Novel and Emerging Technologies for Produced Water Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protocols and Tips in Protein Purification
Department of Molecular Biology & Biotechnology Protocols and tips in protein purification or How to purify protein in one day Second edition 2018 2 Contents I. Introduction 7 II. General sequence of protein purification procedures 9 Preparation of equipment and reagents 9 Preparation and use of stock solutions 10 Chromatography system 11 Preparation of chromatographic columns 13 Preparation of crude extract (cell free extract or soluble proteins fraction) 17 Pre chromatographic steps 18 Chromatographic steps 18 Sequence of operations during IEC and HIC 18 Ion exchange chromatography (IEC) 19 Hydrophobic interaction chromatography (HIC) 21 Gel filtration (SEC) 22 Affinity chromatography 24 Purification of His-tagged proteins 25 Purification of GST-tagged proteins 26 Purification of MBP-tagged proteins 26 Low affinity chromatography 26 III. “Common sense” strategy in protein purification 27 General principles and tips in “common sense” strategy 27 Algorithm for development of purification protocol for soluble over expressed protein 29 Brief scheme of purification of soluble protein 36 Timing for refined purification protocol of soluble over -expressed protein 37 DNA-binding proteins 38 IV. Protocols 41 1. Preparation of the stock solutions 41 2. Quick and effective cell disruption and preparation of the cell free extract 42 3. Protamin sulphate (PS) treatment 43 4. Analytical ammonium sulphate cut (AM cut) 43 5. Preparative ammonium sulphate cut 43 6. Precipitation of proteins by ammonium sulphate 44 7. Recovery of protein from the ammonium sulphate precipitate 44 8. Analysis of solubility of expression 45 9. Analysis of expression for low expressed His tagged protein 46 10. Bio-Rad protein assay Sveta’s easy protocol 47 11. -
Reverse Osmosis and Nanofiltration, Second Edition
Reverse Osmosis and Nanofiltration AWWA MANUAL M46 Second Edition Science and Technology AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities. Copyright © 2007 American Water Works Association. All Rights Reserved. Contents List of Figures, v List of Tables, ix Preface, xi Acknowledgments, xiii Chapter 1 Introduction . 1 Overview, 1 RO and NF Membrane Applications, 7 Membrane Materials and Configurations, 12 References, 18 Chapter 2 Process Design . 21 Source Water Supply, 21 Pretreatment, 26 Membrane Process Theory, 45 Rating RO and NF Elements, 51 Posttreatment, 59 References, 60 Chapter 3 Facility Design and Construction . 63 Raw Water Intake Facilities, 63 Discharge, 77 Suspended Solids and Silt Removal Facilities, 80 RO and NF Systems, 92 Hydraulic Turbochargers, 95 Posttreatment Systems, 101 Ancillary Equipment and Facilities, 107 Instrumentation and Control Systems, 110 Waste Stream Management Facilities, 116 Other Concentrate Management Alternatives, 135 Disposal Alternatives for Waste Pretreatment Filter Backwash Water, 138 General Treatment Plant Design Fundamentals, 139 Plant Site Location and Layout, 139 General Plant Layout Considerations, 139 Membrane System Layout Considerations, 140 Facility Construction and Equipment Installation, 144 General Guidelines for Equipment Installation, 144 Treatment Costs, 151 References, 162 iii Copyright © 2007 American Water Works Association. All Rights Reserved. Chapter 4 Operations and Maintenance . 165 Introduction, 165 Process Monitoring, 168 Biological Monitoring, 182 Chemical Cleaning, 183 Mechanical Integrity, 186 Instrumentation Calibration, 188 Safety, 190 Appendix A SI Equivalent Units Conversion Tables . -
Water Specialist for the Oil & Gas Sector Ovivowater.Com
Water Specialist for the Oil & Gas Sector creating value in water through innovation, creativity and expertise ovivowater.com © 2013 GLV Inc. All rights reserved. Ovivo - Industrial Markets Ovivo: A market Leader As society and the global economy demand more and more from water, there is a growing requirement for ever more applications to manage clean water, to create specialist process waters, to treat wastewater, to extract energy from wastewater and to champion the reuse of water. Ovivo - creating value in water through innovation, creativity and Many of the best known, most respected and reliable expertise in clean water, process brand names in the water and wastewater industries are part of Ovivo’s heritage. The combined strengths water, wastewater treatment, waste- of our brands and talents, including Brackett Green, to-energy and water reuse markets Caird & Rayner Clark, Christ Water Technology and across 5 continents. Eimco Water Technologies create one of the most comprehensive bank of technologies in the sector, one of the most impressive list of references, and practical application knowledge. Ovivo aims to become the water partner of choice for clients in the public and private sectors and the leading source of water expertise for engineers and consultants across the globe. Get in touch with some of the best brains in the business. For further information, visit ovivowater.com Ovivo - bringing water to life Copyright © 2013 GLV Inc. All rights reserved. Water Specialist for the Oil & Gas Sector Our Role in your Industry Oil and gas are precious resources. As an Ovivo develops and implements innovative integral element of oil and gas production, water solutions to meet the challenges of treating water and management is especially important. -
Laboratory Filtration Product Guide
Laboratory filtration Product guide gelifesciences.com 1 Welcome to Whatman filtration by GE Healthcare Life Sciences Our reputation, based on a solid foundation of expertise, enables us to support how healthcare is researched and delivered. In laboratories across the globe, the Whatman™ name is synonymous with quality, reliability, and ease of use. Our instinct for simplification accelerates the rate of discovery, reduces costs and saves time. Our products have a reputation for working right the first time – every time, which is why they are specified for the most exacting applications across a wide range of industries for people around the globe. Basic analytical testing In the vast and disparate world of analytical chemistry, Whatman products are used for basic laboratory processes that range from simple clarification to solvent extraction. Products range from filter papers, thimbles and Benchkote™ benchtop protectors, to membrane filters and phase separator papers. Food and beverage Our filter papers are used to prepare food samples prior to a wide range of analyses. Our syringe filters prevent fatty or particulate laden samples from damaging valuable equipment. Our membranes are used to test for harmful bacteria. Pharmaceutical Whatman products enable pharmaceutical companies to increase productivity. Mini-UniPrep™ syringeless filters and vials reduce HPLC sample preparation time and consumables usage, and track-etched and Anopore™ membranes are also vital to extruding liposomes for encasing and targeting drugs. Environmental monitoring Whatman products are cited in EPA, ASTM and ISO protocols for environmental monitoring. Whether it is detecting suspended solids in water, measuring air for dangerous particulates, or supporting asbestos analysis to maintain healthy spaces there is a Whatman filter that is central to the test. -
Cellulose Nanopapers As Tight Aqueous Ultra- Filtration Membranes
Cellulose nanopapers as tight aqueous ultra- filtration membranes Andreas Mautner1*, Koon-Yang Lee2, Tekla Tammelin3, Aji P. Mathew4, Alisyn J. Nedoma5, Kang Li5 and Alexander Bismarck1,6,* 1 Polymer & Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom 2 Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, United Kingdom 3 . VTT Technical Research Centre of Finland, Biologinkuja 7, FL-02044 Espoo, Finland 4 Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden 5 Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London United Kingdom 6 Institute for Materials Chemistry & Research, Polymer & Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria * Corresponding authors: e-mail: [email protected], [email protected] Abstract: Recently, we have demonstrated the use of wood-derived nanocellulose papers, herein termed nanopapers, for organic solvent nanofiltration applications. In this study, we extend the use of these nanopapers to tight ultrafiltration (UF) membranes. The feasibility of such nanopaper-based UF membranes intended for use in water purification is shown. Four types of nanocelluloses, namely bacterial cellulose, wood-derived nanocellulose, TEMPO-oxidized cellulose nanofibrils and cellulose nanocrystals, were used as raw materials for the production of these nanopaper-based membranes. The resulting nanopapers exhibit a transmembrane permeance in the range of commercially available tight UF membranes with molecular weight cut-offs ranging from 6 to 25 kDa, which depends on the type of nanocellulose used. -
Wastewater Treatment by Electrodialysis System and Fouling Problems
The Online Journal of Science and Technology - January 2016 Volume 6, Issue 1 WASTEWATER TREATMENT BY ELECTRODIALYSIS SYSTEM AND FOULING PROBLEMS Elif OZTEKIN, Sureyya ALTIN Bulent Ecevit University, Department of Environmental Engineering, Zonguldak-Turkey [email protected], VDOWÕQ#NDUDHOPDVHGXWU Abstract: Electrodialysis ED is a separation process commercially used on a large scale for production of drinking water from water bodies and treatment of industrial effluents (Ruiz and et al., 2007). ED system contains ion exchange membranes and ions are transported through ion selective membranes from one solution to another under the influence of electrical potential difference used as a driving force. ED has been widely used in the desalination process and recovery of useful matters from effluents. The performance of ED, depends on the operating conditions and device structures such as ion content of raw water, current density, flow rate, membrane properties, feed concentration, geometry of cell compartments (Chang and et al., 2009, Mohammadi and et al., 2004). The efficiency of ED systems consist in a large part on the properties of the ion exchange membranes. Fouling of ion exchange membranes is one of the common problems in ED processes (Lee and et al., 2009, Ruiz and et al., 2007). Fouling is basically caused by the precipitation of foulants such as organics, colloids and biomass on the membrane surface or inside the membrane and fouling problem reduces the transport of ions. The fouling problems are occasion to increase membrane resistance, loss in selectivity of the membranes and affect negatively to membrane performance (Lee and et al., 2002, Lindstrand and et al., 2000a, Lindstrand and et al., 2000b). -
Demineralization Treatment Technologies for the Seawater Demineralization Feasibility Investigation
Special Publication SJ2004-SP7 Demineralization Treatment Technologies for the Seawater Demineralization Feasibility Investigation Technical Memorandum B.7 Demineralization Treatment Technologies For the Seawater Demineralization Feasibility Investigation Contract #SE459AA by R. W. Beck, Inc. 800 North Magnolia Avenue, Suite 300 Orlando, Florida 32803-3274 FINAL St. Johns River Water Management District P.O. Box 1429 Highway 100 West Palatka, Florida December 31, 2002 Contents Contents 1.0 INTRODUCTION 1.1 General ............................................................................................................. 1 1.2 Purpose............................................................................................................. 1 1.3 Early Desalination Technologies.................................................................... 2 2.0 THERMAL DESALINATION PROCESSES.................................................... 3 2.1 History.............................................................................................................. 3 2.2 Multi-stage Flash Distillation ......................................................................... 4 2.3 Multi-effect Distillation................................................................................... 4 2.4 Vapor Compression......................................................................................... 5 2.5 Thermal Plant Performance Enhancements................................................. 5 3.0 MEMBRANE TECHNOLOGY.......................................................................... -
Application of Electrodialysis in Waste Water Treatment and Impact Of
ne Scien ra ce b & m T Akhter and Habib, J Membr Sci Technol 2018, 8:2 e e M c h f n o DOI: 10.4172/2155-9589.1000182 o l l a o Journal of Membrane n g r y u ISSN: 2155-9589 o J Science & Technology Review Article Open Access Application of Electrodialysis in Waste Water Treatment and Impact of Fouling on Process Performance Mohsan Akhter, Ghulam Habib* and Sana Ullah Qamar Department of Chemical Engineering, National University of Science and Technology, Islamabad, Pakistan Abstract Electrodialysis (ED) is a new advanced separation process that is commonly utilized for producing drinking water from water bodies as well as for the treatment of industrial effluents. ED process is applied on commercial scale. Basically, an ED process consists of an ion exchange membrane and the diving force necessary for applicability of the process is electric potential. Due to the presence of electric potential ions from one solution after passing through ion selective membrane barrier are transferred to another solution. The main factors on which ED process performance depends on concentration of ion in raw water, flow rate, concentration of feed, current density, membrane properties and cell compartments geometry. Fouling which is produced by foulants including organics, colloids and biomass on the inside membrane internal structure or on the outside surface results in reduction of process separation efficiency and energy consumption is enhanced. Fouling increases the membrane resistance and selectivity of membrane is reduced by fouling. Therefore, some methods are proposed to reduce fouling in ED system such as pre-treatment of feed solution, zeta potential control, membrane properties modification and flowrate optimization. -
Liquid / Solids Separation in Wastewater Treatment & Biosolids Dewatering
LIQUID / SOLIDS SEPARATION IN WASTEWATER TREATMENT & BIOSOLIDS DEWATERING Chemical Products Lab Testing Plant Trials LIQUID / SOLIDS SEPARATION APPLICATIONS Influent Water Clarification Process Water Recycling Primary Wastewater Clarification Secondary Clarification Sludge Thickening Sludge Dewatering LIQUID / SOLIDS SEPARATION UNIT OPERATIONS Clarifiers (Many Types) WATER Filters (Many Types) OR WASTE Dissolved Air Flotation Units WATER Induced Air/Gas Flotation Units Belt Presses Centrifuges SLUDGE Screw Presses DEWATERING Plate and Frame Presses Vacuum Filters (Rotary & Horizontal) LIQUID / SOLIDS SEPARATION PRODUCT TYPES Coagulants (+) Low Mol Wt Organic Inorganic Blended Flocculants (+ , ---, 0 ) High Mol Wt Dry Emulsion Solution OilOil----FreeFree Flocculants COAGULANTS AND FLOCCULANTS Act on Insoluble Particles in Water Oils, Grease, Blood, Insoluble Organics, Clay, Silicates, Metal Oxides/Hydroxides Dirt, Dust, Rust & Metal Filings Can Act on Charged Organic Compounds Anionic Surfactants, Soaps & Dispersants Do Not Act on Most Dissolved Solids Salts, Acids, Nonionic Surfactants, Ammonia or Soluble Organic Compounds such as Sugar, Alcohols, etc. SUSPENSION CHEMISTRY THE KEY TO EFFECTIVE LIQUID / SOLIDS SEPARATION SUSPENDED SOLIDS VARIABLES Surface Charge MOST Charge Density Particle Size IMPORTANCE Composition Particle Density Particle Shape LEAST MICROSCOPIC FORCES ELECTROSTATIC BROWNIAN VAN DER WAALS GRAVITY Colloidal Particle in Water +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ Almost all Particles +++ -
Florida Brackish Water and Seawater Desalination: Challenges and Opportunities
FWRJ Florida Brackish Water and Seawater Desalination: Challenges and Opportunities Christopher P. Hill lorida has historically been the pioneer in face water. As the population of Florida has desalination in the United States. As a grown and the availability of fresh groundwa - Christopher P. Hill, P.E., BCEE, is drinking matter of necessity, it was one of the first ter has diminished, there has been a move - F water technical leader with Brown and states to embrace desalinated groundwater as a ment towards alternative water supplies, Caldwell in Tampa. source of drinking water. Florida installed its including brackish groundwater, surface water, first desalination facility in 1969, which was a and seawater. small electrodialysis (ED) facility in Siesta Key. Today, Florida boasts more than 150 desalina - Desalination and In the mid-2000s, much of Florida was fac - tion facilities, with a combined capacity of more Water Supply Planning ing looming water shortages and the need for al - than 515 million gallons per day (mgd) and ac - ternative water supplies was imminent. As a counting for nearly 25 percent of Florida’s total Florida’s five water management districts result, many water providers maximized exist - water supply (Figure 1). are responsible for sustainable management of ing supplies and began developing alternative From groundwater to seawater, no state its water resources. Each of the districts devel - supplies. Now, in the midst of the national hous - has more operating desalination capacity. ops a regional water supply plan (RWSP) every ing and economic crises, many of these same Florida accounts for more than 50 percent of five years that evaluates the adequacy of exist - water suppliers find themselves flush with un - the U.S. -
An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop
An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop Washington, D.C. Shahid Chaudhry January 28-29, 2013 1 • The Challenge: Increasing Demand of Water & Energy Resources; Decreasing Supplies of Conventional Water & Energy Resources. Sustainable Management of Water & Energy Resources 2 • Eight Major Water Using Industries Oil & Gas Refining & Petrochemicals Power Generation Food and Beverage Pharmaceutical Microelectronics Pulp & Paper, and Mining GWI: Industrial Desalination & Water Reuse: Ultrapure water, challenging waste streams and improved efficiency, 3 Strategies: Water Conservation / Water Use Efficiency Unaccounted / Water Losses Water Recycling Desalination - Most Energy Intensive / Expensive Water? 4 • Desalination An Energy Intensive Process, An Integral Part of the Future Water Supply Portfolio Source Waters – Generally Four Types Brackish Ground Water, Surface Water, Municipal WW, Agricultural Runoff, Industrial Effluents, Sea Water, etc. Main Processes Categories: Thermal 4 - 6 kWh / m3 + Steam Heating of Contaminated Water under Vacuum Conditions to Create Pure Water Vapors) Membranes 1 - 6 kWh / m3 Energy Requirements - Function of: Plant Capacity, Feed Water Quality, Pretreatment, Desalination Process/Technology, and Level of Treatment Desalination Technology of Most Interest Today Reverse Osmosis 5 • Desalination Methods Distillation Multi-Stage Flash Distillation (MSF) Multiple-Effect Distillation (MED / ME) Vapor-Compression -
Electrodialysis Reversal (EDR)
GE Power & Water Water & Process Technologies Electrodialysis Reversal (EDR) What GE offers GE offers the broadest water and process technologies solutions portfolio—we focus on difficult-to-treat water and wastewater, and implementing water reuse solutions to provide customers with the quantity and quality of water they need for their applications. GE’s $2 billion-plus water division has 8,000 employees worldwide dedicated to solving every kind of water problem and making GE one of the most admired and respected companies operating today. With over 50 years of ED-EDR technology experience, we have the technical knowledge and process expertise to design solutions that are reliable and cost effective for your water purification needs. With 900+ EDR installations globally, GE offers a depth of experience for the design, manufacturing, installation, operation and maintenance of your EDR system. Customer Benefits • Simplified operation and lower capital costs with the GE carbon electrode • Up to 95% TDS reduction on brackish water • Up to 94% water recovery • Requires less pretreatment for suspended solids • High silica levels do not impact performance or water recovery • Handles high organic waters • Up to 0.5 mg/l continuous chlorine feed and capable of shock treatments New Developments in EDR Technology Carbon Electrode AR908 Membrane GE has developed a new electrode which will become the GE has developed a new caustic-stable ion exchange standard electrode for all new GE EDR systems and can also membrane for ED that allows for more aggressive CIP be used in upgrades to existing EDR systems. of EDR stacks. • The Carbon Electrode • AR908 membranes surface is coated allow EDR stacks to be with the same ion cleaned up to pH 13, to exchange resin that keep stacks clean while is contained in GE’s processing higher turbidity membranes.