Reeves Et Al 2018.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mosquito Species Identification Using Convolutional Neural Networks With
www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
North Central Branch 67Th Annual Meeting
NORTH CENTRAL BRANCH ENTOMOLOGICAL SOCIETY OF AMERICA TH 67 ANNUAL MEETING PRESIDENT: FRED BAXENDALE THE EMBASSY SUITES 1040 P STREET LINCOLN, NE 68508 NCB-ESA CORPORATE SPONSORS AMVAC BASF Bayer CropSciences Dow AgroSciences DuPont FMC Inc. Li-Cor Inc. Monsanto Pioneer Hi-Bred International Inc. Syngenta Valent Winfield Solutions STUDENT CLUBS Kansas State University University of Kentucky University of Minnesota University of Nebraska–Lincoln UNIVERSITY CONTRIBUTORS University of Nebraska–Lincoln CONTENTS Meeting Logistics .......................................................... 2 2012 NCB Meeting Organizers ...................................... 5 2011-12 NCB-ESA Officers and Committees ................. 6 2012 NCB Award Recipients .......................................... 8 Sunday, June 3, 2012 Afternoon ....................................................... 23 Evening ........................................................... 26 Monday, June 4, 2012 Morning .......................................................... 27 Afternoon ....................................................... 53 Evening ........................................................... 59 Tuesday, June 5, 2012 Morning .......................................................... 60 Afternoon ....................................................... 74 Evening ........................................................... 82 Wednesday, June 6, 2012 ........................................... 83 Author Index .............................................................. -
The Mosquitoes of Minnesota
Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · · -
Diptera: Corethrellidae) Author(S): Priyanka De Silva and Ximena E
First Report of the Mating Behavior of a Species of Frog-Biting Midge (Diptera: Corethrellidae) Author(s): Priyanka De Silva and Ximena E. Bernal Source: Florida Entomologist, 96(4):1522-1529. 2013. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.096.0434 URL: http://www.bioone.org/doi/full/10.1653/024.096.0434 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 1522 Florida Entomologist 96(4) December 2013 FIRST REPORT OF THE MATING BEHAVIOR OF A SPECIES OF FROG-BITING MIDGE (DIPTERA: CORETHRELLIDAE) PRIYANKA DE SILVA1,* AND XIMENA E. BERNAL1, 2 1Department of Biological Science, Texas Tech University, P.O. Box 43131, Lubbock, TX, 79409, USA 2Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama *Corresponding author; E-mail: [email protected] ABSTRACT Swarming is a common mating behavior present throughout Diptera and, in particular, in species of lower flies (Nematocerous Diptera). -
Table of Contents
Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner -
Life Cycle, Bio-Ecology and DNA Barcoding of Mosquitoes Aedes
Research Article Life Cycle, Bio-ecology and DNA Barcoding of mosquitoes Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) A N Anoopkumar1, Sreedev Puthur2, Paulson Varghese3, Sharrel Rebello4, Embalil Mathachan Aneesh5 Abstract Mosquito borne diseases remain as the world’s most severe insect-borne disease with excessive rates of morbidity and mortality. Mosquitoes transmit various severe diseases such as dengue, malaria, filariasis, viral encephalitis, chickungunya and zika virus infections causing millions of deaths worldwide; and no part of the world is liberated from mosquito borne diseases. Aedes aegypti and Aedes albopictus represent the two important mosquito vectors for dengue virus transmission in America and Asia. According to the Integrated Disease Surveillance Project (ISDP), 8888 confirmed dengue infections were reported from January 1st to June 30th 2017 in Kerala state, India with 409 confirmed dengue infections reported from Thrissur district of Kerala including Irinjalakuda Municipality (the area of this study). Additionally 15 confirmed and 56 suspected dengue fever deaths were also reported from Kerala state, India. Current epidemics of dengue and severe mosquito borne diseases from Kerala have exposed the need for more comprehensive understanding of the mosquito species types, their vectorial capacity and the habitat characteristics that offer them for proper breeding environment in the study area. The present study also explored the applicability of CO1-based DNA bar coding as an alternative approach to identify mosquito species such as A. aegypti and A. albopictus. Keywords: Aedes aegypti, Aedes albopictus,CO1 barcoding, vectors Introduction Mosquitoes are significant groups of arthropods that inhabit aquatic habitats. They are probably adverse arthropods, which transmits wide range of pathogens that cause drastic deadly diseases such as human malaria, dengue, filariasis and viral encephalitis[1]. -
A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh). -
1. Tribe Orthopodomyiini
IDENTIFICATION OF ORTHOPODOMYIA, KIMIA, MALAYA, TOPOMYIA, TRIPTEROIDES, AND TOXORHYNCHITES quito fauna of this area will contribute substantially to a better understanding of the biol- ogy and evolution of mosquitoes. GENERAL SYSTEMATICS The morphological characters used here are based on original observations and characters used in previously published literature. The following references were espe- cially helpful: Edwards (1922, 1926),Brug (1931), Barraud (1934), Thurman (1959), and Tanaka et al. (1979) for the species in tribes Orthopodomyiini, Toxorhynchitini, and Sabethini; Zavortink (1971) for Orthopodomyia; Delfinado and Hodges (1968), and Mattingly (1981) for Tripteroides; Ramalingam (1975, 1983), Klein (1977), Miyagi et al. (1983, 1989), Dong and Wang (1988), and Miyagi and Toma (1989), and Dong et al. (1995), for Topomyia; and Harbach et al. (2007) for Kimia. SYSTEMATICS SPECIFIC TO THE THAI FAUNA Primary references dealing specifically with the species of Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites that occur in Thailand include Thurman (1959), Delfinado and Hodges (1968), Zavortink (1971), Mattingly (1981), Miyagi and Toma (1989), Harrison et al. (1991), Rattanarithikul et al. (2005a), and Harbach et al. (2007). Species of the genera covered herein are basically forest mosquitoes. The larvae breed in natural and artificial container habitats (Table 2). Kimia, Malaya, Topomyia, and Tripteroides are genera of tribe Sabethini. Toxorhynchites was recognized as the sole genus of subfamily Toxorhynchitinae until this taxon was reduced to tribal status within subfamily Culicinae (tribe Toxorhynchitini) based on cladistic analyses of morphological and molecular data (Harbach and Kitching, 1998; Mitchell et al., 2002). Orthopodomyia is the only genus of tribe Orthopodomyiini. 1. Tribe Orthopodomyiini Orthopodomyia. -
Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2. -
Phylogenetic and Phenetic Systematics of The
195 PHYLOGENETICAND PHENETICSYSTEMATICS OF THE OPISTHOP0ROUSOLIGOCHAETA (ANNELIDA: CLITELLATA) B.G.M. Janieson Departnent of Zoology University of Queensland Brisbane, Australia 4067 Received September20, L977 ABSTMCT: The nethods of Hennig for deducing phylogeny have been adapted for computer and a phylogran has been constructed together with a stereo- phylogran utilizing principle coordinates, for alL farnilies of opisthopor- ous oligochaetes, that is, the Oligochaeta with the exception of the Lunbriculida and Tubificina. A phenogran based on the sane attributes conpares unfavourably with the phyLogralnsin establishing an acceptable classification., Hennigrs principle that sister-groups be given equal rank has not been followed for every group to avoid elevation of the more plesionorph, basal cLades to inacceptabl.y high ranks, the 0ligochaeta being retained as a Subclass of the class Clitellata. Three orders are recognized: the LumbricuLida and Tubificida, which were not conputed and the affinities of which require further investigation, and the Haplotaxida, computed. The Order Haplotaxida corresponds preciseLy with the Suborder Opisthopora of Michaelsen or the Sectio Diplotesticulata of Yanaguchi. Four suborders of the Haplotaxida are recognized, the Haplotaxina, Alluroidina, Monil.igastrina and Lunbricina. The Haplotaxina and Monili- gastrina retain each a single superfanily and fanily. The Alluroidina contains the superfamiJ.y All"uroidoidea with the fanilies Alluroididae and Syngenodrilidae. The Lurnbricina consists of five superfaniLies. -
Diptera: Culicidae) in RELATION to EPIZOOTIC TRANSMISSION of EASTERN EQUINE ENCEPHALITIS VIRUS in CENTRAL FLORIDA
SEASONAL CHANGES IN HOST USE AND VECTORIAL CAPACITY OF Culiseta melanura (Diptera: Culicidae) IN RELATION TO EPIZOOTIC TRANSMISSION OF EASTERN EQUINE ENCEPHALITIS VIRUS IN CENTRAL FLORIDA By RICHARD G. WEST A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Richard G. West 2 ACKNOWLEDGMENTS I would like to thank my advisor Nathan Burkett-Cadena for his invaluable guidance and instruction and Derrick Mathias and Jonathan Day for serving on my committee and sharing their expertise and helpful input. I would like to thank the following for their assistance with mosquito sampling: Carl Boohene, Jackson Mosley, Hugo Ortiz Saavedra, and Roger Johnson at Polk County Mosquito Control District; Kelly Deutsch, Rafael Melendez, and others at Orange County Mosquito Control District; and Sue Bartlett, Miranda Tressler, Hong Chen, Drake Falcon, Tia Vasconcellos, and Brandi Anderson at Volusia County Mosquito Control District. This study could not have been done without their cooperation and hard work. I would also like to thank Carolina Acevedo for help with bloodmeal analysis, Erik Blosser for help with mosquito identifications, Diana Rojas and Annsley West for helping with field collections, and to all the faculty, staff, and students at FMEL for their support and encouragement. Finally, I thank my wife Annsley for her faithful encouragement and love and for my Lord Jesus and family for their support. This research is supported by the CDC Southeast Gateway Center of Excellence and the University of Florida. 3 TABLE OF CONTENTS Page ACKNOWLEDGMENTS .................................................................................................