VOLATILE ICE DEPOSITS in LUNAR POLAR REGIONS and THEIR SOURCES Jasmeer Sangha a THESIS SUBMITTED to the FACULTY of GRADUATE STUD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoscience and a Lunar Base
" t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history. -
Planetary Surfaces
Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I]. -
Arxiv:2003.06799V2 [Astro-Ph.EP] 6 Feb 2021
Thomas Ruedas1,2 Doris Breuer2 Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies final version 18 September 2020 published: Icarus 358, 114176 (2021) 1Museum für Naturkunde Berlin, Germany 2Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany arXiv:2003.06799v2 [astro-ph.EP] 6 Feb 2021 The version of record is available at http://dx.doi.org/10.1016/j.icarus.2020.114176. This author pre-print version is shared under the Creative Commons Attribution Non-Commercial No Derivatives License (CC BY-NC-ND 4.0). Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies Thomas Ruedas∗ Museum für Naturkunde Berlin, Germany Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Doris Breuer Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Highlights • Geophysical subsurface impact signatures are detectable under favorable conditions. • A combination of several methods will be necessary for basin identification. • Electromagnetic methods are most promising for investigating water concentrations. • Signatures hold information about impact melt dynamics. Mars, interior; Impact processes Abstract We derive synthetic electrical conductivity, seismic velocity, and density distributions from the results of martian mantle convection models affected by basin-forming meteorite impacts. The electrical conductivity features an intermediate minimum in the strongly depleted topmost mantle, sandwiched between higher conductivities in the lower crust and a smooth increase toward almost constant high values at depths greater than 400 km. The bulk sound speed increases mostly smoothly throughout the mantle, with only one marked change at the appearance of β-olivine near 1100 km depth. -
The Moon After Apollo
ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs. -
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T. Crofton Department of Aerospace & Ocean Engineering TEAM LEAD Allison Quinn STUDENT MEMBERS Ethan LeBoeuf Brian McLemore Peter Bradley Smith Amanda Swanson Michael Valosin III Vidya Vishwanathan FACULTY SUPERVISOR AIAA 2018 Undergraduate Spacecraft Design Dr. Kevin Shinpaugh Competition Submission i AIAA Member Numbers and Signatures Ethan LeBoeuf Brian McLemore Member Number: 918782 Member Number: 908372 Allison Quinn Peter Bradley Smith Member Number: 920552 Member Number: 530342 Amanda Swanson Michael Valosin III Member Number: 920793 Member Number: 908465 Vidya Vishwanathan Dr. Kevin Shinpaugh Member Number: 608701 Member Number: 25807 ii Table of Contents List of Figures ................................................................................................................................................................ v List of Tables ................................................................................................................................................................vi List of Symbols ........................................................................................................................................................... vii I. Team Structure ........................................................................................................................................................... 1 II. Introduction .............................................................................................................................................................. -
Slope - Geologic Age Relationships in Complex Lunar Craters C
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2399.pdf SLOPE - GEOLOGIC AGE RELATIONSHIPS IN COMPLEX LUNAR CRATERS C. Rojas1, P. Mahanti1, M. S. Robinson1, LROC Team1, 1LROC Science Operation Center, School of Earth and Space Exploration, Arizona State University, Tempe, Arizona ([email protected]) Table 1: List of complex craters. *Copernican craters Introduction: Impact events leading to formation Crater D (km) Model Age (Ga) Lon Lat of basins and large craters dominate the early history Moore F* 24 0.041∓0.012 [8] 37.30 185.0 of the Moon [1] leading to kilometer scale topographic Wiener F* 30 0.017∓0.002 149.9740.90 variations on the lunar surface, with smaller crater [2], Klute W* 31 0.090∓0.007 216.7037.98 progressively introducing higher frequency topography. Necho* 37 0.080∓0.024 [8] 123.3 –5.3 Crater wall slopes represent most of the overall topo- Aristarchus* 40 0.175∓0.0095 312.5 23.7 graphic variation since many locations on the Moon are Jackson* 71 0.147∓0.038 [9] 196.7 22.1 craters. While impact events lead to the formation of McLaughlin 75 3.7∓0.1 [10] 267.1747.01 steep slopes [3], they are also primarily responsible for Pitiscus 80 3.8∓0.1 [10] 30.57 -50.61 landform degradation [4]. During crater formation, tar- Al-Biruni 80 3.8∓0.1 [10] 92.62 18.09 get properties and processes controlling structural sta- La Pérouse 80 3.6∓0.1 [10] -10.66 76.18 bility limit maximum slopes [4]. -
1876-09-09.Pdf
KVOL. VI. DOVER, MORRIS COUNTY, NEW JERSJEY, SATURDAY, SEPTEMBER U, 1870. NO. 39 Curds. POKTIC. 1 E'IVIK'II l»:n I. i THE IRON ERA A few mouths ago two gen'lcmen wenl A family on Pine strciit oo a jiup o Perhaps the uwat ftimilinr of inybtori- IS VAIX. xcerr THAT ^OUE WORE IIUDI; OIIS'A A fumily named Smith ban recently (niflHfuirids nro tlirm protlnciul liv Uiu fCDUauiffi Busy SATCIDAT I t K. A. BENNETT, Af. D , .HIVIJI] toOenminlowiJ, uml Mr, Brown s"[iut to fiKbt a duel upropus of an nclrcss, the KcnTouQdliitid brand—ono of U.HSI Ah, paldoti nith tliu Iruntlng njljn, AND OT1IEI13 WEIIB TATTOOI'D. add 11)13 ia Iiotr inntturs p:mai!tl: 51.libyful creatures with misehkvaitH even, Yi'Dtrifaqniat; fitniiliar, 1JUC.IIIHB ulfiioat .J.V, <m Saturday, leaned ovor tbo fence every country fair ia vitritcid liy one ur BENJ.II.VOGT. HOMCEOPATHIC Tlii.ii; ii. M luiili:Lire sivain! nmt Riive to our rejinricir nia im|»reHsiooH Fcuillit-rndo and OHiviur, tbe flnt "*w- Vhv. family are very niucj ultachuil to it. Yon may wait till the cnm',03 Hrlligbl diou, y nn tb b tinted" by MM. Peilcller and Gitillurd. Iu tbetio hard tiuiiu tu become uttncli n dUit'r of tha-e exbibitorii, niyhterifius, EDITOR i«o pr.oniF.Tor,. nf Mr. Hinitb'abuy, a li'd ubuutfmirtocu bcL-aiiMo tlio r«nl Knurco of suUnd d<ip« PHYSICIAN & SUKGKOX, Till Ilia fliry stjin tlnHli nut hi tbo ekk-a, 187C, iirnviuE ul H*tug KOUK yeiii-H old: tbcRPCond by MM. -
South Pole-Aitken Basin
Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole. -
All Roads in County (Updated January 2020)
All Roads Inside Deschutes County ROAD #: 07996 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 211009 Other Rural Local Dirt-Graded <null> County Road Length: 0 101ST LN ROAD #: 02265 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 101ST ST 0.262 END BULB 151204 Deschutes County Rural Local Macadam, Oil 0.262 Mat County Road Length: 0.262 101ST ST ROAD #: 02270 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 HWY 126 0.357 MAPLE LN, NW 151204 Deschutes County Rural Local Macadam, Oil 0.357 Mat 20 0.357 MAPLE LN, NW 1.205 95TH ST 151203 Deschutes County Rural Local Macadam, Oil 0.848 Mat County Road Length: 1.205 103RD ST ROAD #: 02259 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151209 Local Access Road Rural Local AC <null> <null> <null> 151209 Unknown Rural Local AC <null> 40 2.75 BEGIN 3.004 COYNER AVE, 141228 Deschutes County Rural Local Macadam, Oil 0.254 NW Mat County Road Length: 0.254 105TH CT Page 1 of 975 \\Road\GIS_Proj\ArcGIS_Products\Road Lists\Full List 2020 DCRD Report 1/02/2020 ROAD #: 02261 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 QUINCE AVE, NW 0.11 END BUBBLE 151204 Deschutes County Rural Local Macadam, Oil 0.11 Mat County Road Length: 0.11 10TH ST ROAD #: 02188 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151304 City of Redmond City Collector AC <null> <null> <null> 151309 City of Redmond City Local AC <null> <null> <null> 151304 City of Redmond City Collector Macadam, Oil <null> Mat <null> <null> 141333 City of Redmond Rural -
General Disclaimer One Or More of the Following Statements May
https://ntrs.nasa.gov/search.jsp?R=19690026252 2020-03-23T20:32:26+00:00Z General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) vss - T National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487 ST—PR—LS-10865 AUTOMATIC STATION ' ND-7" PHOTOGRAPHS THE MOON AND THE EARTH (TASS) PRESS RELEASE & PHOTOGRAVHS .3 0 ^ CC ::IGN f1 P1GEft1 lTHiiUI cI / >. O IC J^) ► IFJ.GLO) -1 s ^ ^e 7a? '9 INAr:. Cn 4R TMA ^A AL h.+F1UC RI iCAYEUGWrI 1 SEPTEMBER 1969 ST— PR-- LS— 108b5 AUIOMATIC STATION "ZOND-7" PHOTOGRAPHS THE MOON AND THE EARTH Tass Release and Photographs N.B. The best of all photographs s ,elected from the three news- published have been ^^a lec re,.f tor papers "PRAVDt,","KOMSOMOL'SKAYA this reproduction. -
Tossup Roentgen, Archimedes, Gauss, Balboa an D~¥As.:.? Da
Tossup , Roentgen, Archimedes, Gauss, Balboa an_d ~¥as.:.? Da Gama all have one bigger than Einstein's. Rutherford's is inside of..G!avius'. ' ~e three largest are Hertzsprung, Korolev and Apollo. For 10 points );IlUlt are t!1e~ objects, seven of which will be named for the astronauts who ~e..s-p~ttle disaster. / . Lunar Craters (' ,/ J- This Athenjan wa~ an admirer of Socrates ~ndji . him' such works as the Symposium and the Apo!?gy of Socrates. ~ - - st known wever, as an historian, the author of the Hellemca and the AnaEiastS, an a t of a mercenary expedition into Asia Minor. For 10 points, name ntury B.C. author. Xenophon ,. .. .. "The seizure of $3~&;gWo Y Hills," "Savage Lu~y ... 'Teeth Like Baseballs, Eyes Like J llied ire, '" and "A Terrible Experience with Extremely Dangerous Drugs." These e apters from, for 10 points, .what book? Fear and Loathing in Las Vegas (by Hunter S. Thompson) .' Lazlo Toth attacked her with a h~e, screaming "I Jesus Christ". He severed her left arm, smas~er nose-and lsfigured her I eye. That was in 1972, and today she and her ~n~i~ ·- behlnd i ss wall in J) Peter's Basilica the scars barely visible. For 10 y.Qin(s, "Yho are .... y, re ? ' The Pieul . L/ Accept: C~st and the Virgin Mary In 1649She invited Rene Descartes to her court to teach her philosophy. She had her lessons at 5 in the morning; Des.cartes, more used to rising at noon, caught a c . d died. Fo t's: who was this Swedish queen, \ the daughter of Gustavus Christina \, \ \ / Tossup Its biological name Ailuropod I 'l- " --~ . -
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.