenocrysts + microphenocrysts of plagioclase (Group 1), or plagioclase and clinopyroxene phenocrysts + microphenocrysts of olivine (Group 2). Samples with high Mg #’s contain abundant cumulate clinopyroxene and olivine (Fo92-Fo85). Group 3 samples (Shira Ridge) contain nepheline phenocrysts and Group 4 samples (Platzkegel) have distinct intergranular textures. Chondrite normalised REE patterns are steep, with light REE-enrichment up to 400x chondrite. Spider diagrams, normalised to OIB for primitive Shira samples have strong K depletions and Pb enrichments.
    [Show full text]