The Role of Volcanic-Derived Clays in the Preservation Of

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Volcanic-Derived Clays in the Preservation Of www.nature.com/scientificreports OPEN The role of volcanic‑derived clays in the preservation of Ediacaran biota from the Itajaí Basin (ca. 563 Ma, Brazil) Bruno Becker‑Kerber1,2, Abderrazak El Albani2*, Kurt Konhauser3, Ahmed Abd Elmola2, Claude Fontaine2, Paulo S. G. Paim4, Arnaud Mazurier2, Gustavo M. E. M. Prado5, Douglas Galante6, Pedro B. Kerber7, Ana L. Z. da Rosa8, Thomas R. Fairchild5, Alain Meunier2 & Mírian L. A. F. Pacheco9,10 The early evolution of metazoans has been reconstructed by studies on exceptionally preserved molds in siliciclastic rocks from the Ediacaran Period. However, there remains considerable controversy regarding the formation mechanisms of this unusual ‘Ediacaran‑style’ preservation. Proposed hypotheses usually include early authigenesis of minerals, but evidence for this is scarce. In a recently discovered deposit of Ediacaran biota in Brazil, we show that the classic moldic preservation is related to clay mineral authigenesis. Specifcally, these clays originated from the alteration of original pyroclastic sediments, likely enhanced by microbial activity, leading to early illitization and morphological templating of the fossiliferous surfaces at a micrometric scale. Such high‑fdelity preservation was made possible by rapid burial during volcanic events and the in‑situ templating of tissue by clays via microbially‑mediated mineralization. This newly described Lagerstätte demonstrates that a number of minerals can facilitate preservation, and that perhaps ‘Ediacaran‑style’ preservation result from diferent processes leading to the same broad style of preservation. Te typical moldic preservation of sof-bodied organisms in the Ediacaran Period (635–539 Ma)1–4, in particular the positive epirelief type where the fossils protrude up from bedding surfaces4, has few parallels in other periods of geologic time, hence the term “Ediacaran-style preservation.” One explanation points to rheological difer- ences amongst the sediments5, a hypothesis that has received recent support4. Gehling1 also proposed the so- called ‘death-mask’ model for this preservation, in which microbial mats stabilized the sediments and produced a veneer of authigenic pyrite (FeS 2) that replicated the morphology of the organisms. Evidence in favor of this hypothesis comes from the presence of iron oxide and pyrite concentrations along fossiliferous bedding planes in certain localities3,6. Other factors may include episodic event deposition 7, early cementation by amorphous 2,8 9 silica (SiO2) , and burial by volcanic ash—the so-called “Conception-style” preservation . It is similarly possible that multiple mechanisms could produce this type of moldic fossilization and/or that taphonomic factors varied according to the geologic setting. In this regard, the Itajaí Basin10–12 (ca. 563 Ma, Brazil) appears to be a promising locality in which to study the possible mechanisms of preservation operating during the Ediacaran Period. Tis geological unit is relatively unmetamorphosed, has similar ages to the Avalon 1Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Washington Luiz, 325km, São Carlos, SP 13565-905, Brazil. 2Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifque (CNRS), IC2MP 7285, University of Poitiers, 86073 Poitiers, France. 3University of Alberta, Edmonton, Canada. 4Programa de Pós-Graduação em Geologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil. 5Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, São Paulo, SP 05508-080, Brazil. 6Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials, Av. Giuseppe Maximo Scolfaro, 10000, Campinas CEP 13083-100, Brazil. 7Instituto de Química, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva-Pioneiros, Campo Grande CEP 79070-900, Brazil. 8Petrobras, Santos, SP, Brazil. 9Departamento de Biologia, Universidade Federal de São Carlos-Campus Sorocaba, Rod. João Leme dos Santos km 110, Sorocaba CEP 18052-780, Brazil. 10Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R 187, São Paulo CEP 05508-090, Brazil. *email: [email protected] Scientifc Reports | (2021) 11:5013 | https://doi.org/10.1038/s41598-021-84433-0 1 Vol.:(0123456789) www.nature.com/scientificreports/ Figure 1. Ediacaran fossils and preservation styles in the Itajaí Basin. (a) Tree-dimensionally preserved tufed microbial mats (CAP-879). (b) 3D Arumberia-type microbial mats (CAP-880). (c) Aspidella in positive hyporelief (CAP-549). (d) Sub-millimetric to micrometric flaments in positive epirelief (CAP-881). (e) Exquisite preservation of flaments bearing putative cellular structures (arrows) (CAP-866). (f) Palaeopascichnus in positive epirelief. Image created using Inkscape 1.0 (https ://inksc ape.org/). Assemblage, and also possesses high-fdelity preservation of the fossils. Recently, Becker-Kerber et al.13 described the Itajaí biota, reporting the presence of Palaeopascichnus, discoidal forms, micrometric flaments, Arumberia and fossilized microbial tufs. In this work, we apply a diverse array of techniques to address the fossilization processes of this new Ediacaran locality. More specifcally, we demonstrate the close association of body fossils and microbial mats with volcanic sediments. We then provide a mechanism for the morphological preservation of tissue that includes the rapid formation of authigenic clays during early diagenesis as a result of the alteration of volcanic materials and microbial activity. Results Te Itajaí biota is composed of the well-known chambered taxon Palaeopascichnus, the discoidal forms Aspi- della and Nimbia, and micron-sized algal or bacterial flaments 13 (Fig. 1c–f). Based on the mineralized width (33–193 µm) and bedding plane disposition of the flaments it is suggested that these could be the fossilized remnants of giant flamentous sulphur oxidizing bacteria or eukaryotic algae. Well-preserved reticulated and Arumberia-type microbial mats have also been observed (Fig. 1a,b). We detected three modes of preservation: (1) primarily impressions in positive epirelief (Palaeopascichnus, Aspidella, and micrometric flaments) (Fig. 1d–f); (2) rare impressions as negative epirelief (Aspidella) (Fig. 1c); and (3) full-relief, three-dimensional microbial mats replicated by clays (Fig. 1a,b). To our knowledge, this is the frst case in the geological record of distinctive morphologies of microbial mats (e.g., reticulated tufs and Arumberia) being three-dimensionally replicated by clay minerals. Investigations by microtomography (µ-CT) corroborated the moldic preservation of the flaments (Supplementary Fig. S1a–c) as well as the unusual 3D nature of the microbial mats (Supplementary Fig. S1d–f, and Movie 1). Remarkably, very small flaments (c. 30 µm in width) are preserved as impressions, and some individuals seem to bear putative cellular structures (Fig. 1e). Tis minute detail indicates a level of morphologi- cal retention in molds that is unprecedented in the fossil record because flamentous microfossils are usually permineralized or occur as palynomorphs 14. All the preservation types mentioned above occur in the same lithology: pale-gray millimeter-scale rhyth- mites of mud and silt that were deposited in an upper slope setting subjected to rhyolitic volcaniclastic input (Supplementary Text 1, Supplementary Figs. S2, and S3). Tese layers additionally display abundant evidence of microbial mat development (e.g., reticulated mats, crinkly laminations; Fig. 1a, Supplementary Fig. S1d–f). Te fossil impressions are located in authigenic (i.e., formed in situ) clay-rich laminations characterized by opaque and microcrystalline clay minerals (Fig. 2a; Supplementary Figs. S4 and S5). Tese surfaces can either occur between detrital clay (i.e., inherited) layers or at the bottom or top of siltstone laminae (Fig. 2a, Supplementary Fig. S5). Te authigenic clays also compose the unique three-dimensional microbial mats at the same beds (Figs. 1a,b, 2b,c, Supplementary Figs. S4 and S6a). Identical textures are again observed in 3D clay-replicated microbial mats from distal delta-front millimetric-scale rhythmites (e.g., Arumberia; Supplementary Figs. S2 and S6b) associated with reworked volcaniclasts and positive epirelief impressions of Nimbia. By contrast, when Scientifc Reports | (2021) 11:5013 | https://doi.org/10.1038/s41598-021-84433-0 2 Vol:.(1234567890) www.nature.com/scientificreports/ Figure 2. Pyroclasts from the fossiliferous horizons of the Itajaí Basin. (a) Vertical thin section through micron-sized flament. Note the concentration of authigenic clays on the fossiliferous surface (FS). Vertical thin section under transmitted (b) and refected light (c) showing fossiliferous laminae (white arrows) and tuf (orange arrow) composed of authigenic clay minerals. (d, e) Micron-sized flaments covered by a layer of altered ash. (f) Accretionary pellet (white arrow) and scattered phenocrysts (black arrows). (g) Pyroclasts devitrifed to microcrystalline quartz. (h) Angular clast devitrifed to sericite. (i) Fibrous radial sericite in early-formed fractures. Note the molding relationship (arrow) with the host rock. Image created using Inkscape 1.0 (https :// inksc ape.org/). microbially induced sedimentary structures (MISS) are found in non-volcaniclastic sediments, they are preserved only as impressions in semi-relief without associated authigenic minerals (see Ref.13).
Recommended publications
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond
    National Aeronautics and Space Administration NASA Astrobiology Institute Annual Science Report 2016 Team Report: Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond, Massachusetts Institute of Technology Foundations of Complex Life Evolution, Preservation and Detection on Earth and Beyond Lead Institution: Massachusetts Institute of Technology Team Overview Foundations of Complex Life is a research project investigating the early evolution and preservation of complex life on Earth. We seek insight into the early evolution and preservation of complex life by refining our ability to identify evidence of environmental and biological change in the late Mesoproterozoic to Neoproterozoic eras. Better understanding how signatures of life and environment are preserved will guide how and where to look for evidence for life elsewhere in the universe—directly supporting the Curiosity mission on Mars and helping set strategic goals for future explorations of the Solar System and studies of the early Earth. Our Team pursues these questions under five themes: I. The earliest history of animals: We use methods from molecular biology, experimental taphonomy, and paleontology to explore what caused the early divergence of animals. Principal Investigator: II. Paleontology, sedimentology, and geochemistry: We track the origin of complex Roger Summons protists and animals from their biologically simple origins by documenting the stratigraphy, isotopic records, and microfossil assemblages of well-preserved rock successions from 1200 to 650 million years ago. III. A preservation-induced oxygen tipping point: We investigate how changes in the preservation of organic carbon may have driven the Neoproterozoic oxygenation of the oceans coincident with the appearance of complex life.
    [Show full text]
  • Origins of Life in the Universe Zackary Johnson
    11/4/2007 Origins of Life in the Universe Zackary Johnson OCN201 Fall 2007 [email protected] Zackary Johnson http://www.soest.hawaii.edu/oceanography/zij/education.html Uniiiversity of Hawaii Department of Oceanography Class Schedule Nov‐2Originsof Life and the Universe Nov‐5 Classification of Life Nov‐7 Primary Production Nov‐9Consumers Nov‐14 Evolution: Processes (Steward) Nov‐16 Evolution: Adaptation() (Steward) Nov‐19 Marine Microbiology Nov‐21 Benthic Communities Nov‐26 Whale Falls (Smith) Nov‐28 The Marine Food Web Nov‐30 Community Ecology Dec‐3 Fisheries Dec‐5Global Ecology Dec‐12 Final Major Concepts TIMETABLE Big Bang! • Life started early, but not at the beginning, of Earth’s Milky Way (and other galaxies formed) history • Abiogenesis is the leading hypothesis to explain the beginning of life on Earth • There are many competing theories as to how this happened • Some of the details have been worked out, but most Formation of Earth have not • Abiogenesis almost certainly occurred in the ocean 20‐15 15‐94.5Today Billions of Years Before Present 1 11/4/2007 Building Blocks TIMETABLE Big Bang! • Universe is mostly hydrogen (H) and helium (He); for Milky Way (and other galaxies formed) example –the sun is 70% H, 28% He and 2% all else! Abundance) e • Most elements of interest to biology (C, N, P, O, etc.) were (Relativ 10 produced via nuclear fusion Formation of Earth Log at very high temperature reactions in large stars after Big Bang 20‐13 13‐94.7Today Atomic Number Billions of Years Before Present ORIGIN OF LIFE ON EARTH Abiogenesis: 3 stages Divine Creation 1.
    [Show full text]
  • New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
    Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic.
    [Show full text]
  • N-Body Simulation of the Formation of the Earth-Moon System from a Single Giant Impact Justin C. Eiland , Travis C. Salzillo
    N-Body Simulation of the Formation of the Earth-Moon System from a Single Giant Impact Justin C. Eiland1, Travis C. Salzillo2, Brett H. Hokr3, Justin L. Highland3 & Bryant M. Wyatt2 Summary The giant impact hypothesis is the dominant theory of how the Earth-Moon system was formed. Models have been created that can produce a disk of debris with the proper mass and composition to create our Moon. Models have also been created which start with a disk of debris that eventually coalesces into a Moon. To date, no model has been created that produces a stable Earth-Moon system in a single simulation. Here we combine two recently published ideas in this field, along with a new gravity-centered model, and generate such a simulation. In addition, we show how the method can produce a heterogeneous, iron-deficient Moon made of mantle material from both colliding bodies, and a resultant Earth whose equatorial plane is significantly tilted off the ecliptic plane. The accuracy of the simulation adds credence to the theory that our Moon was born from the violent union of two heavenly bodies. Expansion of summary Prior to landing on the Moon, three theories dominated the origins of the Moon debates1-3. First, could the Moon be a twin planet to Earth formed out of the same cloud of gas and dust? If so, their overall compositions would be very similar1-3. However, the Moon has a relatively small iron core when compared to Earth, so this is unlikely. Second, is the Moon a captured rocky planet? If this were true, the Moon’s composition should be unlike Earth’s.
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • Habitability of the Early Earth: Liquid Water Under a Faint Young Sun Facilitated by Strong Tidal Heating Due to a Nearby Moon
    Habitability of the early Earth: Liquid water under a faint young Sun facilitated by strong tidal heating due to a nearby Moon Ren´eHeller · Jan-Peter Duda · Max Winkler · Joachim Reitner · Laurent Gizon Draft July 9, 2020 Abstract Geological evidence suggests liquid water near the Earths surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snow- ball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction { and therefore heat { in the Hadean R. Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 G¨ottingen, Germany E-mail: [email protected] J.-P. Duda G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many E-mail: [email protected] M. Winkler Max Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Ger- many E-mail: [email protected] J. Reitner G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many G¨ottingenAcademy of Sciences and Humanities, 37073 G¨ottingen,Germany E-mail: [email protected] L.
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]
  • Geologic Time
    Alles Introductory Biology Lectures An Introduction to Science and Biology for Non-Majors Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge The Origin of our Solar System and Geologic Time ----------------------- “Out of the cradle onto dry land here it is standing: atoms with consciousness; matter with curiosity.” Richard Feynman Introduction “Science analyzes experience, yes, but the analysis does not yet make a picture of the world. The analysis provides only the materials for the picture. The purpose of science, and of all rational thought, is to make a more ample and more coherent picture of the world, in which each experience holds together better and is more of a piece. This is a task of synthesis, not of analysis.”—Bronowski, 1977 • Because life on Earth is an effectively closed historical system, we must understand that biology is an historical science. One result of this is that a chronological narrative of the history of life provides for the integration of all biological knowledge. • The late Preston Cloud, a biogeologist, was one of the first scientists to fully understand this. His 1978 book, Cosmos, Earth, and Man: A Short History of the Universe, is one of the first and finest presentations of “a more ample and more coherent picture of the world.” • The second half of this course follows in Preston Cloud’s footsteps in presenting the story of the Earth and life through time. From Preston Cloud's 1978 book Cosmos, Earth, and Man On the Origin of our Solar System and the Age of the Earth How did the Sun and the planets form, and what lines of scientific evidence are used to establish their age, including the Earth’s? 1.
    [Show full text]
  • Geologic Time
    MUSEUMS of WESTERN COLORADO EDUCATION Lesson1: Geologic Time This introductory lesson will give students an understanding of geologic time. The goal is to provide a context for the following lessons in terms of when events happened in relation to each other and present day. Student objectives: Students will be able to: Explain how the geologic time scale is used to organize the Earth’s history Design their own geologic time scales Describe major events in Earth’s history Determine how different events in Earth’s history relate to each other NGSS: MS-ESS1-4 Materials: Measuring tape, Sidewalk Chalk, Art Supplies, Major Events in Earth’s History handout, Geologic Timeline Quiz Time: 2-3 class periods Information relevant to geologic time for teachers: Geologic Time Scale Much has happened during the Earth’s 4.6-billion-year history. The geologic time scale is a way to organize the Earth’s past into different units based on events that have taken place. This is done by relating the stratigraphy (rock layers) to radiometric ages (see below). Absolute vs. Relative Dating The numerical (absolute) ages for certain rock layers obtained by using radiometric dating—a method that looks at the proportions of certain radioactive isotopes remaining in a sample. Samples can be either rocks or the fossils themselves. Radiometric dating is a reliable method because the unstable radioactive elements have a known half-life, which is the amount of time it takes for half of the radioactive isotopes to decay. During radioactive decay, the original isotope, called the parent isotope spontaneously converts to a new isotope called the daughter.
    [Show full text]
  • Zebra Rock and Other Ediacaran Paleosols from Western Australia
    Australian Journal of Earth Sciences An International Geoscience Journal of the Geological Society of Australia ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/taje20 Zebra rock and other Ediacaran paleosols from Western Australia G. J. Retallack To cite this article: G. J. Retallack (2020): Zebra rock and other Ediacaran paleosols from Western Australia, Australian Journal of Earth Sciences, DOI: 10.1080/08120099.2020.1820574 To link to this article: https://doi.org/10.1080/08120099.2020.1820574 Published online: 30 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=taje20 AUSTRALIAN JOURNAL OF EARTH SCIENCES https://doi.org/10.1080/08120099.2020.1820574 Zebra rock and other Ediacaran paleosols from Western Australia G. J. Retallack Department of Earth Sciences, University of Oregon, Eugene, USA ABSTRACT ARTICLE HISTORY Zebra rock is an ornamental stone from the early Ediacaran, Ranford Formation, around and in Received 15 June 2020 Lake Argyle, south of Kununurra, Western Australia. It has been regarded as a marine clay, liquid Accepted 2 September 2020 crystal, groundwater alteration, unconformity paleosol or product of acid sulfate weathering. This KEYWORDS study supports the latter hypothesis and finds modern analogues for its distinctive red banding in Ranford Formation; mottling of gleyed soils. Other acid sulfate paleosols of desert playas (Gypsids) are also are found Ediacaran; paleosols; in the Ranford Formation, as well as calcareous desert paleosols (Calcids). The megafossil Yangtziramulus; Palaeopaschnicnus also found in associated grey shales may have been a chambered protozoan, Palaeopascichnus but Yangtziramulus in calcic paleosols is most like a microbial earth lichen.
    [Show full text]
  • Ediacaran Extinction and Cambrian Explosion
    Opinion Ediacaran Extinction and Cambrian Explosion 1, 2 3 4 Simon A.F. Darroch, * Emily F. Smith, Marc Laflamme, and Douglas H. Erwin The Ediacaran–Cambrian (E–C) transition marks the most important geobio- Highlights logical revolution of the past billion years, including the Earth’s first crisis of We provide evidence for a two-phased biotic turnover event during the macroscopic eukaryotic life, and its most spectacular evolutionary diversifica- Ediacaran–Cambrian transition (about tion. Here, we describe competing models for late Ediacaran extinction, 550–539 Ma), which both comprises the Earth’s first major biotic crisis of summarize evidence for these models, and outline key questions which will macroscopic eukaryotic life (the disap- drive research on this interval. We argue that the paleontological data suggest pearance of the enigmatic ‘Ediacara – – two pulses of extinction one at the White Sea Nama transition, which ushers biota’) and immediately precedes the Cambrian explosion. in a recognizably metazoan fauna (the ‘Wormworld’), and a second pulse at the – E C boundary itself. We argue that this latest Ediacaran fauna has more in Wesummarizetwocompetingmodelsfor – common with the Cambrian than the earlier Ediacaran, and thus may represent the turnover pulses an abiotically driven model(catastrophe)analogoustothe‘Big the earliest phase of the Cambrian Explosion. 5’ Phanerozoic mass extinction events, and a biotically driven model (biotic repla- Evolutionary and Geobiological Revolution in the Ediacaran cement) suggesting that the evolution of The late Neoproterozoic Ediacara biota (about 570–539? Ma) are an enigmatic group of soft- bilaterian metazoans and ecosystem engineering were responsible. bodied organisms that represent the first radiation of large, structurally complex multicellular eukaryotes.
    [Show full text]