bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.161927; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dihydroxyacetone phosphate signals glucose availability to mTORC1 2 3 Jose M. Orozco1,2,3,4, Patrycja A. Krawczyk1,2,3,4, Sonia M. Scaria1,2,3,4, Andrew L. 4 Cangelosi1,2,3,4, Sze Ham Chan1, Tenzin Kunchok1, Caroline A. Lewis1, and David M. 5 Sabatini1,2,3,4* 6 7 1Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 8 Department of Biology, 455 Main Street, Cambridge, Massachusetts 02142, USA. 2Howard 9 Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 10 Cambridge, Massachusetts 02139, USA. 3Koch Institute for Integrative Cancer Research and 11 Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, 12 Cambridge, Massachusetts 02139, USA. 4Broad Institute of Harvard and Massachusetts 13 Institute of Technology, 415 Main Street, Cambridge, Massachusetts 02142, USA. 14 *Correspondence:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.161927; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 In response to nutrients, the mTOR complex 1 (mTORC1) kinase regulates cell growth by 3 setting the balance between anabolic and catabolic processes. To be active, mTORC1 requires 4 the environmental presence of amino acids and glucose, which provide the building blocks for 5 the biosynthesis of most macromolecules.