Affinity Chromatography-Biomolecules

Total Page:16

File Type:pdf, Size:1020Kb

Affinity Chromatography-Biomolecules GE Healthcare Affinity Chromatography Affinity Chromatography – Vol. 3: Specific Groups of Biomolecules 3: Specific Groups Vol. www.gelifesciences.com GE, GE monogram, Amersham, ÄKTA, Biacore, BioProcess, Capto, Cy, CyDye, ECL, ECL Plex, ECL Select, ExcelGel, GSTrap, HiPrep, HiScale, HiScreen, HiTrap, ImageQuant, Hybond, MiniTrap, MabSelect, MiniTrap, MultiTrap, PhastGel, PhastSystem, PrimeView, Protran, Sephadex, Sepharose, SPARTAN, SpinTrap, Superdex, Typhoon, Tricorn, UNICORN, and Whatman are trademarks of General Electric Company. Coomassie is a trademark of Thermo Fisher Scientific LLC. Neutravidin is a trademark of Pierce Biotechnology, Inc. Nonidet is a trademark of Air Products and Chemicals, Inc. Pefabloc is a trademark of DSM IP Assets B.V. Tween is a trademark of Croda Group of Companies. All other third-party trademarks are the property of their respective owners. The purchase of CyDye products includes a limited license to use the CyDye products for internal research and development but not for any commercial purposes. A license to use the Cy and CyDye trademarks for commercial purposes is subject to a separate license agreement with GE Healthcare. Commercial use shall include: 1. Sale, lease, license or other transfer of the material or any material derived or produced from it. 2. Sale, lease, license or other grant of rights to use this material or any material derived or produced from it. 3. Use of this material to perform services for a fee for third parties, including contract research and drug screening. If you require a commercial license to use the Cy and CyDye trademarks please contact: [email protected]. VIIISelect incorporates BAC BV’s proprietary ligand technology, which has been exclusively licensed to GE Healthcare in the field of purification of beta domain depleted recombinant factor VIII. Other use of Affinity Chromatography this product may require a separate license from BAC BV, Huizerstraatweg 28, 1411 GP Naarden, The Netherlands. IXSelect incorporates BAC BV’s proprietary ligand technology, which has been exclusively licensed to Vol. 3: Specific Groups of Biomolecules GE Healthcare Bio-Sciences AB GE Healthcare for use in chromatography separation. GCSFSelect incorporates BAC BV’s proprietary ligand technology, which has been exclusively licensed Björkgatan 30 to GE Healthcare for use in chromatography separation. 751 84 Uppsala © 1988–2016 General Electric Company. First published 1988. Sweden All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare that supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information. GE Healthcare UK Ltd, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK GE Healthcare Bio-Sciences Corp. 100 Results Way, Marlborough, MA 01752, USA GE Healthcare Dharmacon, Inc., 2650 Crescent Dr., Lafayette, CO 80026, USA HyClone Laboratories, Inc., 925 W 1800 S, Logan, UT 84321, USA GE Healthcare Europe GmbH, Munzinger Strasse 5, D-79111 Freiburg, Germany imagination atGE work Healthcare Japan Corporation, Sanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan imagination at work For local office contact information, visit www.gelifesciences.com/contact imagination at work 18102229 AF 03/2016 Handbooks from GE Healthcare Life Sciences For more information refer to www.gelifesciences.com/handbooks GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences GST Gene Fusion System Life Sciences Nucleic Acid Sample Vol. 1: Antibodies Handbook Preparation for 18103746 18115758 Downstream Analyses Principles and Methods Nucleic Acid Sample GST Gene Preparation for 28962400 Affinity Chromatography Fusion System Downstream Analyses Vol. 1: Antibodies Handbook Principles and Methods GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences High-throughput Process Life Sciences Protein Sample Vol. 2: Tagged Proteins High-throughput Development with Preparation Process Development with PreDictor™ Plates 18114275 Principles and Methods PreDictor Plates Handbook Principles and Methods 28988741 28940358 Protein Sample Affinity Chromatography Preparation Vol. 2: Tagged Proteins Handbook GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences Hydrophobic Interaction Life Sciences Purifying Challenging Vol. 3: Specific Groups of and Reversed Phase Proteins Biomolecules Chromatography Principles and Methods 18102229 Principles and Methods 28909531 Hydrophobic Interaction Purifying and Reversed Phase 11001269 Challenging Proteins Chromatography Affinity Chromatography Principles and Methods Principles and Methods Vol. 3: Specific Groups of Biomolecules GE Healthcare GE Healthcare GE Healthcare Life Sciences ÄKTA Laboratory-scale Life Sciences Imaging Life Sciences Spectrophotometry Chromatography 473 532 635 650 685 785 Principles and Methods Handbook Laser UV IR epi Systems trans 29020301 29033182 312 CCD UV IR W 365 460 520 630 710 Instrument Management epi Handbook Imaging Principles and Methods ÄKTA™ Laboratory-scale Spectrophotometry Chromatography Systems 29010831 Handbook Instrument Management Handbook GE Healthcare GE Healthcare GE Healthcare Life Sciences Biacore Assay Ion Exchange Life Sciences Strategies for Protein Biacore™ Assay Handbook Handbook Chromatography Purification 29019400 Principles and Methods Handbook 11000421 28983331 Ion Exchange Strategies for Chromatography Protein Purif ication Principles and Methods Handbook GE Healthcare GE Healthcare GE Healthcare Life Sciences Biacore Sensor Surface Life Sciences Isolation of Life Sciences Western Blotting Biacore Handbook Mononuclear Cells Principles and Methods Sensor Surface Handbook BR100571 Methodology and 28999897 Applications Isolation of 18115269 mononuclear cells Methodology and applications Western Blotting Principles and Methods GE Healthcare GE Healthcare GE Healthcare Life Sciences Cell Separation Media Life Sciences Microcarrier Cell Culture Life Sciences 2-D Electrophoresis using Methodology and Principles and Methods Immobilized pH Gradients Applications 18114062 Principles and Methods 18111569 80642960 Cell Separation Media 2-D Electrophoresis Principles and Methods Methodology and applications Microcarrier Cell Culture Principles and Methods GE Healthcare GE Healthcare Life Sciences Size Exclusion Life Sciences Multimodal Chromatography Chromatography Principles and Methods Handbook 18102218 29054808 Size Exclusion Chromatography Multimodal Principles and Methods Chromatography Handbook imagination at work Affinity Chromatography Vol. 3: Specific Groups of Biomolecules Content Introduction.........................................................................................................................................9 Symbols .............................................................................................................................................................................10 Common acronyms and abbreviations .............................................................................................................10 Chapter 1 Principles of affinity chromatography ........................................................................................ 13 Components of an affinity chromatography medium ...............................................................................15 Matrix ..........................................................................................................................................................................15 Ligand .........................................................................................................................................................................16 Spacer arms ............................................................................................................................................................17 Chapter 2 Affinity chromatography in practice ........................................................................................... 19 Selection of chromatography media .................................................................................................................19 Selection of format ......................................................................................................................................................19 Selection of equipment ...........................................................................................................................................20 Selection of purification method ..........................................................................................................................21 Preparation of sample and buffers ..............................................................................................................21 Flow rates .................................................................................................................................................................21 Equilibration .............................................................................................................................................................21 Sample application and wash ........................................................................................................................21 Elution .........................................................................................................................................................................22
Recommended publications
  • Protocols and Tips in Protein Purification
    Department of Molecular Biology & Biotechnology Protocols and tips in protein purification or How to purify protein in one day Second edition 2018 2 Contents I. Introduction 7 II. General sequence of protein purification procedures 9 Preparation of equipment and reagents 9 Preparation and use of stock solutions 10 Chromatography system 11 Preparation of chromatographic columns 13 Preparation of crude extract (cell free extract or soluble proteins fraction) 17 Pre chromatographic steps 18 Chromatographic steps 18 Sequence of operations during IEC and HIC 18 Ion exchange chromatography (IEC) 19 Hydrophobic interaction chromatography (HIC) 21 Gel filtration (SEC) 22 Affinity chromatography 24 Purification of His-tagged proteins 25 Purification of GST-tagged proteins 26 Purification of MBP-tagged proteins 26 Low affinity chromatography 26 III. “Common sense” strategy in protein purification 27 General principles and tips in “common sense” strategy 27 Algorithm for development of purification protocol for soluble over expressed protein 29 Brief scheme of purification of soluble protein 36 Timing for refined purification protocol of soluble over -expressed protein 37 DNA-binding proteins 38 IV. Protocols 41 1. Preparation of the stock solutions 41 2. Quick and effective cell disruption and preparation of the cell free extract 42 3. Protamin sulphate (PS) treatment 43 4. Analytical ammonium sulphate cut (AM cut) 43 5. Preparative ammonium sulphate cut 43 6. Precipitation of proteins by ammonium sulphate 44 7. Recovery of protein from the ammonium sulphate precipitate 44 8. Analysis of solubility of expression 45 9. Analysis of expression for low expressed His tagged protein 46 10. Bio-Rad protein assay Sveta’s easy protocol 47 11.
    [Show full text]
  • PROTEIN a CHROMATOGRAPHY – the PROCESS ECONOMICS DRIVER in Mab MANUFACTURING
    PROCESS Application Note PROTEIN A CHROMATOGRAPHY – THE PROCESS ECONOMICS DRIVER IN mAb MANUFACTURING THE OPTIMIZATION OF THE PROTEIN A CAPTURE STEP IN DOWNSTREAM PROCESSING PLATFORMS CAN CONSIDER- ABLY IMPROVE PROCESS EFFICIENCY AND ECONOMICS OF INDUSTRIAL ANTIBODY MANUFACTURING. PARAMETERS LIKE RESIN REUSE AND ITS CAPACITY CONTRIBUTE CONSIDERABLY TO THE PRODUCTION COSTS. THE USE OF A HIGH CAPACITY PROTEIN A RESIN CAN IMPROVE THE PROCESS EFFICIENCY AND ECONOMICS. THIS PAPER PRESENTS THE KEY FEATURES OF A NEW CAUSTIC STABLE PROTEIN A RESIN PROVIDING EXTREMELY HIGH IgG BINDING CAPACITIES. Biopharmaceuticals represent an ever growing important Protein A affinity resins are dominating the Cost of Goods part of the pharmaceutical industry. The market for recom- (COGs) of mAb manufacturing. Bioreactors at the 10.000 L binant proteins exceeded $ 100 billion in 2011 with a scale operating at a titer of about 1g/L typically generate contribution of 45% sales by monoclonal antibodies (mAbs) costs of $ 4-5 million (2). Therefore the Protein A capturing (1). The introduction of the first mAb biosimilars in Europe step is the key driver to improve process economics. Besides raised the competitive pressure in an increasingly crowded the capacity of the resin, life time and cycle numbers market place. The industry faces challenges, such as patent significantly contribute to the production costs in mAb expirations accompanied by approvals of corresponding manufacturing. biosimilars, failures in clinical trials/rejections or the refusal of health insurers to pay for new drugs. Today, the IgG binding capacities of most Protein A resins are in the range of 30-50 g/L, offering significant advantages These challenges force the industry to minimize risk and time- for the processing of high-titer feedstreams when compared to-market and to proceed more cautiously.
    [Show full text]
  • Manufacturing of Agarose-Based Chromatographic Media with Controlled Pore and Particle Size
    MANUFACTURING OF AGAROSE-BASED CHROMATOGRAPHIC MEDIA WITH CONTROLLED PORE AND PARTICLE SIZE by Nicolas Ioannidis A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering College of Engineering and Physical Sciences The University of Birmingham 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Chromatography remains the most commonly employed method for achieving high resolution separation of large-sized biomolecules, such as plasmid DNA, typically around 150-250 nm in diameter. Currently, fractionation of such entities is performed using stationary phases designed for protein purification, typically employing pore sizes of about 40 nm. This results into a severe underexploitation of the porous structure of the adsorbent as adsorption of plasmid DNA occurs almost exclusively on the outer surface of the adsorbent. In this study, the effect of two processing parameters, the ionic strength of agarose solution and quenching temperature, on the structure of the resulting particles was investigated. Three characterization methods, Atomic Force and cryo-Scanning Electron microscopy, as well as mechanical testing of single particles where used to quantify the effect of these parameters on the pore size/size distribution and mechanical properties of the adsorbent.
    [Show full text]
  • EXPRESSION, PURIFICATION and CRYSTALLIZATION TRIALS of SMALL RUBBER PARTICLE PROTEIN (SRPP) from Hevea Brasiliensis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@USM EXPRESSION, PURIFICATION AND CRYSTALLIZATION TRIALS OF SMALL RUBBER PARTICLE PROTEIN (SRPP) FROM Hevea brasiliensis SARANPAL SINGH A/L SATINDER SINGH UNIVERSITI SAINS MALAYSIA EXPRESSION, PURIFICATION AND CRYSTALLIZATION TRIALS OF SMALL RUBBER PARTICLE PROTEIN (SRPP) FROM Hevea brasiliensis by SARANPAL SINGH A/L SATINDER SINGH Thesis submitted in fulfillment of requirements for the degree of Master of Science February ACKNOWLEDGEMENT I owe my highest gratitude to Professor Dr. K. Sudesh Kumar and Dr. Teh Aik Hong for being my true mentors and for always being available when needed. My gratitude goes to them for their thoughtful insights, motivation, patience, professional rigour, and intellectual contributions. I could not have imagined having better advisors and mentors during the pursuit of my master’s degree. Their meticulous reading and critical comments on my drafts gave me the kind of feedback that always revitalized, encouraged, and propelled me forward with enthusiasm. It is an honor to have work with them. I am indebted and grateful for the encouragement and inspiration shared by my lab mates and post-docs at CCB: Chiam Nyet Cheng, Chung Corrine, Jess Loh Swee Cheng, Sam Ka Kei, Yue Keong Choon, Tengku Yasmin, Sim Pei Fang, Dr. Go Furusawa, Dr. Sheri-Ann Tan, Dr. Suganthi Appalasamy, Dr. Lau Nyok Sean, Dr.Farrukh Jamil, Dr. Abhilash Usharraj, and Dr. Gincy Paily Thottahil. I also appreciate the help of the administrative department of CCB for being helpful: Ms. Tengku Zalina Tengku Ahmad, Cik Nurul Farhana Che Hassan, and Ms.
    [Show full text]
  • WO 2015/094804 Al 25 June 2015 (25.06.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/094804 Al 25 June 2015 (25.06.2015) P O P C T (51) International Patent Classification: (74) Agent: HEMENWAY, Carl; The Dow Chemical Com C13B 50/00 (201 1.01) BOW 61/14 (2006.01) pany, Intellectual Property, P.O. Box 1967, Midland, BOW 61/02 (2006.01) Michigan 48641-1967 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 14/069248 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, ' December 2014 (09.12.2014) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/917,508 18 December 201 3 (18. 12.2013) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: DOW GLOBAL TECHNOLOGIES LLC [US/US]; 2040 Dow Center, Midland, Michigan 48674 (84) Designated States (unless otherwise indicated, for every (US).
    [Show full text]
  • Differences Between Homogeneous Spermidine Synthases Isolated
    J. Biochem. 96, 1273-1281 (1984) Differences between Homogeneous Spermidine Synthases Isolated from Rat and Pig Liver1 Banri YAMANOHA,* Keijiro SAMEJIMA,*,z Terumi NAKAJIMA,** and Tadashi YASUHARA** *Tokyo Biochemical Research Institute , Takada, Toshima-ku, Tokyo 171, and **Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Kandasurugadai, Chiyoda-ku, Tokyo 101 Received for publication, May 25, 1984 Spermidine synthase was purified to homogeneity from rat and pig liver by a method modified from a previously reported one using DEAE-Sepharose, S-adenosyl(5•Œ)- 3-thiopropylamine-Sepharose affinity chromatography, Sephacryl S-300 gel filtration and polyacrylamide gel electrophoresis. No apparent difference between the two enzymes was observed in specific activity, molecular weight (74,000), or subunit composition (two subunits). However, significant differences were observed in their pI values, which were 5.16 for the pig enzyme and 5.34 for the rat enzyme, and their peptide maps. Amino acid compositions of the two enzymes were closely related, but differed significantly in some amino acids. In addition, the rat enzyme was more sensitive to inhibition by S-adenosyl-1,8-diamino-3-thiooctane than the pig enzyme. Spermidine synthase [EC 2.5.1.16] catalyzes the On the other hand, a recent report (4) has shown transfer of the propylamine moiety from S-adeno that there were significant differences among sper syl(5•Œ)-3-methylthiopropylamine (decarboxy Ado midine synthases from different bacterial species Met) to putrescine to form spermidine. The en and rat ventral prostate in their responses to two zyme has been purified to homogeneity from potent spermidine synthase inhibitors, S-adenosyl- Escherichia coli (1), rat prostate (2), and bovine 1,8-diamino-3-thiooctane (AdoDATO) (5, 6) and brain (3); each has shown very similar properties dicyclohexylamine (7).
    [Show full text]
  • Affinity Separation 3
    Sepsci*1*TSK*Venkatachala=BG I / AFFINITY SEPARATION 3 AFFINITY SEPARATION K. Jones, Affinity Chromatography Ltd, Freeport, Separation and puriRcation methods for biological Ballsalla, Isle of Man, UK macromolecules vary from the very simple to the esoteric. The type of technique adopted is basically Copyright ^ 2000 Academic Press a function of source, the fragility of the molecule and the purity required. Traditionally, high purity protein Introduction pharmaceuticals have used multistage processing, but this is very inefRcient as measured by the well- Of the collection of separation technologies known documented fact that 50}80% of total production as ‘afRnity’, afRnity chromatography is by far the costs are incurred at the separation/puriRcation stage. most widely used variant. AfRnity chromatography is In contrast, the highly selective indigenous properties becoming increasingly important as the speed of the of the afRnity method offer the alternative of revolution taking place in biotechnology processing very elegant single-step puriRcation strategies. The increases. The concept of an ‘afRnity’ separation re- inherent simplicity and universality of the method has sults from a naturally occurring phenomenon existing already generated a wide range of separation tech- within all biological macromolecules. Each biological nologies, mostly based upon immobilized naturally macromolecule contains a unique set of intermolecu- occurring proteinaceous ligands. By comparing the lar binding forces, existing throughout its internal ‘old’ technologies of ‘natural’ ligands or multistage and external structure. When alignment occurs be- processing with the ‘new’, exempliRed by synthetic tween a speciRc site of these forces in one molecule designed ligands, the most recent advances in af- with the site of a set of forces existing in another Rnity processing can be described.
    [Show full text]
  • Aqueous Two-Phase System (ATPS): an Overview and Advances in Its
    Iqbal et al. Biological Procedures Online (2016) 18:18 DOI 10.1186/s12575-016-0048-8 REVIEW Open Access Aqueous two-phase system (ATPS): an overview and advances in its applications Mujahid Iqbal1, Yanfei Tao1*, Shuyu Xie1, Yufei Zhu1, Dongmei Chen1, Xu Wang1, Lingli Huang1, Dapeng Peng1, Adeel Sattar1, Muhammad Abu Bakr Shabbir2, Hafiz Iftikhar Hussain2, Saeed Ahmed2 and Zonghui Yuan1,2* Abstract Aqueous two-phase system (ATPS) is a liquid-liquid fractionation technique and has gained an interest because of great potential for the extraction, separation, purification and enrichment of proteins, membranes, viruses, enzymes, nucleic acids and other biomolecules both in industry and academia. Although, the partition behavior involved in the method is complex and difficult to predict. Current research shows that it has also been successfully used in the detection of veterinary drug residues in food, separation of precious metals, sewage treatment and a variety of other purposes. The ATPS is able to give high recovery yield and is easily to scale up. It is also very economic and environment friendly method. The aim of this review is to overview the basics of ATPS, optimization and its applications. Keywords: Aqueous two-phase system (ATPS), Biomolecule separation, Solvent extraction, Veterinary drug residues History and background hydrophobic groups [5] Interested readers about In 1896, Martinus Willem Beijerinck accidently found aqueous two-phase affinity partitioning (ATPAP) are the ATPS while mixing an aqueous solution of starch referred to an excellent review by Ruiz-Ruiz et al. [6]. and gelatin. However, its real application was discovered Water as the main component of both phases in ATPS by Per-Åke Albertsson.
    [Show full text]
  • Mab) Purification by Counter Current Chromatography (CCC
    Monoclonal antibody (mAb) purification by Counter Current Chromatography (CCC) A thesis submitted to Brunel University for the degree of Doctor of Philosophy by Samantha Fernando Institute for Bioengineering, Brunel University, London December 2011 Abstract Counter current chromatography (CCC) is a form of liquid liquid chromatography, which the Brunel Institute for Bioengineering (BIB) team have developed to process scale. In this thesis, its application has been successfully extended to the rapid, scalable purification of monoclonal antibodies (mAb) from mammalian cell culture, using aqueous two-phase systems (ATPS) of inorganic salts and polymer. A polyethylene glycol (PEG) and sodium citrate system was found to be the most appropriate by robotic phase system selection. The search for an economical alternative to protein A HPLC is a substantial bioprocessing concern; in this work CCC has been investigated. Initial studies showed that unpredictably, despite separation from impurities being achieved, some loss in the IgG‘s ability to bind to Protein A was seen, as confirmed by Protein A BiaCore analysis. CCC machines were seen to adversely affect IgG functionality. This led to a systematic investigation of the effect of CCC phase mixing on IgG functionality in a number of different CCC instruments, allowing direct comparisons of modes of CCC (hydrodynamic and hydrostatic CCC) and their associated mixing (wave- like and cascade, respectively). The varying g forces produced within the CCC column were determined using a recently developed model to calculate g force range. The effect of interfacial tension was also studied using a custom built ‗g‘ shaker. The optimum CCC mode was identified to be the non synchronous CCC, operated in a hydrodynamic mode but allowing bobbin to rotor speed (Pr ratio) to be controlled independently.
    [Show full text]
  • Development of Aqueous Two-Phase Separations by Combining High-Throughput Screening and Process Modelling
    Development of aqueous two-phase separations by combining high-throughput screening and process modelling A thesis submitted to University College London for the degree of DOCTOR OF ENGINEERING by Nehal Patel Friday 21st July 2017 The Advanced Centre for Biochemical Engineering Department of Biochemical Engineering University College London Gower Street, London, WC1E 6BT, UK 1 I, Nehal Patel, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Separation based on aqueous two-phase extraction (ATPE) is a promising downstream separation technology for the production of biological products. The advantages of using aqueous two-phase systems include but are not limited to easy scalability, ease of continuous operation and a favourable environment for biological compounds. One of the main challenges associated with aqueous two-phase systems is process development. This is in part due to the many factors which influence the separation of biological materials in such systems such as polymer and salt type, pH and charge. The large number of factors to consider makes the development of aqueous two-phase systems challenging due to the need to find a robust and efficient separation in a large experimental space. This work addresses this issue by considering the use of dynamic process models and high-throughput experimentation for the development of aqueous two-phase extraction processes for biological products. The use of a dynamic equilibrium stage process model to simulate aqueous two-phase extraction is considered in Chapter 3. The process model is capable of simulating various modes of operation; and both multi-cycle batch and continuous counter-current modes of operation are considered.
    [Show full text]
  • Protein L—More Than Just an Affinity Ligand
    processes Review Protein L—More Than Just an Affinity Ligand Stefan Kittler 1,2, Mihail Besleaga 1, Julian Ebner 1,2 and Oliver Spadiut 1,* 1 Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria; [email protected] (S.K.); [email protected] (M.B.); [email protected] (J.E.) 2 Alfred Gruber GmbH, Nordstrasse 6, 5301 Eugendorf, Austria * Correspondence: [email protected]; Tel.: +43-1-58801-166473 Abstract: In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools. Keywords: monoclonal antibodies; antibody fragments; affinity ligands; process analytical technol- ogy; protein A; protein G; protein L Citation: Kittler, S.; Besleaga, M.; Ebner, J.; Spadiut, O. Protein L—More 1. Introduction Than Just an Affinity Ligand. Processes 2021, 9, 874. https:// In 1986, a new type of drug was approved and introduced to the biopharmaceutical doi.org/10.3390/pr9050874 market—the first monoclonal antibody (mAb) with the trade name Orthoclone (OKT3), preventing rejection after kidney transplantation [1].
    [Show full text]
  • Residual on Column Host Cell Protein Analysis During Lifetime Studies Of
    Journal of Chromatography A, 1461 (2016) 70–77 Contents lists available at ScienceDirect Journal of Chromatography A jo urnal homepage: www.elsevier.com/locate/chroma Residual on column host cell protein analysis during lifetime studies of protein A chromatography a b c c b Katherine Lintern , Mili Pathak , C. Mark Smales , Kevin Howland , Anurag Rathore , a,∗ Daniel G. Bracewell a Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom b Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, Delhi 110016, India c Centre for Industrial Biotechnology, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom a r t i c l e i n f o a b s t r a c t Article history: Capacity reduction in protein A affinity chromatography with extended cycling during therapeutic anti- Received 9 February 2016 body manufacture is well documented. Identification of which residual proteins remain from previous Received in revised form 16 July 2016 cycles during the lifetime of these adsorbent materials is required to understand their role in this ageing Accepted 20 July 2016 process, but represents a significant metrological challenge. Scanning electron microscopy (SEM) and liq- Available online 21 July 2016 uid chromatography mass spectrometry (LC–MS/MS) are combined to detect and map this phenomenon of protein carry-over. We show that there is a morphological change at the surface of the agarose resin, Keywords: revealing deposits on the polymer fibres increasing with cycle number. The amount of residual host cell Protein A affinity chromatography proteins (HCPs) by LC–MS/MS present on the resin is shown to increase 10-fold between 50 and 100 Host cell proteins LC–MS/MS cycles.
    [Show full text]