Quantitative Peptidomics of Endogenous Peptides Involved in TGF-β1-Induced Epithelial Mesenchymal Transition of Renal Epithel

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Peptidomics of Endogenous Peptides Involved in TGF-β1-Induced Epithelial Mesenchymal Transition of Renal Epithel Kanlaya and Thongboonkerd Cell Death Discovery (2018) 4:9 DOI 10.1038/s41420-017-0001-x Cell Death Discovery ARTICLE Open Access Quantitative peptidomics of endogenous peptides involved in TGF-β1-induced epithelial mesenchymal transition of renal epithelial cells Rattiyaporn Kanlaya1 and Visith Thongboonkerd1 Abstract TGF-β1 is a key fibrotic factor mediating epithelial mesenchymal transition (EMT) of epithelial cells through various signaling pathways. However, roles of proteolytic cleavage and endogenous peptide dynamics in TGF-β1-induced EMT remain unknown. We therefore performed quantitative peptidomics of TGF-β1-induced EMT in renal tubular epithelial cells. The acquired mesenchymal characteristics were confirmed, including morphological change (from cobblestone-like to fibroblast-like), decreased epithelial marker (ZO-1), and increased mesenchymal marker (vimentin). Quantitative peptidomics using stable isotope labeling revealed significantly altered levels of 70 unique endogenous peptides (derived from internal and C-terminal parts of 39 unique precursor proteins) after EMT induction. Interestingly, the majority of these peptides were derived from non-short-lived proteins, and analysis of P1 position revealed predominance of hydrophobic residues, suggesting that these endogenous peptides were generated mainly from proteasome cleavage. This hypothesis was confirmed by treating the cells with MG132 (a proteasome inhibitor), β 1234567890 1234567890 which provided almost identical endogenous peptide pattern as of the TGF- 1-treated cells. Moreover, validation assay showed marked reduction of proteasome peptidase activity in both TGF-β1-treated and MG132-treated cells. This is the first peptidome dataset that provides several novel aspects of mechanisms for TGF-β1-induced EMT. Our data also suggest that TGF-β1 exerts inhibitory effect against proteasome activity during EMT induction. Introduction induction of epithelial mesenchymal transition (EMT) Renal interstitial fibrosis is a common feature of chronic that is associated with increased ECM production and kidney disease (CKD). Patients with CKD are suffered accumulation3,4. TGF-β1 triggers signal transduction from declined renal function as a consequence of renal through its Type I and Type II receptors by forming a injury, nephron loss, and reduction of glomerular filtra- signaling complex that subsequently regulates many tion rate1,2. Transforming growth factor-β1 (TGF-β1) is downstream molecules (e.g., ERK1/2 and Smads) to fur- widely accepted as a major mediator involved in renal ther induce fibrotic factors3,5. While many signaling fibrosis leading to CKD via various mechanisms, including pathways mediated by TGF-β1 have been characterized, inflammation, suppression of extracellular matrix (ECM) very little is known about roles of TGF-β1 and its degradation, activation of residential myofibroblasts, and downstream pathways in regulation of intracellular pro- teolytic cleavage. To date, only a few studies have addressed the interplays Correspondence: Visith Thongboonkerd ([email protected]) β ([email protected]) between cellular protease activities and TGF- 1 signaling. 1Medical Proteomics Unit, Office for Research and Development, Faculty of The active serine protease, plasmin, has been reported to Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, be involved in TGF-β1 activation to promote renal Mahidol University, Bangkok, Thailand Edited by N. Barlev © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a linktotheCreativeCommons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Official journal of the Cell Death Differentiation Association Kanlaya and Thongboonkerd Cell Death Discovery (2018) 4:9 Page 2 of 12 (A) Control TGF-β1 20 μm 20 μm (B) 2.0 250 ZO-1 150 100 75 1.5 * 50 37 1.0 25 ZO-1 level 20 0.5 15 50 (normalized to GAPDH) 37 GAPDH 0.0 25 Control TGF-β1 (C) 2.0 150 * 100 75 1.5 50 Vimentin 37 25 1.0 20 15 0.5 Vimentin level Vimentin 50 37 (normalized to GAPDH) GAPDH 0.0 25 Control TGF-β1 Fig. 1 Induction of EMT in HK-2 cells by TGF-β1. a Controlled (untreated) cells had cobblestone like morphology, whereas those treated with 5 ng/mL TGF-β1 for 48 h showed fibroblast-like morphology. Original magnification power = ×400. b, c Epithelial marker (ZO-1) was significantly decreased, whereas mesenchymal marker (vimentin) was significantly increased. GAPDH served as the protein loading control. Each bar represents mean ± SD of the data derived from three independent experiments. *p < 0.05 vs. control Official journal of the Cell Death Differentiation Association Kanlaya and Thongboonkerd Cell Death Discovery (2018) 4:9 Page 3 of 12 l l l l l l l l ll l l l ll l l l ll ll ll l lll l l l l l l l l ll l ll l l l ll l l l l l l l Fig. 2 Characteristics of the altered precursor proteins and endogenous peptides in TGF-β1-treated cells. The altered precursor proteins were grouped by their subcellular localization (a), number of the identified peptides (b), GO enrichment analysis of biological process (c), and GO molecular function (d). The altered peptides were grouped by their cleavage site (e), length (number of amino acid residues) (f), mass distribution and intensity (g), and hydrophobicity (h) Official journal of the Cell Death Differentiation Association Kanlaya and Thongboonkerd Cell Death Discovery (2018) 4:9 Page 4 of 12 interstitial fibrosis in mice with unilateral ureteral (A) Protein stability 35 obstruction (UUO), whereas plasmin-deficient mice 6,7 30 showed only mild degree of interstitial fibrosis . Recent 25 study has demonstrated the potential strategy to inhibit 20 renal fibrosis by using a serine protease inhibitor, camo- 8 15 stat mesilate, both in vitro and in vivo . In vitro investi- proteins 10 gation using a rat kidney fibroblast cell line, NRK-49F, 5 treated with TGF-β1 has shown that camostat mesilate Number of precursor 0 could reduce activation of the downstream targets of Short-lived Non-short-lived β proteins proteins TGF- 1 signaling, i.e., phosphorylated ERK1/2 and Smad2/38. In vivo study using rat with UUO has also (B) Proteolysis demonstrated that camostat mesilate could suppress 50 TGF-β1-mediated renal fibrosis by a marked reduction of 45 8 40 collagen accumulation in the kidney . Another study has 35 revealed that a urinary trypsin inhibitor, ulinastatin, could 30 fi 25 attenuate renal interstitial brosis in UUO rats by 20 affecting the TGF-β1/Smad pathways9. 15 fi β 10 These ndings raise a hypothesis that TGF- 1 and its 5 Number of peptides downstream molecules may affect protease/peptidase 0 (1-2) (3-65) (>65) activities to aggravate their pathological roles during the Translational Possible Other fi N-terminus localization endoproteolysis development of renal brosis. However, there was no sequence previous study to analyze endogenous peptides generated during TGF-β1-induced renal fibrosis or EMT. With the (C) Peptide stability current insights that intracellular peptides bear significant 50 45 biological functions, the present study thus aimed to 40 characterize the endogenous peptides generated from 35 renal tubular epithelial cells under TGF-β1-induced EMT 30 25 condition by a quantitative peptidomics approach using 20 stable isotopic labeling, followed by bioinformatic pre- 15 diction and functional validations. 10 5 % amino amino acid at P1' site % 0 Results Destabilizing Intermediate Stabilizing Induction of EMT by TGF-β1 in HK-2 cells β (D) HK-2 cells were treated with 5 ng/mL TGF- 1 for 48 h Oxidoreductase activity and cell morphology was observed under a phase-contrast Threonine-type endopeptidase activity microscope. The results showed that TGF-β1 induced Unfolded protein binding change of the cell morphology to fibroblast-like, whereas Structural constituent of ribosome the controlled (untreated) cells still had a typical mor- Structural molecule activity Non-short-lived phology of epithelial cells (Fig. 1a). In addition, western blotting revealed significant decrease in an epithelial Signal transducer activity marker ZO-1 (Fig. 1b), whereas the mesenchymal marker Molecular transducer activity fi β Receptor activity vimentin was signi cantly increased in TGF- 1-treated Short-lived 0.0 1.0 2.0 3.0 4.0 5.0 cells (Fig. 1c). -log10 (P-value) Characteristics of the altered endogenous peptides and Fig. 3 Stability of the altered precursor proteins and endogenous peptides in TGF-β1-treated cells. a Number of the precursor precursor proteins proteins based on their stability (short-lived vs. non-short-lived Using stable isotopic labeling, we identified a total of proteins). b Grouping of the endogenous peptides according to their 223 individual endogenous peptides in the TGF-β1- three main categories of proteolysis. c Peptide stability based on the treated cells. Quantitative analyses revealed significant ′ stability of amino acids at P1 site. d GO enrichment analysis of changes in levels of 70 unique peptides derived from 39 molecular function of the precursor proteins classified by their stability unique precursor proteins in the TGF-β1-treated cells as compared to the controlled cells (Supplementary Table 1). Most of these altered peptides (64 peptides from 34 pre- cursor proteins) were decreased, whereas six peptides Official journal of the Cell Death Differentiation Association Kanlaya and Thongboonkerd Cell Death Discovery (2018) 4:9 Page 5 of 12 derived from five precursor proteins were increased in the TGF-β1-treated cells.
Recommended publications
  • N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton
    BRIEF COMMUNICATION www.jasn.org N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton †‡ † | † Markus M. Rinschen,* § Ann-Kathrin Hoppe,* Florian Grahammer, ¶ Martin Kann,* † † † †‡ Linus A. Völker,* Eva-Maria Schurek,* Julie Binz,* Martin Höhne,* § Fatih Demir,** | †† † ‡‡ Milena Malisic,** Tobias B. Huber, ¶ Christine Kurschat,* Jayachandran N. Kizhakkedathu, †‡ †‡ Bernhard Schermer,* § Pitter F. Huesgen,** and Thomas Benzing* § *Department II of Internal Medicine, †Center for Molecular Medicine Cologne (CMMC), ‡Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and §Systems Biology of Ageing Cologne (Sybacol), BRIEF COMMUNICATION University of Cologne, Cologne, Germany; |Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¶Department of Medicine IV, Medical Center and Faculty of Medicine – University of Freiburg, Freiburg, Germany; **Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; ††BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany; and ‡‡Centre for Blood Research, Department of Pathology and Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, Canada ABSTRACT Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in of these genes leads to altered signaling maintaining the integrity of podocytes
    [Show full text]
  • Caspase Substrates and Inhibitors
    Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Caspase Substrates and Inhibitors Marcin Pore˛ba1, Aleksandra Stro´z˙yk1, Guy S. Salvesen2, and Marcin Dra˛g1 1Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50-370 Wrocław, Poland 2Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92024 Correspondence: [email protected] Caspases are proteases at the heart of networks that govern apoptosis and inflammation. The past decade has seen huge leaps in understanding the biology and chemistry of the caspases, largely through the development of synthetic substrates and inhibitors. Such agents are used to define the role of caspases in transmitting life and death signals, in imaging caspases in situ and in vivo, and in deconvoluting the networks that govern cell behavior. Additionally, focused proteomics methods have begun to reveal the natural substrates of caspases in the thousands. Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy. WHAT IT TAKES TO BE A CASPASE group, known as cysteine protease clan CD that he need to recycle scarce amino acids in early also contains the plant metacaspases (Vercam- Tbiotic environments required that proteases men et al. 2004), and mammalian and plant were among the first proteins to appear in the proteases of the legumain family (involved in most primitive replicating organisms. Since that specific processing events), the eukaryotic pro- distant origin, proteases have diversified into tease separase (required for sisterchromatid sep- every biological niche, occupied every cellular aration during mitosis), and the bacterial prote- and extracellular compartment, and are encod- ases clostripain and gingipain (Chen et al.
    [Show full text]
  • Full Text (PDF)
    BACK TO BASICS | PROTEASES IN LUNG DISEASE Protean proteases: at the cutting edge of lung diseases Clifford Taggart1, Marcus A. Mall2,3,4, Gilles Lalmanach5, Didier Cataldo6, Andreas Ludwig7, Sabina Janciauskiene8, Nicole Heath3,4,9, Silke Meiners10, Christopher M. Overall11, Carsten Schultz4,9, Boris Turk12 and Keren S. Borensztajn13,14 Affiliations: 1Airway Innate Immunity Research group (AiiR), Centre for Experimental Medicine, Queen’s University Belfast, UK. 2Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany. 3Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany. 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. 5INSERM UMR1100 Centre d’Etude des Pathologies Respiratoires (CEPR), Equipe: Mécanismes Protéolytiques dans l’Inflammation, Université François Rabelais, Tours, France. 6Laboratory of Tumors and Development and Dept of Respiratory Diseases, University of Liege, Liege, Belgium. 7Inflammation Pharmacology Research Group, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany. 8Dept of Respiratory Medicine, a member of The German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. 9European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. 10Comprehensive Pneumology Center (CPC), University Hospital, Ludwig- Maximilians University, Helmholtz Zentrum München, Member of the German Center for
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • Protein TAILS: When Termini Tell Tales of Proteolysis and Function
    Available online at www.sciencedirect.com Protein TAILS: when termini tell tales of proteolysis and function 1,2,3 1,2,3 Philipp F Lange and Christopher M Overall Among the hundreds of posttranslational modifications, limited functions of bioactive proteins will be opaque and hence proteolysis, also known as processing, is special: It is hypotheses based on traditional shotgun analyses, may be irreversible, near ubiquitous, and by trimming peptide chains misleading or even worse, totally wrong. from their ends or cutting proteins into two, proteolysis forms shorter chains displaying new termini. The unique chemistry PTM of proteins constitutes a highly diverse and dynamic and location of a-amino-termini and carboxyl-termini in a regulatory layer affecting all aspects of a protein from protein engender special chemical and physical properties to a protein folding, localization, interaction and bioactivity protein. Hence, modification of protein termini is often to its stability and ultimately degradation. Therefore, each associated with new biological activities of a protein. We distinctly modified version of a protein, also called a protein highlight recent proteomic developments enabling high species, and not just the initial translated version, needs to throughput identification of protein termini. This has be considered as the functional units comprising the pro- revolutionized degradomics and protein characterization by teome [3]. The diversity of reversible and irreversible mapping the specificity of terminal modifications and of modifications as well as the extensive modification machin- proteases, and has been used to directly identify new protease ery [4] and the possibility of combinatorial effects substrates and molecular pathways altered by proteolysis.
    [Show full text]
  • Biochemical Characterization and Zinc Binding Group (Zbgs) Inhibition Studies on the Catalytic Domains of Mmp7 (Cdmmp7) and Mmp16 (Cdmmp16)
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Fan Meng Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ Director Dr. Michael W. Crowder ______________________________________ Dr. David L. Tierney ______________________________________ Dr. Carole Dabney-Smith ______________________________________ Dr. Christopher A. Makaroff ______________________________________ Graduate School Representative Dr. Hai-Fei Shi ABSTRACT BIOCHEMICAL CHARACTERIZATION AND ZINC BINDING GROUP (ZBGS) INHIBITION STUDIES ON THE CATALYTIC DOMAINS OF MMP7 (CDMMP7) AND MMP16 (CDMMP16) by Fan Meng Matrix metalloproteinase 7 (MMP7/matrilysin-1) and membrane type matrix metalloproteinase 16 (MMP16/MT3-MMP) have been implicated in the progression of pathological events, such as cancer and inflammatory diseases; therefore, these two MMPs are considered as viable drug targets. In this work, we (a) provide a review of the role(s) of MMPs in biology and of the previous efforts to target MMPs as therapeutics (Chapter 1), (b) describe our efforts at over-expression, purification, and characterization of the catalytic domains of MMP7 (cdMMP7) and MMP16 (cdMMP16) (Chapters 2 and 3), (c) present our efforts at the preparation and initial spectroscopic characterization of Co(II)-substituted analogs of cdMMP7 and cdMMP16 (Chapters 2 and 3), (d) present inhibition data on cdMMP7 and cdMMP16 using zinc binding groups (ZBG) as potential scaffolds for future inhibitors (Chapter 3), and (e) summarize our data in the context of previous results and suggest future directions (Chapter 4). The work described in this dissertation integrates biochemical (kinetic assays, inhibition studies, limited computational methods), spectroscopic (CD, UV-Vis, 1H-NMR, fluorescence, and EXAFS), and analytical (MALDI-TOF mass spectrometry, isothermal calorimetry) methods to provide a detailed structural and mechanistic view of these MMPs.
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function, and “Omic
    Review Cite This: Chem. Rev. XXXX, XXX, XXX−XXX pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ †Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of
    [Show full text]
  • Topfind 2.0—Linking Protein Termini with Proteolytic Processing and Modifications Altering Protein Function Philipp F
    Published online 18 November 2011 Nucleic Acids Research, 2012, Vol. 40, Database issue D351–D361 doi:10.1093/nar/gkr1025 TopFIND 2.0—linking protein termini with proteolytic processing and modifications altering protein function Philipp F. Lange1,2,3,*, Pitter F. Huesgen1,2,3 and Christopher M. Overall1,2,3,* 1Centre for Blood Research, 2Department of Oral Biological and Medical Sciences and 3Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Received August 26, 2011; Revised October 6, 2011; Accepted October 23, 2011 ABSTRACT INTRODUCTION The function and morphology of a cell is by and large Protein termini provide critical insights into the Downloaded from functional state of individual proteins. With recent carried out by its proteome, likewise, that of a tissue by advances in specific proteomics approaches to its cells and their proteomes. The functional state of the enrich for N- and C-terminomes, the global proteome, and hence a cell, is defined by the structures, interactions and post-translational modifications of the analysis of whole terminomes at a proteome-wide proteins present at any given time and place. Proteins scale is now possible. Information on the actual N- are synthesized as single polypeptide chains that have a http://nar.oxfordjournals.org/ and C-termini of proteins in vivo and any start represented by the amino (N-) terminus, and a post-translational modifications, including their carboxyl (C-) terminus forming its end. Protein termini generation by proteolytic
    [Show full text]
  • CLIPPER: an Add-On to the Trans-Proteomic Pipeline for the Automated Analysis of TAILS N-Terminomics Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library DOI 10.1515/hsz-2012-0269 Biol. Chem., 2012; 393(12): 1477–1483 Short Communication Ulrich auf dem Keller * and Christopher M. Overall CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data Abstract: Data analysis in proteomics is complex and with conditions, which has been hampered until recently by the extra challenges involved in the interpretation of data the lack of appropriate technologies (Overall and Blobel , from N-terminomics experiments, this can be daunting. 2007 ). To address this limitation several novel proteom- Therefore, we have devised a rational pipeline of steps to ics methods for the system-wide discovery of protease approach N-terminomics data analysis in a statistically- substrates in complex biological samples have been based and valid manner. We have automated these steps introduced (auf dem Keller and Schilling , 2010 ; Impens in CLIPPER, an add-on to the Trans-Proteomic Pipeline et al. , 2010 ; Huesgen and Overall , 2012 ) in the subfield of (TPP). Applying CLIPPER to the analysis of N- terminomics proteomics that has come to be known as degradomics data generated by terminal amine isotopic labeling of (Lopez -Otin and Overall, 2002 ). substrates (TAILS) enables high confidence peptide to High throughput degradomics techniques aim for protein assignment, protein N-terminal characterization the enrichment and, ideally, relative quantification of and annotation, and for protease analysis readily allows N-terminal peptides in protease-treated and control protease substrate discovery with high confidence.
    [Show full text]
  • The Podocyte Protease Web: Uncovering the Gatekeepers of Glomerular Disease
    The Podocyte Protease Web: Uncovering the Gatekeepers of Glomerular Disease Markus M. Rinschen 1,2,3, Pitter F. Huesgen 4, Rachelle E. Koch 5 1 Department II of Internal Medicine, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany 2 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. 3 Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, La Jolla, CA, USA 4 Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany 5 Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA Address correspondence to: [email protected], [email protected] Joseph-Stelzmann-Str. 26 50931 Cologne Germany Fax +49 221/478 1426623 This manuscript was accepted published online by the American Journal of Physiology- Renal Physiology on Sept. 19, 2018. The final version of the manuscript is available at: doi.org/10.1152/ajprenal.00380.2018 Abstract Proteases regulate glomerular physiology. The last decade has revealed a multitude of podocyte proteases that govern the glomerular response to numerous physical and biological cues. These proteases form a protein signaling web that generates stress stimuli and serves as a key controller of the glomerular microenvironment. Furthermore, both the extracellular and intracellular proteolytic networks are perturbed in focal segmental glomerulosclerosis, as well as hypertensive and diabetic nephropathy. The highly-intertwined podocyte protease web is accordingly an integrative part of the podocyte’s damage response and is reactive to a variety of chemical, mechanical, and metabolic cues. Novel mass-spectrometry based technologies will help to untangle this proteolytic network: functional readouts acquired from deep podocyte proteomics, single glomerular proteomics, and degradomics may expose unprecedented protease activity.
    [Show full text]
  • Comprehensive Analysis of Human Protein N-Termini Enables
    www.nature.com/scientificreports OPEN Comprehensive analysis of human protein N-termini enables assessment of various protein Received: 28 February 2017 Accepted: 9 June 2017 forms Published online: 26 July 2017 Jeonghun Yeom1,2, Shinyeong Ju1,3, YunJin Choi4, Eunok Paek 4 & Cheolju Lee1,2 Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modifcation and proteolysis. Diferent proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identifed 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro- peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identifed in 5′ untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells. Te diversity of protein from a single gene is generated by several mechanisms, including co- or post-translational modifcation, alternative splicing and alternative translation initiation. Tese processes afect function, localiza- tion, or stability of the protein. In particular, there may be a signifcant disparity between N-terminal site pre- dicted at the gene level and the N-terminal status of the protein product.
    [Show full text]
  • UC San Francisco Electronic Theses and Dissertations
    UCSF UC San Francisco Electronic Theses and Dissertations Title Identification and exploration of apoptotic and caspase proteolytic substrates. Permalink https://escholarship.org/uc/item/86t0d35v Author Seaman, Julia Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California ii Dedication To my husband, Nate, and my family, Mom, Dad and Chris. iii Acknowledgements I am very grateful for the advice, assistance and support from the Wells Lab. My advisor, Jim Wells, has created a wonderful laboratory environment for collaborative research and friendships. The lab, and members in it, could not have survived without the innumerable skills of Marja Tarr. My graduate career has been greatly assisted by sharing the experiences with fellow students Ashley Smart and Charlie Morgan in the lab. It has been fun to explore science and solve the big and small problems with them and the other graduate students in lab- Justin Rettenmaier, Hai Tran, Sam Pollock, and Alex Martinko. I have relied heavily on everyone else who counts himself or herself as a Wellsome member. The postdocs- especially Kazu Shimbo, Nick Agard, Arun Wiita, Jason Porter, Juan Diaz, JT Koerber, Nathan Thomsen, Duy Ngyuen, Peter Lee, Min Zhuang, Zach Hill and Olivier Julien- have helped improved my scientific skills and graduate school experience throughout my time in the lab. Finally, my scientific work relies heavily on many members who came before me. UCSF has been a great environment to learn and explore during my PhD. I am very thankful my program, PSPG and its staff- Deana Kroetz, Debbie Acoba and Rebecca Brown.
    [Show full text]