Sunspots, Unemployment, and Recessions, Or Can the Solar Activity Cycle Shape the Business Cycle?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation
March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S. -
Natural & Unnatural Disasters
Lesson 20: Disasters February 22, 2006 ENVIR 202: Lesson No. 20 Natural & Unnatural Disasters February 22, 2006 Gail Sandlin University of Washington Program on the Environment ENVIR 202: Lesson 20 1 Natural Disaster A natural disaster is the consequence or effect of a natural phenomenon becoming enmeshed with human activities. “Disasters occur when hazards meet vulnerability” So is it Mother Nature or Human Nature? ENVIR 202: Lesson 20 2 Natural Phenomena Tornadoes Drought Floods Hurricanes Tsunami Wild Fires Volcanoes Landslides Avalanche Earthquakes ENVIR 202: Lesson 20 3 ENVIR 202: Population & Health 1 Lesson 20: Disasters February 22, 2006 Naturals Hazards Why do Populations Live near Natural Hazards? High voluntary individual risk Low involuntary societal risk Element of probability Benefits outweigh risk Economical Social & cultural Few alternatives Concept of resilience; operationalized through policies or systems ENVIR 202: Lesson 20 4 Tornado Alley http://www.spc.noaa.gov/climo/torn/2005deadlytorn.html ENVIR 202: Lesson 20 5 Oklahoma City, May 1999 319 mph (near F6) 44 died, 795 injured 3,000 homes and 150 businesses destroyed ENVIR 202: Lesson 20 6 ENVIR 202: Population & Health 2 Lesson 20: Disasters February 22, 2006 World’s Deadliest Tornado April 26, 1989 1300 died 12,000 injured 80,000 homeless Two towns leveled Where? ENVIR 202: Lesson 20 7 Bangladesh ENVIR 202: Lesson 20 8 Hurricanes, Typhoons & Cyclones winds over 74 mph regional location 500,000 Bhola cyclone, 1970, Bangladesh 229,000 Typhoon Nina, 1975, China 138,000 Bangladesh cyclone, 1991 ENVIR 202: Lesson 20 9 ENVIR 202: Population & Health 3 Lesson 20: Disasters February 22, 2006 U.S. -
Chaos, Sunspots and Automatic Stabilizersଝ
Journal of Monetary Economics 44 (1999) 3}31 Chaos, sunspots and automatic stabilizersଝ Lawrence J. Christiano! *, Sharon G. Harrison" !Department of Economics, Northwestern University, Evanston, IL 60208, USA; Federal Reserve Bank of Chicago, Chicago, IL 60604, USA and National Bureau of Economic Research, Cambridge, MA 02138, USA "Barnard College, Columbia University, New York, NY 10027, USA Received 5 August 1996; received in revised form 29 May 1998; accepted 12 June 1998 Abstract We consider a real business cycle model with an externality in production. Depending on parameter values, the model has sunspot equilibria, cyclical and chaotic equilibria, and equilibria with deterministic or stochastic regime switching. We study the implica- tions of this model environment for automatic stabilizer tax systems. Stabilization is desirable because the e$cient allocations are characterized by constant employment and output growth. We identify an automatic stabilizer income tax-subsidy schedule with two properties: (i) it speci"es the tax rate to be an increasing function of aggregate employ- ment, and (ii) earnings are subsidized when aggregate employment is at its e$cient level. The "rst feature eliminates ine$cient, #uctuating equilibria, while the second induces agents to internalize the externality. ( 1999 Elsevier Science B.V. All rights reserved. JEL classixcation: E13; E32; E62 Keywords: Business cycle; Fiscal policy; Stabilization; Multiple equilibria; Regime switching ଝWe have bene"ted from discussions with Michelle Alexopoulos, Fernando Alvarez, Jess Benhabib, Michele Boldrin, V.V. Chari, Russell Cooper, Ian Domowitz, Martin Eichenbaum, Chris Gust, Nicola Persico, Michael Woodford, and Randall Wright. We are grateful for the advice of an associate editor and an anonymous referee, and to Victor Valdivia for research assistance. -
A Guide to Space Law Terms: Spi, Gwu, & Swf
A GUIDE TO SPACE LAW TERMS: SPI, GWU, & SWF A Guide to Space Law Terms Space Policy Institute (SPI), George Washington University and Secure World Foundation (SWF) Editor: Professor Henry R. Hertzfeld, Esq. Research: Liana X. Yung, Esq. Daniel V. Osborne, Esq. December 2012 Page i I. INTRODUCTION This document is a step to developing an accurate and usable guide to space law words, terms, and phrases. The project developed from misunderstandings and difficulties that graduate students in our classes encountered listening to lectures and reading technical articles on topics related to space law. The difficulties are compounded when students are not native English speakers. Because there is no standard definition for many of the terms and because some terms are used in many different ways, we have created seven categories of definitions. They are: I. A simple definition written in easy to understand English II. Definitions found in treaties, statutes, and formal regulations III. Definitions from legal dictionaries IV. Definitions from standard English dictionaries V. Definitions found in government publications (mostly technical glossaries and dictionaries) VI. Definitions found in journal articles, books, and other unofficial sources VII. Definitions that may have different interpretations in languages other than English The source of each definition that is used is provided so that the reader can understand the context in which it is used. The Simple Definitions are meant to capture the essence of how the term is used in space law. Where possible we have used a definition from one of our sources for this purpose. When we found no concise definition, we have drafted the definition based on the more complex definitions from other sources. -
UN Specialized Agencies and Governance for Global Risks
13 UN Specialized Agencies and Governance for Global Risks For the first time in human history, we have reached a level of scientific knowledge that allows us to develop an enlightened relationship to risks of catastrophic magnitude. Not only can we foresee many of the challenges ahead, but we are in a position to identify what needs to be done in order to mitigate or even eliminate some of those risks. Our enlightened status, however, also requires that we ... collectively commit to reducing them. 1 Allan Dafoe and Anders Sandberg The United Nations has grown far beyond the institutions directly provided for in the UN Charter. This chapter and those immediately following review a number of global issues and risks that have emerged largely since 1945 and the responses through the UN family of specialized agencies, programs and convention secretar- iats. We consider the efforts of the UN to develop more strategic and integrated approaches to the range of interrelated problems in sustainable development facing the world today. We then consider examples of reform in the economic, environ- mental and social dimensions, without attempting to be comprehensive. We first look at governance for the global economy, especially to address the major chal- lenges of growing inequality and the need for a level playing field for business. For the risks of instability in the financial system, we propose reinforcing the role of the International Monetary Fund (IMF) for enhanced financial governance. We then review global environmental governance, including climate change, as well as population and migration as significant global social issues. -
Relation Between Sunspots and Covid19 – a Proof for Panspermia
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 11 | Nov 2020 www.irjet.net p-ISSN: 2395-0072 RELATION BETWEEN SUNSPOTS AND COVID19 – A PROOF FOR PANSPERMIA Janani T1 1Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - The novel viral or the bacterial pandemics and epidemics are not new to this earth. Often these disease-causing pathogens are of unknown origin and often identified as an infection which is transmitted from other animals. They are frequently found as the mutated form of the original strain or completely a newly developed strain. The causes for this mutation are many which comprises of both natural and artificial sources. The time of occurrence of these pandemic and epidemic astonishingly coincides with the sun spot extremum (often minimum). It is observed that whenever there is a sun spot extremum there was a novel microbial pandemic or epidemic. The current COVID19 pandemic is also suggested to be due to such sunspot extremum as the sun cycle is currently at its sun spot minimum. This review aims at providing the facts of relation between sunspots and the novel corona virus pandemic and there by stating this occurrence as a proof for panspermia. Key Words: Pandemic, Epidemic, COVID19, Sunspot, Solar Cycle, Solar minimum, Panspermia 1. INTRODUCTION 1.1 SUNSPOTS: Sunspots are the dark regions in the sun’s surface due to the concentration of magnetic field in that region. These regions are relatively colder to the other regions of the sun’s surface. Hotter region emits more light than the colder region hence these regions appear to be darker and called the spots of the sun. -
Magnetic Storms and Induction Hazards
News: Report Puts Timeline on Cutting Greenhouse Gas Emissions, p. 446 Meeting: Multidisciplinary Monitoring Experiments at Kawah Ijen Volcano, p. 447 What’s on the Web: Antarctic Expedition, Teaching Professional Skills, and More, p. 447 About AGU: Amazon Hack-A-Thon at Fall Meeting, p. 448 Research Spotlight: Magnetic Field Data, Ocean Acidification, and More, p. 452 VOLUME 95 NUMBER 48 2 DECEMBER 2014 Magnetic Storms and Induction Hazards Magnetic storms are potentially hazard- Electrical conductivity in the Earth’s inte- ous to the activities and technological infra- rior ranges from about 10-4 siemens per structure of modern civilization. This reality meter (S/m) in some parts of the upper man- was dramatically demonstrated during the tle to 3 S/m in the ocean. Generally speak- great magnetic storm of March 1989, when ing, electric power grids are susceptible to surface geoelectric fields, produced by the interference from naturally induced geoelec- interaction of the time-varying geomag- tric fields that vary with periods from about netic field with the Earth’s electrically con- 10 to 1000 seconds. Geomagnetic and geo- ducting interior, coupled onto the overlying electric field variation over such periods Hydro-Québec electric power grid in Can- plumbs the Earth’s interior across diffusive ada. Protective relays were tripped, the grid depth and length scales of between about 2 collapsed, and about 9 million people were and 3000 kilometers, but localized conduc- temporarily left without electricity [Bolduc, tivity anomalies can reduce the upper length 2002]. scale to about 50 kilometers. A magnetic storm that was, by some mea- As a subject of natural science, estimat- sures, the most intense ever recorded fol- ing the geoelectric field as a function of geo- lowed a solar flare observed by astronomers graphic location is distinct from the engi- Richard Carrington and Richard Hodgson neering subject of electric currents that in September 1859. -
Can News About the Future Drive the Business Cycle?
American Economic Review 2009, 99:4, 1097–1118 http://www.aeaweb.org/articles.php?doi 10.1257/aer.99.4.1097 = Can News about the Future Drive the Business Cycle? By Nir Jaimovich and Sergio Rebelo* Aggregate and sectoral comovement are central features of business cycles, so the ability to generate comovement is a natural litmus test for macroeconomic models. But it is a test that most models fail. We propose a unified model that generates aggregate and sectoral comovement in response to contemporaneous and news shocks about fundamentals. The fundamentals that we consider are aggregate and sectoral total factor productivity shocks as well as investment- specific technical change. The model has three key elements: variable capital utilization, adjustment costs to investment, and preferences that allow us to parameterize the strength of short-run wealth effects on the labor supply. JEL E13, E20, E32 ( ) Business cycle data feature two important forms of comovement. The first is aggregate comovement: major macroeconomic aggregates, such as output, consumption, investment, hours worked, and the real wage tend to rise and fall together. The second is sectoral comovement: output, employment, and investment tend to rise and fall together in different sectors of the economy. Robert Lucas 1977 argues that these comovement properties reflect the central role that aggre- ( ) gate shocks play in driving business fluctuations. However, it is surprisingly difficult to generate both aggregate and sectoral comovement, even in models driven by aggregate shocks. Robert J. Barro and Robert G. King 1984 show that the one-sector growth model generates aggregate ( ) comovement only in the presence of contemporaneous shocks to total factor productivity TFP . -
Sunspot Equilibrium
Sunspot Equilibrium Karl Shell Department of Economics Cornell University 402 Uris Hall Ithaca, NY USA 14853-7601 [email protected] www.karlshell.com Rough Draft: Prepared for The New Palgrave: A Dictionary of Economics edited by Lawrence Blume and Steven Durlauf April 2007 The volatility of market outcomes such as the price level, stock market prices, unemployment rates, interest rates, and exchange rates and what to do about this are important subjects in macroeconomics. Some of the observed randomness in market outcomes is the result of shocks to the fundamentals (preferences, technologies, and endowments) that are transmitted through the economy. Uncertainty about the economic fundamentals is intrinsic uncertainty. The general-equilibrium model extended by Arrow (1953, 1964) to include uncertainty provides an explanation of how volatility in the fundamentals is transmitted through the economy, resulting in volatile prices and quantities. This is not the only possible source of the volatility in economic outcomes. The market economy is a social system. In attempting to optimize her own actions, each agent must attempt to predict the actions of the other agents. A, in forecasting the market strategy of B, must forecast B’s forecasts of the forecasts of others including those of A herself. An entrepreneur is uncertain about the moves of his customers and his rivals, and they of his moves. It is not surprising that this process may generate uncertainty in outcomes even in the extreme case in which the fundamentals are non-stochastic. The uncertainty generated by the economy is market uncertainty. It is either created by the economy or adopted from outside the economy as a means of coordinating the plans of individual agents. -
Download Special Issue
Advances in Astronomy The Solar Cycle Guest Editors: J. Javaraiah, J. P. Rozelot, and Luca Bertello The Solar Cycle Advances in Astronomy The Solar Cycle Guest Editors: J. Javaraiah, J. P. Rozelot, and Luca Bertello Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in Astronomy.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Cesare Barbieri, Italy Martin Hardcastle, UK Valery Nakariakov, UK Joshua S. Bloom, USA Dean Hines, USA Jerome Orosz, USA Michael Brotherton, USA Dieter Horns, Germany George Pavlov, USA Giovanni Carraro, Italy Ivan Hubeny, USA Juri Poutanen, Finland Alberto J. Castro-Tirado, Spain John Hughes, USA Somak Raychaudhury, UK Michael Disney, UK Wing Huen Ip, Taiwan William Reach, USA Elmetwally Elabbasy, Egypt Valentina Klochkova, Russia Peter Roming, USA Nye Evans, UK Gregory Laughlin, USA Ata Sarajedini, USA Maurizio Falanga, Switzerland Myung G. Lee, Republic of Korea Regina Schulte-Ladbeck, USA Duncan Forbes, Australia Karen Leighly, USA Ravi Sheth, USA Andrew Fruchter, USA Jeffrey Linsky, USA Roberto Turolla, Italy B. T. Gansicke,¨ UK Mario Mateo, USA Gary Wegner, USA Paul Goldsmith, USA Ronald Mennickent, Chile Glenn J. White, UK Jonathan Grindlay, USA Zdzislaw E. Musielak, USA Paul J. Wiita, USA Contents The Solar Cycle,J.Javaraiah,J.P.Rozelot,andLucaBertello Volume 2012, Article ID 470631, 2 pages The Faint Young Sun Paradox: A Simplified Thermodynamic Approach, F. Angulo-Brown, MarcoA.Rosales,andM.A.Barranco-Jimenez´ Volume 2012, Article ID 478957, 10 pages Tendency of Discreteness of the Solar Amplitude and Intercycle Relatedness, Akio Yoshida and Ryan Sayre Volume 2012, Article ID 519852, 7 pages Rapid Disappearance of Penumbra-Like Features near a Flaring Polarity Inversion Line: The Hinode Observations, B. -
Extreme Solar Eruptions and Their Space Weather Consequences Nat
Extreme Solar Eruptions and their Space Weather Consequences Nat Gopalswamy NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Abstract: Solar eruptions generally refer to coronal mass ejections (CMEs) and flares. Both are important sources of space weather. Solar flares cause sudden change in the ionization level in the ionosphere. CMEs cause solar energetic particle (SEP) events and geomagnetic storms. A flare with unusually high intensity and/or a CME with extremely high energy can be thought of examples of extreme events on the Sun. These events can also lead to extreme SEP events and/or geomagnetic storms. Ultimately, the energy that powers CMEs and flares are stored in magnetic regions on the Sun, known as active regions. Active regions with extraordinary size and magnetic field have the potential to produce extreme events. Based on current data sets, we estimate the sizes of one-in-hundred and one-in-thousand year events as an indicator of the extremeness of the events. We consider both the extremeness in the source of eruptions and in the consequences. We then compare the estimated 100-year and 1000-year sizes with the sizes of historical extreme events measured or inferred. 1. Introduction Human society experienced the impact of extreme solar eruptions that occurred on October 28 and 29 in 2003, known as the Halloween 2003 storms. Soon after the occurrence of the associated solar flares and coronal mass ejections (CMEs) at the Sun, people were expecting severe impact on Earth’s space environment and took appropriate actions to safeguard technological systems in space and on the ground. -
A BRIEF HISTORY of CME SCIENCE 1. Introduction the Key to Understanding Solar Activity Lies in the Sun's Ever-Changing Magnetic
A BRIEF HISTORY OF CME SCIENCE 1 2 DAVID ALEXANDER , IAN G. RICHARDSON and THOMAS H. ZURBUCHEN3 1Department of Physics and Astronomy, Rice University, 6100 Main St., Houston, TX 77005, USA 2 The Astroparticle Physics Laboratory, NASA GSFC, Greenbelt, MD 20771, USA 3 Department of AOSS, University of Michigan, Ann Arbor, M148109, USA Received: 15 July 2004; Accepted in final form: 5 May 2005 Abstract. We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections. 1. Introduction The key to understanding solar activity lies in the Sun's ever-changing magnetic field. The potential role played by the magnetic field in the solar atmosphere was first suggested by Frank Bigelow in 1889 after noting that the structure of the solar minimum corona seen during the eclipse of 1878 displayed marked equatorial extensions, called 'streamers '. Bigelow(1 890) noted th at the coronal streamers had a strong resemblance to magnetic lines of force and proposed th at the Sun must, in fact, be a large magnet. Subsequently, Hen ri Deslandres (1893) suggested that the forms and motions of prominences seen during so lar eclipses appeared to be influenced by a solar magnetic field. The link between magnetic fields and plasma emitted by the Sun was beginning to take shape by the turn of the 20th Century. The epochal discovery of magnetic fields on the Sun by American astronomer George Ellery Hale (1908) signalled the birth of modem solar physics.