Affinity Chromatography Principles and Methods GE Healthcare GE

Total Page:16

File Type:pdf, Size:1020Kb

Affinity Chromatography Principles and Methods GE Healthcare GE GE Healthcare Affinity Chromatograpy Handbook – Principles and Methods GE, imagination at work and GE Monogram are trademarks of General Electric Company. ÄKTA, ÄKTAexplorer, ÄKTAFLPC, ÄKTAprime, ÄKTApurifier, Biacore, BioDirectory, BioProcess, ECL, ECL Plus, ExcelGel, FPLC, GSTPrep, GSTrap, HisTrap, HiPrep, HiTrap, Hybond, MAbTrap, MabSelect, MicroSpin, Microplex, Multiphor, STREAMLINE, Sepharose, Percoll, PhastSystem, PhastGel, Sephadex, Superdex, and Tricorn are trademarks of GE Healthcare companies. Purification and preparation of fusion proteins and affinity peptides comprising at least two adjacent histidine residues may require a license under US pat 5,284,933 and US pat 5,310,663, including corresponding foreign patents (assigne: Hoffman La Roche, Inc). A license for commercial use of GST gene fusion vectors must be obtained from Chemicon International, Incorprated, 28820 Singel Oak Drive, Temecula, California 92590 USA. The Tricorn column and components are protected by US design patents USD500856, USD506261, USD500555, USD495060 and their equivalents in other countries. All third party trademarks are the property of their respective owners. © 1988–2007 General Electric Company – All rights reserved. Affinity Chromatography First published 1988. All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare that supplies them. A copy of these terms and Principles and Methods For local office contact information, conditions is available on request. Contact your local GE Healthcare representative please visit www.gelifesciences.com/contact for the most current information. GE Healthcare Europe GmbH Munzinger Strasse 5 GE Healthcare Bio-Sciences AB D-79111 Freiburg, Germany GE Healthcare UK Limited Björkgatan 30 Amersham Place Little Chalfont 751 84 Uppsala Buckinghamshire, HP7 9NA, UK Sweden GE Healthcare Bio-Sciences Corp. 800 Centennial Avenue P.O. Box 1327 www.gelifesciences.com/protein-purification Piscataway, NJ 08855-1327, USA GE Healthcare Bio-Sciences KK Sanken Bldg.3-25-1 Hyakunincho Shinjuku-ku Tokyo 169-0073, Japan 18-1022-29 AE 10/2007 18-1022-29 AE Cover GE.indd 2 10/15/2007 16:52:27 Handbooks from GE Healthcare Protein Purification GST Gene Fusion System Handbook Handbook 18-1132-29 18-1157-58 Gel Filtration Hydrophobic Interaction and Principles and Methods Reversed Phase Chromatography 18-1022-18 Principles and Methods 11-0012-69 Affinity Chromatography Principles and Methods 2-D Electrophoresis 18-1022-29 using immobilized pH gradients Principles and Methods Antibody Purification 80-6429-60 Handbook 18-1037-46 Microcarrier Cell Culture Principles and Methods Percoll 18-1140-62 Methodology and Applications 18-1115-69 Challenging Protein Purification Handbook Ion Exchange Chromatography 28-9095-31 & Chromatofocusing Principles and Methods Recombinant Protein 11-0004-21 Purification Handbook Principles and Methods Purifying Challenging Proteins 18-1142-75 Principles and Methods 28-9095-31 18-1022-29 AE Cover GE.indd 3 10/15/2007 16:52:28 Affinity Chromatography Principles and Methods Contents Introduction ............................................................................................................. 7 Symbols and abbreviations ............................................................................................................................8 Chapter 1 Affinity chromatography in brief ................................................................................. 9 BioProcess Media for large-scale production .................................................................. 12 Custom Designed Media and Columns .......................................................................... 12 Common terms in affinity chromatography ..................................................................... 13 Chapter 2 Affinity chromatography in practice ......................................................................... 15 Purification steps .......................................................................................................................................15 Media selection .........................................................................................................................................16 Preparation of media and buffers .................................................................................................................16 Sample preparation and application .............................................................................................................17 Elution ......................................................................................................................................................18 Flow rates .................................................................................................................................................21 Analysis of results and further steps .............................................................................................................21 Equipment selection ..................................................................................................................................21 Troubleshooting .........................................................................................................................................22 Chapter 3 Purification of specific groups of molecules ............................................................ 25 Immunoglobulins ........................................................................................................ 25 IgG, IgG fragments and subclasses ............................................................................... 26 HiTrap Protein G HP, Protein G Sepharose 4 Fast Flow, MAbTrap Kit ...............................................................28 HiTrap Protein A HP, Protein A Sepharose 4 Fast Flow, HiTrap rProtein A FF, rProtein A Sepharose 4 Fast Flow, MabSelect ...............................................................................................33 Monoclonal IgM from hybridoma cell culture ................................................................. 38 HiTrap IgM Purification HP .........................................................................................................................38 Avian IgY from egg yolk ............................................................................................... 40 HiTrap IgY Purification HP ..........................................................................................................................40 Recombinant fusion proteins ....................................................................................... 42 GST fusion proteins .................................................................................................... 42 GST MicroSpin Purification Module, GSTrap FF, GSTPrep FF 16/10, Glutathione Sepharose 4 Fast Flow, Glutathione Sepharose 4B .......................................................................42 Poly (His) fusion proteins ............................................................................................ 47 His MicroSpin Purification Module, HisTrap Kit, HiTrap Chelating HP, Chelating Sepharose Fast Flow ....................................................................................................................47 Protein A fusion proteins ............................................................................................ 52 IgG Sepharose 6 Fast Flow ..........................................................................................................................52 Purification or removal of serine proteases, e.g. thrombin and trypsin, and zymogens ........ 54 HiTrap Benzamidine FF (high sub), Benzamidine Sepharose 4 Fast Flow (high sub) ........................................54 Serine proteases and zymogens with an affinity for arginine ............................................ 58 Arginine Sepharose 4B ...............................................................................................................................58 DNA binding proteins ................................................................................................. 60 HiTrap Heparin HP, HiPrep 16/10 Heparin FF, Heparin Sepharose 6 Fast Flow ................................................60 Coagulation factors ..................................................................................................... 65 HiTrap Heparin HP, HiPrep 16/10 Heparin FF, Heparin Sepharose 6 Fast Flow ................................................65 Biotin and biotinylated substances ............................................................................... 66 HiTrap Streptavidin HP, Streptavidin Sepharose High Performance .................................................................66 Purification or removal of fibronectin ............................................................................ 69 Gelatin Sepharose 4B .................................................................................................................................69 Purification or removal of albumin ................................................................................ 70 HiTrap Blue HP, Blue Sepharose 6 Fast Flow ................................................................................................70 NAD+-dependent dehydrogenases and ATP-dependent kinases ........................................ 73 5’ AMP Sepharose 4B, HiTrap Blue HP, Blue Sepharose 6 Fast Flow
Recommended publications
  • Protocols and Tips in Protein Purification
    Department of Molecular Biology & Biotechnology Protocols and tips in protein purification or How to purify protein in one day Second edition 2018 2 Contents I. Introduction 7 II. General sequence of protein purification procedures 9 Preparation of equipment and reagents 9 Preparation and use of stock solutions 10 Chromatography system 11 Preparation of chromatographic columns 13 Preparation of crude extract (cell free extract or soluble proteins fraction) 17 Pre chromatographic steps 18 Chromatographic steps 18 Sequence of operations during IEC and HIC 18 Ion exchange chromatography (IEC) 19 Hydrophobic interaction chromatography (HIC) 21 Gel filtration (SEC) 22 Affinity chromatography 24 Purification of His-tagged proteins 25 Purification of GST-tagged proteins 26 Purification of MBP-tagged proteins 26 Low affinity chromatography 26 III. “Common sense” strategy in protein purification 27 General principles and tips in “common sense” strategy 27 Algorithm for development of purification protocol for soluble over expressed protein 29 Brief scheme of purification of soluble protein 36 Timing for refined purification protocol of soluble over -expressed protein 37 DNA-binding proteins 38 IV. Protocols 41 1. Preparation of the stock solutions 41 2. Quick and effective cell disruption and preparation of the cell free extract 42 3. Protamin sulphate (PS) treatment 43 4. Analytical ammonium sulphate cut (AM cut) 43 5. Preparative ammonium sulphate cut 43 6. Precipitation of proteins by ammonium sulphate 44 7. Recovery of protein from the ammonium sulphate precipitate 44 8. Analysis of solubility of expression 45 9. Analysis of expression for low expressed His tagged protein 46 10. Bio-Rad protein assay Sveta’s easy protocol 47 11.
    [Show full text]
  • Water Specialist for the Oil & Gas Sector Ovivowater.Com
    Water Specialist for the Oil & Gas Sector creating value in water through innovation, creativity and expertise ovivowater.com © 2013 GLV Inc. All rights reserved. Ovivo - Industrial Markets Ovivo: A market Leader As society and the global economy demand more and more from water, there is a growing requirement for ever more applications to manage clean water, to create specialist process waters, to treat wastewater, to extract energy from wastewater and to champion the reuse of water. Ovivo - creating value in water through innovation, creativity and Many of the best known, most respected and reliable expertise in clean water, process brand names in the water and wastewater industries are part of Ovivo’s heritage. The combined strengths water, wastewater treatment, waste- of our brands and talents, including Brackett Green, to-energy and water reuse markets Caird & Rayner Clark, Christ Water Technology and across 5 continents. Eimco Water Technologies create one of the most comprehensive bank of technologies in the sector, one of the most impressive list of references, and practical application knowledge. Ovivo aims to become the water partner of choice for clients in the public and private sectors and the leading source of water expertise for engineers and consultants across the globe. Get in touch with some of the best brains in the business. For further information, visit ovivowater.com Ovivo - bringing water to life Copyright © 2013 GLV Inc. All rights reserved. Water Specialist for the Oil & Gas Sector Our Role in your Industry Oil and gas are precious resources. As an Ovivo develops and implements innovative integral element of oil and gas production, water solutions to meet the challenges of treating water and management is especially important.
    [Show full text]
  • Laboratory Filtration Product Guide
    Laboratory filtration Product guide gelifesciences.com 1 Welcome to Whatman filtration by GE Healthcare Life Sciences Our reputation, based on a solid foundation of expertise, enables us to support how healthcare is researched and delivered. In laboratories across the globe, the Whatman™ name is synonymous with quality, reliability, and ease of use. Our instinct for simplification accelerates the rate of discovery, reduces costs and saves time. Our products have a reputation for working right the first time – every time, which is why they are specified for the most exacting applications across a wide range of industries for people around the globe. Basic analytical testing In the vast and disparate world of analytical chemistry, Whatman products are used for basic laboratory processes that range from simple clarification to solvent extraction. Products range from filter papers, thimbles and Benchkote™ benchtop protectors, to membrane filters and phase separator papers. Food and beverage Our filter papers are used to prepare food samples prior to a wide range of analyses. Our syringe filters prevent fatty or particulate laden samples from damaging valuable equipment. Our membranes are used to test for harmful bacteria. Pharmaceutical Whatman products enable pharmaceutical companies to increase productivity. Mini-UniPrep™ syringeless filters and vials reduce HPLC sample preparation time and consumables usage, and track-etched and Anopore™ membranes are also vital to extruding liposomes for encasing and targeting drugs. Environmental monitoring Whatman products are cited in EPA, ASTM and ISO protocols for environmental monitoring. Whether it is detecting suspended solids in water, measuring air for dangerous particulates, or supporting asbestos analysis to maintain healthy spaces there is a Whatman filter that is central to the test.
    [Show full text]
  • Cellulose Nanopapers As Tight Aqueous Ultra- Filtration Membranes
    Cellulose nanopapers as tight aqueous ultra- filtration membranes Andreas Mautner1*, Koon-Yang Lee2, Tekla Tammelin3, Aji P. Mathew4, Alisyn J. Nedoma5, Kang Li5 and Alexander Bismarck1,6,* 1 Polymer & Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom 2 Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, United Kingdom 3 . VTT Technical Research Centre of Finland, Biologinkuja 7, FL-02044 Espoo, Finland 4 Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden 5 Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London United Kingdom 6 Institute for Materials Chemistry & Research, Polymer & Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria * Corresponding authors: e-mail: [email protected], [email protected] Abstract: Recently, we have demonstrated the use of wood-derived nanocellulose papers, herein termed nanopapers, for organic solvent nanofiltration applications. In this study, we extend the use of these nanopapers to tight ultrafiltration (UF) membranes. The feasibility of such nanopaper-based UF membranes intended for use in water purification is shown. Four types of nanocelluloses, namely bacterial cellulose, wood-derived nanocellulose, TEMPO-oxidized cellulose nanofibrils and cellulose nanocrystals, were used as raw materials for the production of these nanopaper-based membranes. The resulting nanopapers exhibit a transmembrane permeance in the range of commercially available tight UF membranes with molecular weight cut-offs ranging from 6 to 25 kDa, which depends on the type of nanocellulose used.
    [Show full text]
  • PROTEIN a CHROMATOGRAPHY – the PROCESS ECONOMICS DRIVER in Mab MANUFACTURING
    PROCESS Application Note PROTEIN A CHROMATOGRAPHY – THE PROCESS ECONOMICS DRIVER IN mAb MANUFACTURING THE OPTIMIZATION OF THE PROTEIN A CAPTURE STEP IN DOWNSTREAM PROCESSING PLATFORMS CAN CONSIDER- ABLY IMPROVE PROCESS EFFICIENCY AND ECONOMICS OF INDUSTRIAL ANTIBODY MANUFACTURING. PARAMETERS LIKE RESIN REUSE AND ITS CAPACITY CONTRIBUTE CONSIDERABLY TO THE PRODUCTION COSTS. THE USE OF A HIGH CAPACITY PROTEIN A RESIN CAN IMPROVE THE PROCESS EFFICIENCY AND ECONOMICS. THIS PAPER PRESENTS THE KEY FEATURES OF A NEW CAUSTIC STABLE PROTEIN A RESIN PROVIDING EXTREMELY HIGH IgG BINDING CAPACITIES. Biopharmaceuticals represent an ever growing important Protein A affinity resins are dominating the Cost of Goods part of the pharmaceutical industry. The market for recom- (COGs) of mAb manufacturing. Bioreactors at the 10.000 L binant proteins exceeded $ 100 billion in 2011 with a scale operating at a titer of about 1g/L typically generate contribution of 45% sales by monoclonal antibodies (mAbs) costs of $ 4-5 million (2). Therefore the Protein A capturing (1). The introduction of the first mAb biosimilars in Europe step is the key driver to improve process economics. Besides raised the competitive pressure in an increasingly crowded the capacity of the resin, life time and cycle numbers market place. The industry faces challenges, such as patent significantly contribute to the production costs in mAb expirations accompanied by approvals of corresponding manufacturing. biosimilars, failures in clinical trials/rejections or the refusal of health insurers to pay for new drugs. Today, the IgG binding capacities of most Protein A resins are in the range of 30-50 g/L, offering significant advantages These challenges force the industry to minimize risk and time- for the processing of high-titer feedstreams when compared to-market and to proceed more cautiously.
    [Show full text]
  • Liquid / Solids Separation in Wastewater Treatment & Biosolids Dewatering
    LIQUID / SOLIDS SEPARATION IN WASTEWATER TREATMENT & BIOSOLIDS DEWATERING Chemical Products Lab Testing Plant Trials LIQUID / SOLIDS SEPARATION APPLICATIONS Influent Water Clarification Process Water Recycling Primary Wastewater Clarification Secondary Clarification Sludge Thickening Sludge Dewatering LIQUID / SOLIDS SEPARATION UNIT OPERATIONS Clarifiers (Many Types) WATER Filters (Many Types) OR WASTE Dissolved Air Flotation Units WATER Induced Air/Gas Flotation Units Belt Presses Centrifuges SLUDGE Screw Presses DEWATERING Plate and Frame Presses Vacuum Filters (Rotary & Horizontal) LIQUID / SOLIDS SEPARATION PRODUCT TYPES Coagulants (+) Low Mol Wt Organic Inorganic Blended Flocculants (+ , ---, 0 ) High Mol Wt Dry Emulsion Solution OilOil----FreeFree Flocculants COAGULANTS AND FLOCCULANTS Act on Insoluble Particles in Water Oils, Grease, Blood, Insoluble Organics, Clay, Silicates, Metal Oxides/Hydroxides Dirt, Dust, Rust & Metal Filings Can Act on Charged Organic Compounds Anionic Surfactants, Soaps & Dispersants Do Not Act on Most Dissolved Solids Salts, Acids, Nonionic Surfactants, Ammonia or Soluble Organic Compounds such as Sugar, Alcohols, etc. SUSPENSION CHEMISTRY THE KEY TO EFFECTIVE LIQUID / SOLIDS SEPARATION SUSPENDED SOLIDS VARIABLES Surface Charge MOST Charge Density Particle Size IMPORTANCE Composition Particle Density Particle Shape LEAST MICROSCOPIC FORCES ELECTROSTATIC BROWNIAN VAN DER WAALS GRAVITY Colloidal Particle in Water +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ Almost all Particles +++
    [Show full text]
  • Mixtures Are a Combination 3.1 of Two Or More Substances MIXTURES
    Mixtures are a combination 3.1 of two or more substances MIXTURES A solution is a solute dissolved 3.2 in a solvent Mixtures can be separated according 3.3 to their physical properties 3.4 Mixtures can be separated according 3 to their size and mass What if? The different boiling points of liquids Case mix 3.5 can be used to separate mixtures What you need: a variety of different pencil cases (size, shape, colour) What to do: 1 Place all the pencil cases in Solubility can be used to one pile. 3.6 separate mixtures 2 List your pencil case’s properties that will allow it to DRAFT be identified easily (e.g. colour, shape, size and weight). 3 Give the list to another student. Can they identify your case by Waste water is a mixture that using the list? 3.7 can be separated What if? » What if you were blindfolded? Could you still find your pencil case? » What if the pencil cases were too small to feel? How could Materials recovery facilities you identify yours? 3.8 separate mixtures » What if all the pencil cases were exactly the same? Would it still be a mixture? Mixtures are a 3.1 combination of two or more substances Consider the things around you. Perhaps they are made of wood, glass or plastic. Wood, glass and plastic are all mixtures – each of these materials is made up of two or more substances. Some materials are pure substances. A pure substance is one where all the particles are identical.
    [Show full text]
  • Rotary Vacuum-Drum Filter
    Rotary vacuum-drum filter Rotary vacuum filter drum consists of a drum rotating in a tub of liquid to be filtered. The technique is well suited to slurries, and liquids with a high solid content, which could clog other forms of filter. The drum is pre-coated with a filter aid, typically of diatomaceous earth (DE) or Perlite. After pre-coat has been applied, the liquid to be filtered is sent to the tub below the drum. The drum rotates through the liquid and the vacuum sucks liquid and solids onto the drum pre-coat surface, the liquid portion is "sucked" by the vacuum through the filter media to the internal portion of the drum, and the filtrate pumped away. The solids adhere to the outside of the drum, which then passes Oliver-type rotary vacuum-drum filter. a knife, cutting off the solids and a small portion of the filter media to reveal a fresh media surface that will enter the liquid as the drum rotates. The knife advances automatically as the surface is removed. Contents Basic fundamentals Rotary vacuum drum filter Range of application Advantages and limitations Advantages Disadvantages Designs available Belt discharge Scraper discharge Roll discharge String discharge Pre coat discharge Main process characteristics and assessment Heuristics design process Basic operation parameters heuristics Discharge mechanism adjustment heuristics Endless belt Scraper Roll String Pre coat Pre coat filter operation heuristics Advanced blade Necessary post treatment for waste stream for thicker Chlorination UV radiation Ozonation Necessary post treatment for waste stream for clarifier Land reclamation Incineration New Development See also References Further reading External links Basic fundamentals Rotary vacuum drum filter Rotary vacuum drum filter (RVDF), patented in 1872,[1] is one of the oldest filters used in the industrial liquid-solids separation.
    [Show full text]
  • Manufacturing of Agarose-Based Chromatographic Media with Controlled Pore and Particle Size
    MANUFACTURING OF AGAROSE-BASED CHROMATOGRAPHIC MEDIA WITH CONTROLLED PORE AND PARTICLE SIZE by Nicolas Ioannidis A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering College of Engineering and Physical Sciences The University of Birmingham 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Chromatography remains the most commonly employed method for achieving high resolution separation of large-sized biomolecules, such as plasmid DNA, typically around 150-250 nm in diameter. Currently, fractionation of such entities is performed using stationary phases designed for protein purification, typically employing pore sizes of about 40 nm. This results into a severe underexploitation of the porous structure of the adsorbent as adsorption of plasmid DNA occurs almost exclusively on the outer surface of the adsorbent. In this study, the effect of two processing parameters, the ionic strength of agarose solution and quenching temperature, on the structure of the resulting particles was investigated. Three characterization methods, Atomic Force and cryo-Scanning Electron microscopy, as well as mechanical testing of single particles where used to quantify the effect of these parameters on the pore size/size distribution and mechanical properties of the adsorbent.
    [Show full text]
  • EXPRESSION, PURIFICATION and CRYSTALLIZATION TRIALS of SMALL RUBBER PARTICLE PROTEIN (SRPP) from Hevea Brasiliensis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@USM EXPRESSION, PURIFICATION AND CRYSTALLIZATION TRIALS OF SMALL RUBBER PARTICLE PROTEIN (SRPP) FROM Hevea brasiliensis SARANPAL SINGH A/L SATINDER SINGH UNIVERSITI SAINS MALAYSIA EXPRESSION, PURIFICATION AND CRYSTALLIZATION TRIALS OF SMALL RUBBER PARTICLE PROTEIN (SRPP) FROM Hevea brasiliensis by SARANPAL SINGH A/L SATINDER SINGH Thesis submitted in fulfillment of requirements for the degree of Master of Science February ACKNOWLEDGEMENT I owe my highest gratitude to Professor Dr. K. Sudesh Kumar and Dr. Teh Aik Hong for being my true mentors and for always being available when needed. My gratitude goes to them for their thoughtful insights, motivation, patience, professional rigour, and intellectual contributions. I could not have imagined having better advisors and mentors during the pursuit of my master’s degree. Their meticulous reading and critical comments on my drafts gave me the kind of feedback that always revitalized, encouraged, and propelled me forward with enthusiasm. It is an honor to have work with them. I am indebted and grateful for the encouragement and inspiration shared by my lab mates and post-docs at CCB: Chiam Nyet Cheng, Chung Corrine, Jess Loh Swee Cheng, Sam Ka Kei, Yue Keong Choon, Tengku Yasmin, Sim Pei Fang, Dr. Go Furusawa, Dr. Sheri-Ann Tan, Dr. Suganthi Appalasamy, Dr. Lau Nyok Sean, Dr.Farrukh Jamil, Dr. Abhilash Usharraj, and Dr. Gincy Paily Thottahil. I also appreciate the help of the administrative department of CCB for being helpful: Ms. Tengku Zalina Tengku Ahmad, Cik Nurul Farhana Che Hassan, and Ms.
    [Show full text]
  • WO 2015/094804 Al 25 June 2015 (25.06.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/094804 Al 25 June 2015 (25.06.2015) P O P C T (51) International Patent Classification: (74) Agent: HEMENWAY, Carl; The Dow Chemical Com C13B 50/00 (201 1.01) BOW 61/14 (2006.01) pany, Intellectual Property, P.O. Box 1967, Midland, BOW 61/02 (2006.01) Michigan 48641-1967 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 14/069248 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, ' December 2014 (09.12.2014) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/917,508 18 December 201 3 (18. 12.2013) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: DOW GLOBAL TECHNOLOGIES LLC [US/US]; 2040 Dow Center, Midland, Michigan 48674 (84) Designated States (unless otherwise indicated, for every (US).
    [Show full text]
  • Differences Between Homogeneous Spermidine Synthases Isolated
    J. Biochem. 96, 1273-1281 (1984) Differences between Homogeneous Spermidine Synthases Isolated from Rat and Pig Liver1 Banri YAMANOHA,* Keijiro SAMEJIMA,*,z Terumi NAKAJIMA,** and Tadashi YASUHARA** *Tokyo Biochemical Research Institute , Takada, Toshima-ku, Tokyo 171, and **Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Kandasurugadai, Chiyoda-ku, Tokyo 101 Received for publication, May 25, 1984 Spermidine synthase was purified to homogeneity from rat and pig liver by a method modified from a previously reported one using DEAE-Sepharose, S-adenosyl(5•Œ)- 3-thiopropylamine-Sepharose affinity chromatography, Sephacryl S-300 gel filtration and polyacrylamide gel electrophoresis. No apparent difference between the two enzymes was observed in specific activity, molecular weight (74,000), or subunit composition (two subunits). However, significant differences were observed in their pI values, which were 5.16 for the pig enzyme and 5.34 for the rat enzyme, and their peptide maps. Amino acid compositions of the two enzymes were closely related, but differed significantly in some amino acids. In addition, the rat enzyme was more sensitive to inhibition by S-adenosyl-1,8-diamino-3-thiooctane than the pig enzyme. Spermidine synthase [EC 2.5.1.16] catalyzes the On the other hand, a recent report (4) has shown transfer of the propylamine moiety from S-adeno that there were significant differences among sper syl(5•Œ)-3-methylthiopropylamine (decarboxy Ado midine synthases from different bacterial species Met) to putrescine to form spermidine. The en and rat ventral prostate in their responses to two zyme has been purified to homogeneity from potent spermidine synthase inhibitors, S-adenosyl- Escherichia coli (1), rat prostate (2), and bovine 1,8-diamino-3-thiooctane (AdoDATO) (5, 6) and brain (3); each has shown very similar properties dicyclohexylamine (7).
    [Show full text]