Demography of threatened tree species in Vietnam

P.D. Chien Demography of threatened tree species in Vietnam ISBN-10: 90-393-4407-8 ISBN-13: 978-90-393-4407-1 NUR 904

© 2006 P.D. Chien Printed by: Print Partners Ipskamp, Enschede Cover design: Marjolein Kortbeek Photos: P.D. Chien

All rights reserved. No part of this publication, apart from bibliographic data and brief quotations in critical reviews, may be reproduced, re-recorded or published in any form including photocopy, microfilm, electronic or electromagnetic record, without written permission.

Demography of threatened tree species in Vietnam

Demografie van bedreigde boomsoorten in Vietnam (met een samenvatting in het Nederlands)

Động thái quần thể các loài cây bị đe dọa ở Việt Nam (phần tóm tắt bằng tiếng Việt Nam)

Proefschrift ter verkrijging van de graad van doctor van de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. W.H. Gispen, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 29 november 2006 des middags te 12:45 uur

door

Pham Duc Chien geboren op 15 september 1967 te Thai Binh, Vietnam Promotor: Prof. Dr. M.J.A. Werger, Utrecht University Prof. Dr. Nguyen Hoang Nghia, Forest Science Institute of Vietnam

Co-promotor: Dr. P.A. Zuidema, Utrecht University

The investigations reported in this thesis were carried out within the framework of the Tropenbos-Vietnam Programme and the Ecology and Biodiversity Group at Utrecht University. This study was financially supported by Tropenbos International and the Forest Science Institute of Vietnam.

To Ha and Duy

Contents

Chapter 1 General introduction 9

Chapter 2 Vietnamese forestry, biodiversity and threatened 19 tree species With M.J.A. Werger & N.H. Nghia

Chapter 3 Conservation prospects for threatened Vietnamese 57 tree species: results from a demographic study With P.A. Zuidema & N.H. Nghia; submitted

Chapter 4 Population viability analysis of threatened tree species 83 in Vietnam with P.A. Zuidema; submitted

Chapter 5 What dimension to use for matrix dimension of tree? 107 recommendations based on a validation of age estimate by tree ring analysis with P.A. Zuidema; submitted

Chapter 6 General discussion and summary 125

Samenvatting (summary in Dutch) 137

Tóm tắt kết quả nghiên cứu (summary in Vietnamese) 145

Acknowledgements 155

Curriculum vitae 157

Chapter 1 General introduction

Forest status in the tropics Tropical forests are characterized by a very high plant diversity: covering less than 10% of the land areas, they posses more than 50% of all known plant species on earth (Wilson 1995, Mayaux et al. 2005). In a single ha of these forests, as many as 300 tree species can coexist (Gentry 1998b), although a large difference may occur between continents and regions (Givnish 1999, ter Steege et al. 2000). Yet, during the past decades, tropical forests have severely declined, with around 6 million ha lost and more than 2 million ha visibly degrading each year (Achard et al. 2002). The main causes for the loss of tropical forests are agricultural expansion, over-harvesting, development of plantations, mining operation, industry, urbanization and road building (Geist & Lambin 2002). As a result, an unknown, but large number of species has become extinct, while many others run the risk of extinction (Frankham et al. 2002, World Conservation Union ‘IUCN’ 2006). Among tropical areas, South- East Asia has the highest relative rate of deforestation (Achard et al. 2002, Brook et al. 2006), also is facing a serious problem of species extinction (Sodhi et al. 2004, IUCN 2006).

Tropical forests in Vietnam Three quarters of Vietnam is composed of hills and mountains, which was originally covered by tropical forests (Trung 1998). Being a venue of plant species emigrated from three flora areas: the Himalaya-Yunnam-Guizhou flora in the North-West, the India-Myanmar flora in the West, and the Malaysia-Indonesian flora in the South and South-East, Vietnam harbours a very high number of plant species (Trung 1998, Chan et al. 1999, Lap 1999) (for details see Chapter 2). Nevertheless, due to many reasons, such as rapid changes in land use, over-harvesting and long wars, the forests of Vietnam have severely declined, both in quantity and quality (Dang et al. 2001, for details see Chapter 2). Consequently, many species of Vietnam run the risk of extinction (Nghia 2005), of which around 150 are critically endangered and vulnerable (IUCN 2006). As threatened tree species often occur in small and isolated populations (Ministry of Science, Technology and Environment ‘MSTE’ 1996, cf. Ouborg 1993), they are very vulnerable to local extinction due to demographic stochasticity or lack of genetic variation (Menges 1992; Lande 1993; Oostermeijer et al. 2003). On the other hand, tropical trees are often slow-growing, long-lived species, Chapter 1 taking a long time to reach the age of reproduction (Chambers et al. 1998, Fichtler et al. 2003, Laurance et al. 2004), and this makes it difficult to determine whether the population is growing or declining in size (Kwit et al. 2004). It is therefore necessary to carry out a demographic study for these species in order to decide on actions before they have declined below the critical level.

The context of this study In this dissertation, a demographic study of six threatened tree species was carried out in four protected areas in Vietnam: Annamocarya sinensis and Parashorea chinensis in Cuc Phuong National Park, Calocedrus macrolepis and Manglietia fordiana * in Ba Vi National Park, Dacrydium elatum in Bach Ma National Park, and Pinus kwangtungensis in Hang Kia – Pa Co Nature Reserve. The status and distribution of the six species are presented in Chapter 3. The four protected areas are briefly described below.

Figure 1 Location of four protected areas in Vietnam: Hang Kia – Pa Co Nature Reserve (1), Ba Vi National Park (2), Cuc Phuong National Park (3), and Bach Ma National Park (4).

Ba Vi National Park Ba Vi NP is located in Ha Tay province (21°N, 105°E, Fig.1), about 50 km north- west of Ha Noi. Covering 12,023 ha, the Park includes low to middle high mountains, and is surrounded by plains. The climate in the region is characterized by an average precipitation of 2600 mm y -1, an average annual temperature of 23°C and a pronounced cold and dry season from November to March (Forest Technique and Science Association of Vietnam ‘FTSA’ 2001). The natural forests occur at altitudes

* : Some scientists call it Manglietia hainanensis , but we prefer the name Manglietia fordiana as Manglietia hainanensis is conspecific with Manglietia fordiana (Liang 10 & Nooteboom 1993).

General introduction above 600 m above sea level (a.s.l.), but not at lower elevation due to a long period of overexploitation and agricultural practice (FTSA 2001). The natural forests are very diverse in species and structure, and can be distinguished into three main types at increasing elevation: Tropical evergreen broad-leaved rain forests, Subtropical evergreen broad-leaved rain forests, and Subtropical evergreen broad-leaved and coniferous forests (FTSA 2001) The buffer zone of the Park is inhabited by 47,000 inhabitants of whom nearly half belong to ethnic minorities. Most local people are poor as their incomes are mainly derived from forests and poor practice of agriculture (FTSA 2001).

Bach Ma National Park Bach Ma NP covers 22,030 ha in Central Vietnam (16°N, 105°E, Fig.1). Due to a complex terrain, the annual precipitation of the region strongly varies among places, ranging from 3000 in the lower parts to over 8000 mm yr -1 at altitudes above 700 m a.s.l., with the rainy season from September to February (FTSA 2001, Keo 2003). The average temperature in the rainy season is around 20 ºC compared to 25 ºC in the dry season (FTSA 2001). The Park has two main patterns of forests in relation to elevation. The evergreen tropical forest covers areas below 900 m of which around 2700 ha are considered intact forests, but the rest is secondary forest as a result of a long time of overexploitation and wars. From 900 m a.s.l. to the highest mountain (1450 m a.s.l.), there is evergreen subtropical forest (FTSA 2001, Keo 2003) There are more than 63,000 inhabitants living in the buffer zone of the Park, and most of them are King People. The main incomes of the inhabitants are from agriculture and forest products. Their standard of living is in general very low (FTSA 2001).

Cuc Phuong National Park The Park is located on the boundary intersection of three provinces: Hoa Binh, Ninh Binh and Thanh Hoa (21°N, 105°E, Fig.1). Its area is 22,200 ha. The average elevation of the Park is from 300-400 m, while the peak (May Bac) reaches to 648 m a.s.l. (Thu & Can 1999). The climate of the region is characterized by an average annual temperature of 21°C, and the average rainfall of 2150 mm y -1. Most the rainfall falls in the summer, from March to November (FSTA 2001). Three main types of the forests can be distinguished in the Park (FSTA 2001). The forests covering the valleys and foot hills are characterized by 3 layers of tree species, a layer of shrubs and a layer of fern and grass. The forests on mountain slopes include 2 layers of tree species and 1 layer of shrubs. The forests at the top of mountains have only two distinct layers: a layer of small tree species and shrubs, and the under storey.

11 Chapter 1

There are more than 50,000 inhabitants living in the buffer zone of the Park, and most of them are ethnic minorities. Their main livelihoods are agricultural practice, and extraction of forest products from the park. The standard of living of the local people is very low (FTSA 2001).

Hang Kia - Pa Co Nature Reserve The Reserve comprises 7,091 ha in the high mountain area of Hoa Binh province (20°N, 104°E, Fig.1). With an average altitude of 1200 m a.s.l., the Reserve has a complex terrain of limestone mountains alternated by valleys (Hoa Binh Community ‘HBC’ 1993, Nghia 2000). The Reserve lies in the subtropical climate zone, characterized by two pronounced seasons: hot and cold. The average temperature of the hot season (March – September) is around 20 ºC as against 3 to 10 ºC for the cold season. The average rainfall is 1900 mm y -1, and most falls in the hot season (HBC 1993). The Reserve has more than 4,000 inhabitants living in the core, and 6,000 others living in the buffer zone. Most local people are ethnic minorities, whose standard of living is very low compared with other regions of the country (HBC 1993). Particularly, most people living in the core are H-Mong, whose livelihoods are mainly based on shifting cultivation, and forest extraction. They are now experimenting with permanent agriculture, but still extract products from the forests (HBC 1993).

The present study This research project formed part of the Tropenbos International - Vietnam Programme in cooperation with Utrecht University and the Forest Science Institute of Vietnam. Tropenbos International (TBI) is a non-governmental organization funded by the Dutch Government. The main objective of TBI is to improve conservation status and sustainable use of tropical rain forests by generating and developing applicable methodologies and making these locally available. TBI also aims to strengthen the local research capacity of the tropical countries by cooperation and training. To do so, TBI has carried out multi-disciplinary research programmes in cooperation with research institutions, government agencies and other stakeholders of tropical countries, e.g. Guyana, Colombia, Suriname, Ghana, Indonesia, and Vietnam (for details see the website: www.tropenbos.org). Tropenbos International - Vietnam (TBI – Vietnam) was established in 2001 with the main research site is in Central Vietnam. The main activities of TBI - Vietnam are to support the establishment of the National Forest Research Strategy of Vietnam. It also helps to generate and disseminate information, methodologies and technologies in support of the conservation and sustainable use of Vietnamese forests. The results

12 General introduction thereof are subsequently supported to be transferred into policy and practical forest management. In addition, TBI - Vietnam supports to build research capacity in the forestry sector by providing short and long training programmes, both in the country and overseas (for details see the website: www.tropenbos.org ). The Forest Science Institute of Vietnam (FSIV) is the main research institution on forestry of Vietnam. Its main tasks are to organize and implement research on forestry ranging from ecology, silviculture, forest industry, and forest economics to forestry organization and management. It is also responsible for post-graduate training and international research cooperation on forestry (for details see the website: www.fsiv.org.vn ). In 2002, within the framework of the TBI – Vietnam activities, the Department of Plant Ecology and Biodiversity, Utrecht University, and the Forest Science Institute of Vietnam started intensive cooperation on plant ecological training and research, resulting in several cooperation projects. In 2003, one of these cooperation projects, named: “Generating and disseminating knowledge on conservation and use of Vietnamese tree species” started running with the funding partly supported by TBI – Vietnam, Utrecht University and the Forest Science Institute of Vietnam. This dissertation is a result of this cooperation project.

Objectives of this study The objectives of the study are: 1. to analyse the demography of six threatened tree species in four protected areas in Vietnam; 2. to project the future prospects of these six species, given current status and dynamics of remaining populations; 3. to propose conservation and restoration measures for the six study species; 4. to evaluate the effects of matrix dimension on model output.

Outline of the thesis This thesis addresses the demography of six threatened tree species in four protected areas in Vietnam. It includes six chapters, which are briefly presented below:

Chapter 2 describes the general setting, presenting short descriptions of geography, climate, landscapes and soil types in Vietnam. Also, the forest status is described, pointing out the causes of forest degradation and its consequences to the flora and threatened tree species. In addition, the system of protected areas in Vietnam and their roles in conservation are discussed.

13 Chapter 1

Chapter 3 analyses the demography of six threatened tree species in Vietnam. A demographic field study in four protected areas provides the basic data for constructing matrix models, which are used to project the population performances of the six species and to determine the most important life stages for the population growth rates. Based on these results, conservation measures are suggested.

Chapter 4 uses population viability analysis (PVA) to project the development of the study populations in the future. By applying stochastic matrix models, the development of study populations under the influence of the environmental and demographic stochasticity is estimated and discussed.

Chapter 5 analyses methods to estimate tree ages using matrix models. By comparing tree ages obtained from annual rings with those obtained from matrix models, suitable matrix dimensions for estimating ages, population growth rates and elasticity are discussed.

Chapter 6 summarizes the main results of the thesis and provides a general discussion.

Acknowledgements I thank Marinus Werger and Pieter Zuidema for valuable comments on a draft version of this chapter.

References Achard, F., H. D. Eva, H. J. Stibig, P. Mayaux, J. Gallego, T. Richards, and J. P. Malingreau. 2002. Determination of deforestation rates of the world’s humid tropical forests. Science 297: 999-1002. Brook, B. W, C. J. A. Bradshaw , L. P. Koh, and N. S. Sodhi. 2006. Momentum drives the crash: Mass extinction in the tropics. Biotropica 38 : 302-305. Chambers, J. Q., H. Higuchi, and J. P. Schimel. 1998. Ancient trees in Amazonia. Nature 391 : 135-136. *Chan, L. T., T. Ty, N. H. Tu, H. Nhung, D. T. Phuong, and T. T. Van. 1999. Some basis characters of Vietnam flora. Science and Technics Publishing House. Ha Noi. *Dang, N. V., T. D. Mai, H. C. Chu, T. D. Huy, and N. H. Kinh. 2001. Forestry in Vietnam (1945-2000), development progress and experienced lessons. Agricultural Publishing House. Ha Noi. Fichtler, E., D. A. Clark, and M. Worbes. 2003. Age and long-term growth of trees

14 General introduction

in an old-growth tropical rain forest, based on anayses of tree rings and C-14. Biotropica 35 : 306-317. *Forest Techniques and Science Association of Vietnam (FTSA). 2001. National parks in Vietnam. Agricultural Publishing House. Ha Noi. Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK. Geist, H. J., and E. F. Lambin. 2002. Proximate causes and underlying driving forces of tropical deforestation. BioScience 5 2: 143-150. Gentry, A. H. 1988b. Tree species richness in Amazonian forests. Proceedings of the National Academy of Science 85: 156-159. Givnish, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87 : 193-210. *Hoa Binh Community (HBC). 1993. Establishment of Hang Kia – Pa Co Nature Reserve Area. *Keo, H. V. 2003. Research on ecological - characteristics and reproductive capability by cutting of Dacrydium elatum (Roxb.) Wallich ex Hooker) in Bach Ma National Park. PhD thesis. Hue Science University, Hue. Kwit, C., C. C. Horvitz, and W. J. Platt. 2004. Conserving slow-growing, long-lived tree species: Input from the demography of a rare understory , Taxus floridana . Conservation Biology 18: 432-443. *Lap, V. T. 1999. Natural Geography of Vietnam. Education Publishing House. Ha Noi. Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142: 911-927. Laurance, W. F., H. E. M. Nascimento, S. G. Laurance, R. Condit, S. D’Angelo, and A. Andrade. 2004. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecology and Management 190 : 131-143. Liang, C. B., and H. P. Nooteboom. 1993. Notes on Magnoliaceae III: The Magnoliaceae of China. Annals of the Missouri Botanical Garden 80 : 999-1104. Mayaux, P., P. Holmgren, F. Achard, H. Eva, H-J Stibig, and A. Branthomme. 2005. Tropical forest cover change n the 1990s and options for future monitoring. Philosophical Transactions of the Royal Society B 360 : 373-384. Menges, E . S. 1992. Stochastic modeling of extinction in plant population. Pages 253-276 in P. L. Fiedler and S. K. Jain, editors. Conservation Biology: the Theory and Practice of Nature Conservation, Presentation and Management. Chapman and Hall, New York. *Ministry of Science, Technology and Environment (MSTE). 1996. Red Data Book of Vietnam. Volume 2 - Plant. Science and Techniques Publishing House, Ha Noi. Nghia, N. H. 2000. Some threatened tree species of Vietnam. Agricultural Publishing House, Ha Noi. *Nghia, N. H. 2005. Results from research on conservation of forest plant genetic resources. Pages 2-12 in MARD, editor. Paper for the Conference of forest science and technology for 20 years under renovation, 8-9/4/2005. Ha Noi.

15 Chapter 1

Oostermeijer, J. G. B., S. H. Luijten, and J. C. M. Den Nijs. 2003. Intergrating demographic and genetic approaches in plant conservation. Biological Conservation 113: 389-398. Ouborg, N. J. 1993. Isolation, population size and extinction: the classical and metapopulation approaches applied to vascular along the Dutch Rhine- system. Oikos 66 : 298-308. Sodhi, N. S., L. P. Koh., B. W. Brook, and P. K. L. Ng. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution 19: 654- 660. ter Steege, H., D. Sabatier, H. Castellanos, T. Van Andel, J. F. Duivenvoorden, A. de Oliveira, R. Ek, R. Lilwah, P. Maas, and S. Mori. 2000. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. Journal of Ecology 16 : 801-828. *Thu, N. B., and V. V. Can. 1999. Cho Dai tree ( Annamocarya sinensis ). Agricultural Publishing House, Ha Noi. *Trung, T. V. 1998. Ecosystems of tropical forests in Vietnam. Science and Technics Publishing House. Ha Noi. Wilson, E. O. 1995. The diversity of life. Harvard University Press, Cambridge. World Conservation Union (IUCN). 2006. The IUCN Red List of Threatened Species. Available from http://www.redlist.org/info/tables/table6a (access August 2006).

Note: * The initial titles in Vietnamese were translated into English.

16

17

18 Chapter 2 Vietnamese forestry, biodiversity and threatened tree species

With M.J.A. Werger & N.H. Nghia

Introduction Asuccessfulconservationstrategyrequiresagoodunderstandingofthenaturaland socialconditionsandtheirrelationstothestrategy’sobjectives.Thisisparticularly importantforthetropicalcountries,wheretheforestsareverydiverseinspeciesand complexinstructures, but beinglostatanalarming rate (Wilson 1988, Whitmore 1997, Sodhi et al. 2004). Tropical countries, on the other hand, have among the world’ highest population (people) growth rates, which are the most crucial underlyingcauseofdeforestation(Laurance1999,Wright&MullerLandau2006). In this chapter, we present several natural conditions of Vietnam, a tropical country located in SouthEast Asia. We also discuss the plant biodiversity, forest status,protectedareasandtherelationshipamongpeople,forestsandthreatenedtree specieswithrecommendationsforabetterconservation. Geographical location VietnamislocatedinSoutheastAsia,sharingboundarieswithChina(1400km)inthe North,withLaos(2067km)andCambodia(1080km)intheWestandhavingthe EastSeaintheEast.Thecountryhasatotallandareaof330,991squarekm,and stretchesover3,200kmbetweenthelatitudesof8°30 ’and23 °22 ’N,andbetweenthe longitudes of 102 °10 ’ and 109 °24 ’E(Thao1998,Lap1999).Threequartersofthe countryiscomposedofhillsand mountains with the highest peaks reaching over 3,000mabovesealevel(a.s.l.)(GovernmentoftheSocialistRepublicofVietnamand theGlobalEnvironmentFacilityProject‘GoVN’1994,Nhat2001). ThecountryisSshapedinoutline.Ithastwowidedeltas,oneinthesouthalong MekongRiverandoneinthenorthalongtheRedRiver.TheMiddleofthecountry isalmostcompletelyoccupiedbytheTruongSonRange,therebeingonlyanarrow stripofcoastalplains(Thao1998,Lap1999).TheTruongSonRangeisdividedinto theNorthandtheSouthofTruongSonbytheHaiVanPass.TheCentralHighlands lieattheSouthoftheMiddle,sharingboundarieswithCambodiainthewest,with SouthernTruongSonintheEastandwiththeSoutheastregionintheSouth(Soil Chapter 2

ScienceAssociationofVietnam‘SSA’1996).AtitsnarrowestpointintheMiddle,the countryisonly50kmacross,whileatitswidestintheNorth,itisabout600km. MostofthecountrydrainsdirectlyintotheEastSea,butthewesternpartsofthe CentralHighlandsdrainintotheMekongbasinofCambodiaandthenintotheEast Sea(GoVN1994,Trung1998).

Climate VietnambasicallyhasatropicalclimateasitliesinsidetheNorthernTropicalZone. However,duetoavaryingmonsoonregimeandacomplex terrain, theclimateof Vietnamdifferswithlatitudeandaltitude(Trung1998,Lap1999). Sunshine regime Situated in the Northern Tropical Zone, Vietnam receives a great amount of sunshine, though it differs from the South to the North. Each year, the South receivesaround2000to3000hrsofsunshinewithmeancumulatedintensityof160 kcalcm 2 yr 1,whiletheNorthhasonly1400to2000hrsandanintensityofbetween 110 to 140 kcal cm 2 yr 1(Toan1998,Lap1999).Duetothecomplexterrain, the sunshine regime also differs per area. For instance, the NorthEast and Northern TruongSonRangeannuallyreceivearound1600to1800hrs,whiletheSouthEast receivesaround2600to3000hrs(Lap1999). Monsoons ThreemonsoonalsystemsaffecttherainfallpatterninVietnam.FromSeptemberto April,thewintermonsoonoriginatingfromSiberia,blowsoverahugecontinental area(China),carriescoldanddryairthatcausescoldanddryweatherintheNorthof Vietnam(Toan1998,Trung1998,Lap1999).ThiswindmayalsoreachVietnamvia theEastSea,andthencarrieshumidityfromthesea, and produces drizzle in the NorthfromDecembertoJanuary(Trung1998).FromMaytoOctober,therearetwo monsoonalsystemsaffectingthecountry.TheSouthwestPacificmonsoonblowsto thecountryviaCambodiaandLaos.WhenmeetingtheTruongSonRange,itcauses a lot of rainfall in the west of the Range, but dry and hot weather in the East, particularlyfromJunetoAugust.TheprovincesoftheMiddlearestronglyaffected bythismonsoon(Trung1998,Lap1999).Incontrast,theSoutheastmonsoonfrom theEastSeabringsalotofrainfalltothewholecountry.Thismonsoonmaymitigate the unfavourable effects of the Southwest monsoon as it brings a cool and rainy weather(Lap1999). Apart from the three monsoons mentioned above, the country is under the influence of typhoons bearing from the East Sea from July to November. The typhoonsoftenbringstrongwindandheavyrains,andmaycauseasevereflooding

20 Vietnamese forestry, biodiversity and threatened tree species alongthecoastline,particularlyinthemiddleofthecountry(GoVN1994,Thin2000, Nhat2001). Temperature ThetemperatureofVietnamisgenerallyhigh,butvarieswithseasons,latitudesand altitudes. Inthewinter,theNorthandtheNorthernMiddle(asfarsouthastheHaiVan Pass)arecoldastheyareaffectedbythewintermonsoon.However,therestofthe countrydoesnothavethewinterweatherduetotheweakinfluenceofthiswind.The meantemperatureofthecoldestmonth(January)inHaNoi(theNorth)is16.4 °C, Hue(theMiddle)19.7 °C,butinHochiminhCity(theSouth)itisstill25.8 °C(Table1) (Trung1998,Lap1999). Table 1. Monthlymeantemperatureofareasthroughoutthecountry( °C)

I II III IV V VI VII VIII IX X XI XII LangSon 13.3 14.3 18.2 22.1 25.5 26.9 27.0 26.6 25.2 22.2 18.3 14.8 HaNoi 16.4 17.0 20.2 23.7 27.3 28.8 28.9 28.2 27.2 24.6 21.4 18.2 Vinh 17.6 17.9 20.3 24.1 27.7 29.2 29.6 28.7 26.8 24.4 21.6 18.9 DongHoi 19.0 19.3 21.7 24.9 28.0 29.7 29.7 29.1 27.0 24.8 22.4 19.9 QuangTri 19.4 20.4 22.6 25.6 28.1 29.4 29.5 29.0 27.1 25.1 23.2 20.8 Hue 19.7 20.9 23.1 26.0 28.3 29.3 29.4 28.9 27.1 25.1 23.1 20.8 DaNang 21.3 22.4 24.1 26.2 28.2 29.2 29.1 28.8 27.3 25.7 24.0 21.9 QuyNhon 23.0 23.8 25.3 27.2 28.8 29.6 29.7 29.8 28.2 26.6 25.3 23.7 PhanThiet 24.7 25.2 26.5 27.9 28.3 27.7 26.9 27.0 26.8 26.7 26.3 25.3 HCMCity 25.8 26.7 27.9 28.9 28.3 27.5 27.1 27.1 26.8 26.7 26.4 25.7 CaMau 25.1 25.8 26.8 27.9 27.7 27.3 27.1 27.0 26.9 26.7 26.3 25.5 Source:Lap(1999) In summer, however, the temperature does not differ much throughout the country.ThemeantemperatureofthehottestmonthinHaNoi(July)is28.9 °C,Hue (July)29.4 °C,andHochiminhCity(April)28.9 °C(Tabe1)(Trung1998,Lap1999). Thereisadropofabout0.5 °Cwithevery100mincreaseinaltitude(Toan1998,Lap 1999). From example in the South between 1000 and 1800 m altitude the mean annualtemperaturedropsfrom20 °Cto15 °Candthesamehappensbetween700and 1600mintheNorth.Betweenthesealtitudesthemeantemperatureofthecoldest monthisbelow15 °C,andthelowesttemperatureinthismonthmaybeaslowas0 °C

21 Chapter 2 20 423/20 170/18 /18 374/18 167/14 6/21 581/22 297/19 15/16 69/7 23/4 277/18 155/11 41/5 23 266/21 117/12 48/7 /15 621/19 491/20 281/18 65/14 131/9 43/7 23/6 164/13 79/8 34/6 23/6 I VIII IX X XI XII (Lap1999) (mm/rainy days)

I II III IV V VI VI Rainfallinareasthroughoutthecountry Table2. NhaTrang 47/10HCMcity 17/4 14/2 32/4 4/1 33/5 11/2 55/8 50/5 49/8 218/18 312/22 43/8 294/23 51/8 270/22 167/15 327/ 324 QuangTriHue 157/15QuyNhon 66/12 65/12 161/16 66/12 32/6 63/11CanTho 58/9 47/10 110/10 24/4 12/2 52/9 81/7 32/4 82/10 80/8 63/7 2/1 117/9 110/8 61/6 10/1 436 95/8 55/5 50/3 104/10 177/14 473/16 59/7 206/17 79 245/15 227/18 463/ 217/18 273/19 LangSonHaNoi 24/7 19/8 41/10 26/11 53/12 44/15 96/12 165/13 90/13 200/15 188/14 258/17 240/15 255/17 288/16 318/17 2 VungTau 2/1 1/1 5/1 33/3 188/5 206/18 213/20 178/19 214/19 2

22 Vietnamese forestry, biodiversity and threatened tree species

(Trung1998).From1600to2600mintheSouthandfrom1600to2400minthe North the annual mean temperature drops from 15 °C to 10 °C, and in the coldest monththetemperatureislessthan10 °Cwiththeminimumtemperaturebelow0 °C. Athigheraltitudes,itiscoldthroughouttheyear,andthereissometimessnowinthe winter(Trung1998). Rainfall Ingeneral,Vietnamhasahighannualrainfallanditvarieswithlatitude,altitudeand seasonally. The annual rainfall of Ha Noi (the North Delta) is 1676 mm yr 1, HochiminhCity(theSouthDelta)1931mm,andQuyNhon(adeltaoftheMiddle) 1692mmyr 1(Table2,Lap1999).Thehighmountains,whichtrapmonsoons,often haveahighrainfall,suchasSapa(HoangLienSonMountains)2833mmyr 1,and HonBa(TruongSonMountains)3751mmyr 1(Lap1999).ParticularlyatBachMa (TruongSonMountains)theannualrainfallisveryhigh:morethan8000mmyr 1at higher700ma.s.l.(FTSA2001,Keo2003).Incontrast,areasbehindthesemountains mayhavelittlerainfall.Forinstance,PhanRang(edgeofthesouthernTruongSon) hasonly653mmyr 1andKySon(edgeofthenorthernTruongSon)has643mmyr 1 (Lap1999). TherainfallinVietnamisconcentratedinarainyseasonthatcomprisesabout70 to80%oftheprecipitationofthewholeyear.TherainyseasonlastsfromMayto NovemberintheNorth,theCentralHighlandsandtheSouth,andfromAugustto February in the Middle (Lap 1999). On the other hand, the dry season is often characterizedbysomeperiodsofnorain(Trung1998,Lap1999).

Humidity ThehumidityofVietnamishighasthecountryreceiveshighannualrainfall,andthe NorthisoftenmorehumidthantheSouth(Trung1998).ThehumidityoftheNorth isaround80to85%,whiletheSouthisabout78to83%.IntheNorth,themost humidperiodisfromMarchtoApril(87%)andthedriestperiodisfromNovember toDecember(81%).IntheSouth,thehumidityishigh(82%88%)intherainy season(MaytoOctober),anddry(70%80%)inthedryseason(FebruarytoApril). TheMiddleisacombinationoftheNorthandtheSouth,itisdry(73%82%)from MaytoJuly,andhumid(86%91%)fromAugusttoApril(Trung1998,Lap1999). Climate zones Inshort,Vietnamhas3mainkindsofclimatein3mainzonesthroughthecountry (SSA1996,Thao1998,Lap1999).

23 Chapter 2

- The Northern climate: FromtheboundarybetweenVietnamandChinatotheCaRiver thereisatropicalmonsoonclimatewith4distinctseasons.Thesummerishotand rainy,thewinteriscoldanddry(SSA1996,Thao1998,Lap1999). - The Middle climate: FromtheCaRiveralongtheTruongSonRangetoMui Dinh (excepttheCentralHighlands)thereisalsoatropicalclimate,whichisacombination oftheNorthernandtheSouthernclimate.Inthiszonetherainyseasoncomeslate (fromAugusttoNovember).Thiszoneisalsostronglyaffectedbythehotanddry Southwestmonsoon,andbythetyphoonsfromthesea(SSA1996,Thao1998,Lap 1999). - The Southern climate: The South Delta, the Central Highlands and the Edge of SouthernTruongSonhaveatypicaltropicalclimate.Inthiszonethetemperatureis highalltheyearround,andithasonlythedryandtherainyseasons,inwhichthe rainyseasonoccupiesmorethan90%ofthetotalannualrainfalls(SSA1996,Thao 1998,Lap1999). Apartfromthe3mainclimatezonesabove,Vietnamalsohasbothsubtropical andtemperateclimatesasonethirdofthecountryismountainouswithaltitudesof above500ma.s.l.(Trung1998,Lap1999,Thin2000).Theareasfrom1000to1800 m a.s.l. in the South and from 700 to 1600 m a.s.l. in the North are under the influenceofasubtropicalclimate.Theregionhas alowannualtemperatureanda distinctwinter.From1800to2600ma.s.l.intheSouthandfrom1600to2400m a.s.l.intheNorththereisahumidtemperatureclimate.Itisverycoldinwinter,but coolinsummer,andtheminimumtemperaturemaybeaslowas0 °C.Atstillhigher altitudes,thereisacoldtemperatureclimate,anditiscoldallyearround.Thereis sometimessnowinwinter(Trung1998). Geology, terrain and soils

Geology ThegeologyofVietnamisundertheinfluenceof2mainlandblocks,theIndonesian LandBlockcoveringtheSouth,theMiddleandanedgeoftheNorthwest(Muong TeandDienBienPhu),whiletheSouthernChineseLandBlockaffectedtheNorth totheMaRiver(Thao1998). IntheNorthrockfromtheCambrictoMesozoicerasiswidelydistributed,while preCambricrockonlyoccursalongtheRedRiver.UndertheNorthDeltatherockis Neogenicandiscoveredbyrecentalluvium(Thao1998,Lap1999). Therestofthecountryisdividedgeologicallyintotwoparts.FromTamKy Phuoc Son to the North the rock is mainly Paleozoic and Mesozoic. The South, however,mostlyhaspreCambricrock.IntheCentralHighlands(whichbelongto

24 Vietnamese forestry, biodiversity and threatened tree species theSouth),therewasstrongofvolcanicactivityattheendoftheNeogenPeriod,and fromthisresultthefertileredsoilsintheseareas(Thao1998). Apart from the sedimentary rocks discussed above, magmatic rock is widely distributed(particularlyGranite)fromNorthtoSouth.TheyaremainlypreCambric, butalsoPaleozoic,MesozoicandKainozoic.PreCambricgraniteiscommoninthe EastoftheCentralHighlandsandsomeotherareas oftheMiddlesuchasQuang Ngai,BinhDinhprovinces.MesozoicandKainozoicgranite occur throughoutthe country(Thao1998,Lap1999). Terrain TheterrainofVietnamiscomplicatedandvariesfromtheNorthtotheSouthand fromtheWesttotheEast(Thao1998,Lap1999).AccordingtoLap(1999),Vietnam hasfivemainkindsofterrain:Hillsandmountains,Karsticlandscapes,valleysand hollows,alluvialplainsandcoastalareas,andtheyshowacomplicateddistribution throughoutthecountry. - North-western Zone: This area contains the Hoang Lien Son Range, which is an extensionoftheChineseHengduanMountainsandconstitutesthehighestpartofthe country.Itisalargearea,includingtheprovincesofHaGiang,TuyenQuang,Yen Bai,NorthwesternHaTay,HoaBinh,LaiChau,Son La,westernNinhBinhand ThanhHoa(Nhat2001).Thetopographyisverycomplexasitrangesfromveryhigh and steep mountains, highlands and hills to valleys and hollows (Lap 1999, Thin 2000).Themeanaltitudeofthemountainrangesisaround2000ma.s.l.Themain directionofthemountainrangesisfromnorthwesttosoutheast(SSA1996). - North-eastern Zone :SharingboundarieswiththeHoangLienSonRangeandtheRed River Delta, the topography of this area is less complex than the Northwestern Zone,asitincludesmainlylowmountainsalternatingwithhills,valleysandplains. Thealtitudeofthezonedecreasesgraduallyfromthenorthwesttothesoutheast (SSA1996,Nhat2001).Themountainsandhillsoftheregionwereformedlikean arc,inwhichmountainsfromtheborder(Vietnam–China)convergetowardsthe TamDaoMountains.Thistypeoftopographyincreasesthecapacityofreceivingthe influenceofthewintermonsoonfromChina(SSA1996). - Red River and Mekong River Deltas : These Deltas were filled up by Quaternary sedimentsfromtheRedandMekongRiver.Theterrainoftheseregionsisgenerally simpleasitislowandflat.ThereareseveraldepressionssuchasNamHa,NinhBinh (intheNorth),DongThapMuoiandUMinh(intheSouth),andalsoseveralhigher tonguesoflandmadeupbyalluvialdeposits(Lap1999). - Northern Truong Son Zone :FromtheCaRivertotheHaiVanPassrunstheNorthern TruongSonRangeintheMiddleofthecountry.Therangeincludeshighmountains

25 Chapter 2 withsteepslopesintheeast,andgentleslopesinthewest(SSA1996,Lap1999). There are also narrow plains with alternating depressions and sand dunes. These plains are strongly separated from one another by mountainous spurs where the TruongSonRangereachesthesea(Lap1999). - Southern Truong Son Zone:BeginningatHaiVanPassandsharingaboundarywiththe CentralHighlands,theSouthernTruongSonRangeextendsalongthecoastlineand thentotheEastSeainBinhThuanprovince(SSA1996,Lap1999).Thetopography of the region is complex with high and steep mountains, narrow plains and sand fields,againseparatedbyspursoftheTruongSonMountains(SSA1996). - Central Highlands: FromtheborderswithLaosandCambodiainthewest to the Southern Truong Son Range in the east, the Central Highlands comprises the highlandsofKonTum,DacLac,DaLat,LamDongandSnaro (SSA1996).The altitudeoftheCentralHighlandsrangesfrom500ma.s.l.(KonTum)tomorethan 2000m(DaLat).However,theterrainoftheCentralHighlandsisgeneralflatand simple,anditslopesgentlyfromthenortheastorthenorthtothesouthwestorthe south(SSA1996,Lap1999).

Soils Affectedbyamonsoontropicalclimateandacomplextopography,Vietnamhasa diverse system of soil types, ranging from the Ferralsols distributed widely in mountainsandhills,Luvisolsinhighlands,FluvisolsindeltastoArenosolsandthe Salic Fluvisols in the coastal areas (Binh 1996, SSA 1996, Thao 1998, Lap 1999). However,severalmainsoiltypesandtheirdistributioncanbeclassifiedasfollows: Plinthic Ferrasols:Formedinahumidtropicalclimate,thesesoilsoccupy around 47%ofthetotallandareaofthecountry(Lap1999).Theyoccurfrom8 °5Nto22 °5 Nandataltitudelowerthan600m(intheNorth),800m(intheMiddle)and1000m (intheSouth)(Binh1996,Sam&Binh2001).Thesesoilsareoftenacid,andreserved forforestryandagroforestryproduction(Lap1999). - Luvisols: Thesesoilscoverofaround1%ofthetotallandarea,andoccurinthe CentralHighlands,theSoutheastandinKarsticterrainsinseveralprovincesofthe NorthsuchasCaoBang,HoaBinh,SonLaandLaiChau(Lap1999). - Rhodic Ferralsols: Thesesoilscoveraround2,680,000haofthetotallandareaand occurmostlyintheCentralHighlandsandsomeotherprovinces,e.g.QuangTri, NgheAnandThanhHoa(Lap1999). Acrisols: Comparedwithotherkindsofsoils,theAcrisolsareunfertileastheywere affected by a strong progression of leaching and erosion (Binh 1996, Lap 1999).

26 Vietnamese forestry, biodiversity and threatened tree species

Thesesoilscoveraround7.5%ofthetotallandareaandmainlyoccurintheNorth andSouthdeltasandthehighlands(Lap1999). Humic Ferralsols: Thesesoilsoccurinlowmountainsofthecountry over around 10.25%ofthetotallandarea.Thesesoilsareoftenhumidandfertileandtobethe habitatoftheevergreenforests(Lap1999). Fluvisols: Thesesoilsoccupyaround24%ofthetotallandareaofthecountry,and occurmainlyindeltasandvalleys(Binh1996,SSA1996,Lap1999).Thesesoilsare very important for the country as they are the base for most cultivation and inhabitationofpeople(Lap1999). Salic Fluvisols: Thesesoilsoccuralongtheentirecoastlineofthecountry.Thetotal areaofthesesoilsisaround4.4%ofthetotallandareaofVietnam(SSA1996,Lap 1999). Biogeography ThebasisofthefloraofVietnamandthewholeofIndochinawaslaidalongtime ago.Schmid(1962)andVidal(1973)statedthatmanyspeciesoftheLycopodiales, EquisetalisandPteridospermaeoccurredinthePaleozoicEra,whenthelandblocks ofAnnamia(intheNorth)andSinien(intheSouth)emerged.InthelatePaleozoic andtheMesozoicEra,thefloracontainedspeciesoftheclassofthePsilotophyta and particularlyoftheCycadales(Schmid1962).However,thepresentfloraofVietnam andIndochinadevelopedmainlyintheKainozoicEra (Schmid1962,Vidal1973). Duringthisperiodalsomanytaxaimmigratedintothearea(Trung1998). ImmigrationoftaxafromadjacentareasintoIndochinaandsubsequentradiation ofspecieswasfacilitatedasthearealiesonornearthecontactzonesofthreemajor earth plates: the huge Eurasiatic plate with smaller, adjacent South China and Indochinaplates,theIndianplateandthesmaller,adjacentBirmaSiamplate,andthe SouthEast Asian (Sunda) plate. Furthermore, the mainly NorthSouth running mountainrangesfacilitatedthemigrationoftaxa.Theavailabilityofdifferentsource floras and the occurrence of dispersal tracks make the Indochinese area plant geographically very interesting. The mixture of taxa with different geographic affinities,theevolutionofnewtaxainthearea,andthepersistenceofgeographically restricted,relictaxaaddtoitsattractiveness(cf.Willis&McElwain2002). Basically,Vietnam’sfloraincludesspeciesfromtheNorthernVietnamSouthern ChinaFlora(indigenousandendemicspecies),theHimalayaYunnanGuizhouflora in the NorthWest, the IndiaMyanmar flora in the West, and the Malaysia IndonesianfloraintheSouthandSouthEast(Fig.1)(Trung1998,Chanetal .1999, Lap1999).

27 Chapter 2

Figure 1. NorthVietnam–SouthChinafloristicareaandtheimmigrationofplants fromthreenearbyfloras(fromarrows13)(Trung1998). ThefloraofNorthernVietnamSouthernChinaextendsfromSouthernChinato theHaiVanPass(exceptintheNorthwestandtheTruongSonRange).Itconsists ofaround50%ofthetotalspeciesoccurringinVietnam,ofwhich40%evolvedin Vietnamand10%camefromSouthernChina(Pocs1965,Trung1970,1998).The NorthernVietnamSouthernChinafloraisintegratedastheNorthernVietnamflora wasalmostsimilartotheSouthernChinaflorafromtheThirdFormtodate(Trung 1998,Lap1999).Manyspeciesrichfamiliesbelongtothisflora,suchasLauraceae, Moraceae, Fagaceae, Leguminosae, Liliaceae, Betulaceae, Ebenaceae, Magnoliaceae, Annonaceae,Sterculiaceae,Sapindaceae,Meliaceae,Clusiaceaeandseveralconiferous families,e.g.CupressaceaeandTaxodiaceae(Engler1882,Schnell1962,Good1969, Trung1998,Lap1999,Willis&McElwain2002). Itisestimatedthataround10%ofthetotalspeciesofVietnamoriginatedfrom theHimalayaYunnanGuizhouflora(Trung1998,Lap1999).Originatingfromthe temperate zone, most immigrated species inhabited the high to middle high mountainsoftheNorthWestandtheTruongSonRangetothelatitudeof10 °N(Lap 1999).Severaltaxa,however,extendedfurthersouthandalsotolowerelevations,and

28 Vietnamese forestry, biodiversity and threatened tree species as a consequence developed more subtropical and tropical species (Trung 1998). ManyspeciesinthisgroupareGymnospermae,suchas Pinus merkusii , Pinus kesiya , Keteleeria davidiana , Fokiena hodginsii , Calocedrus macrolepis ,Tsuga yunnanensis , Abies pindrow , Cryptomeria japonica . However, the deciduous broadleaved species of the families Fagaceae,Betulaceae,Aceraceae,Oleaceae,Juglandaceae,EricaceaeandVacciniaceae arealsofoundinthisregion(Schnell1962,Good1969,Trung1998,Lap1999). From the west, the IndiaMyanmar flora contributed around 14% of the total speciesnumberoftheVietnam’sflora.Taxawiththisaffinitymainlyoccurinthe NorthWest,theTruongSonRangeandtheCentralHighlandsofthecountry(Trung 1998,Lap1999).ThemostcommonfamilyinthisgroupisCombretaceaewiththe generaTerminalia,Anogeissus,FinetiaandCombretum.Theydroptheirleavesinthe dry season (Trung 1998). Also the species of Lagerstroemia (Lythraceae), Tetrameles nudiflora (Datiscaceae), and Gossampinus malabaricus (Bombacaceae) belong to this group(Good1969,Trung1998). Around 15% of the flora of Vietnam has affinities to the MalaysiaIndonesian flora(Schnell1962,Good1969,Trung1998,Lap1999).Inthisgroup,thespeciesof the Dipterocarpaceae (both evergreen and deciduous species) occur mainly in the CentralHighlandsandtheTruongSonRange.Thedeciduousspeciescanbefoundin theCentralHighlands,wheretheclimatehasadistinctdryseason,andtheevergreen speciesoccurin tropicalhumidforests(Lap 1999). However, Lap (1999) reported that the species may occur to as north as 20 °N, and several species of Dipterocarpaceae , such as Dipterocarpus tonkinensis ,occurintheevergreenforestsin PhuThoandYenBaiprovinces(theNorth). Table 3. ElementsofVietnam’sFlora(Pocs1965,Trung1998) Elements Contribution(%) Endemicspecies(SouthernVietnamSouthernChinaFlora) 50 HimalayaYunnanGuizhouFlora 10 IndiaMyanmarFlora 14 MalaysiaIndonesiaFlora 15 Othertropicalzones 7 Othertemperaturezones 3 Elsewhere 1 Total 100 Apartfromthefourflorasmentionedabove,thefloraofVietnamalsoincludes speciesthatarrivedfromotherpartsof the world. Pocs (1965) and Trung (1998)

29 Chapter 2 estimatetheirnumberataround7%ofitstotalspeciesfromothertropicalzones,3% fromothertemperatezones,and1%fromelsewhere(Table3). In plant geographical classifications all of Indochina including Vietnam and Thailand,arepartofthePaleotropicalKingdom,the IndoMalaysian Subkingdom, and the (Continental) Southeast Asian Region (Schmithusen 1968, Good 1969, Walter&Straka1970).Dependingonthetaxonomicclassificationfavouredbythe authors,theareahasnoorafew,smallendemicfamilies,butitcontainsmorethan 250endemicgenera,mostlysmallinspeciesnumbersandwithalocalizeddistribution (Good1969,Takhtajan1971). Biogeographical zones of Vietnam are recognized on the basic of natural geography, topography and species composition of the region (GoVN 1994, Thin 2000). In general, 3 main biogeographical zones are distinguished: The first zone coverstheNorthWestandtheTruongSonRange(untilthelatitudeof10 °N).Inthis zone, most plant species occurring in the mountains are of HimalayaYunnan Guizhoufloraaffinity,whilethespeciesgrowinginlowerareasaremostlyofIndia Myanmarfloraaffinity(Trung1998).FromtheNorthEasttothelatitudeof16 °Nwe find a biogeographical zone, where most species belong to the endemic Southern VietnamSouthern China floral element (Trung 1998). This zone is the habitat of Erythrophloem fordii ,whichisstrictlyendemichere(Trung1998).However,inthiszone wealsofindseveralspeciesofMalaysiaIndonesianfloralaffinity(Lap1999).From theSouthtothelatitudeof18 °NisthezoneofMalaysiaIndonesianfloralaffinity. TherearemanyspeciesofDipterocarpaceaeoccurring inthiszone(Trung1998). Plant biodiversity Table 4. ComponentsofthefloraofVietnam(Thin1997) Phyla Numberoffamilies Numberofgenera Numberofspecies Bryophyta 60 182 793 Psilotophyta 1 1 2 Lycopodiophyta 3 5 57 Equisetophyta 1 1 2 Polypodiophyta 25 137 669 Gymnospermae 8 23 63 Angiospermae 299 2175 299 Total 378 2524 11373 Endemic(%) 0 3 27.7

30 Vietnamese forestry, biodiversity and threatened tree species

Vietnampossessesaveryabundantanddiverseflora,ofwhicharound30%ofits total species are endemic (Thin 1997, Trung 1998). Vietnam is estimated to have from12,000to15,000plantspecies,accordingtodifferentscientists.GoVN(1994) reportsthatVietnamhasmorethan12,000plantspecies,ofwhich7,000havebeen identified. In the 3 phyla Pteridophyta, Gymnospermae and Angiospermae 11,000 species belonging to 2500 genera were identified (Ly 1993). Subsequently, Thin (1997)indicatesthatVietnamhas11,373plantspecies,27.7%ofwhichareendemic, belongingto2524genera,378familiesand7phyla(Table4).Healsopredictsthat Vietnammaypossess between12,000to15,000plant species (Thin 2000). Several floristic biodiversity centres in Vietnam, Laos and Cambodia have also been determined(Fig.2). Figure 2. Floristic biodiversitycentres(the number) in Vietnam, Laos and Cambodia (Schmid1993).

Basedonthepotentialuseofthespecies,Chuyenetal .(1987)dividethefloraof Vietnamintoseveralutilitygroups: • Groupoftimberspecies:1200speciesin100genera • Groupofspeciesproducingfibersforpaperproduction:100species • Groupofspeciesproducingessentialoils:500species • Groupofspeciesproducingfatoils:260species • Groupofspeciesproducingtannin:600species • Groupofspeciesproducingdyes:200species • Groupofmedicinalplantspecies:1000species

31 Chapter 2

However,thenumberofspeciesineachgroupwillprobably increase as more research is carried out. For instance, Chi (1997) determines that there are 3200 medicinalplantspecies,ratherthanthe1000speciesasgivenbyChuyenetal.(1987). Table 5. Plantfamilieswithmorethan100speciesoccurringinVietnam(Thin1997) Family Numberofspecies Family Numberofspecies inVietnam inVietnam Orchidaceae 800 Arecaceae 125 Leguminosae 470 Melastomataceae 124 Euphorbiaceae 425 Moraceae 118 Poaceae 400 Caesalpiniaceae 118 Rubiaceae 400 Asclepiadaceae 113 Asteraceae 336 Polypodiaceae 113 Cyperaceae 303 Fagaceae 111 Lauraceae 246 Araliaceae 110 Acanthaceae 175 Zingiberaceae 109 Annonaceae 173 Rutaceae 108 Apocynaceae 170 Myrtaceae 107 Lamiaceae 145 Theaceae 101 Myrsinaceae 139 Araceae 100 Verbenaceae 131 Rosaceae 100 Scrophulariaceae 128 Urticaceae 100 ManyplantfamiliesoccurringinVietnamareveryrichinnumberofspecies.Thin (2000)describes30familieswithmorethan100species(Table5).Theauthoralso distinguishes20familiesthatareveryabundantinthevegetationofVietnam.They are:Acanthaceae,Araceae,Arecaceae,Asteraceae,Caesalpiniaceae,Dipterocarpaceae, Elaeocarpaceae,Euphorbiaceae,Fabaceae,Fagaceae,Lauraceae,Meliaceae,Moraceae, Myrtaceae,Rubiaceae,Rutaceae,Sapindaceae,Sterculiaceae,Urticaceae,Verbenaceae. Main vegetation types ThevegetationofVietnamhasbeenstudiedandclassifiedfromthebeginningofthe lastcentury(Chevalier1918).Nevertheless,thenumberoftypesandrulebywhich thevegetationwasclassifiedhavevariedovertimebyscientists(e.g.Fig.3isonetype offorestclassification).Theresultofallsuchworkswasarangeofvegetation

32 Vietnamese forestry, biodiversity and threatened tree species

Figure 3. Original vegetation cover and bigeographical units (GoVN 1994). The biogeographicalunitsinclude:NorthEastVietnam(06a),HoangLienSonMountainRange (10c),NorthCentralInidochina(10b),SouthCentralIndochina(10a),RedRiverDelta(05d), North Annam (05c), South Annam (05b), Mekong Delta (05a), Central Truong Son Mountains(Ma),DaLatHighlands(Mb),andRedRiverDelta(05d).

33 Chapter 2 classifications for Vietnam with several overlapping and/or similar forest types identified.However,themaintypesofvegetationofVietnamcanbedistinguishedas follows: Tropical evergreen broad-leaved forest Thiskindofforestisfoundwidelythroughoutthecountryatelevationsbelow700m a.s.l.intheNorthandbelow1000ma.s.l.intheSouth(Chan&Dung1992,Trung 1998).Inthedistributionareaofthisvegetationtypethemeanannualtemperature rangesfrom20to25 °C.Theannualprecipitationismorethan1200mm,with23dry months(withrainfalllessthan50mmpermonth)(Trung1998).Thisforesttypeis verydiverseandcomplexinstructurewithagreatnumberoftree,vine,epiphyteand shrubspecies.Ithas25vegetationlayers:alayerofemergents,themaincanopy storey, the subcanopy layer, the shrub understorey and the forest floor layer. The emergentsmayreachupto2530minheight(Chan&Dung1992,Trung1998).

Tropical semi-deciduous broad-leaved forest The occurrence of this forest type is concentrated in Northern Vietnam and the CentralHighlandsatthesameelevationasthetropicalevergreenbroadleavedforest (Chan&Dung1992,Linh1996,Trung1998).Inthedistributionofthisvegetation typethemeanannualtemperatureis20to25 °C,withthetemperatureofthecoldest month1520 °C.Annualrainfallishigh,from1200to2500mm,but46monthsare considered dry, and 1 month usually has no rain at all (Trung 1998). The forest structureisalsocomplexanddiverse.Deciduoustreesoccupyabout25to75%of thetimbertreesinthisforesttype(Chan&Dung1992,Linh1996).

Tropical deciduous broad-leaved forest Thistypeisdistributednaturallyatanelevationoflessthan700ma.s.l.intheNorth andbelow1000ma.s.l.intheSouth.Thiskindofforesthasasimplestructurewith2 mainlayersoftimbertrees.Thepercentageofdeciduoustreesisestimatedatmore than75%(Chan&Dung1992).Intheseareas,therainfallislow:itmaybeaslowas 600mmperyear.Thedryseasonmaylastfrom4to6months,withatleast1month ofnorainatall(Trung1998). Subtropical evergreen forest This forest is distributed naturally at altitudes above 700m a.s.l. in the North and above1000ma.s.l.intheSouth(Chan&Dung1992,Hung1996).Occurringathigh elevations,thistypeofforestisundertheinfluenceofsubtropicalclimate.Themean

34 Vietnamese forestry, biodiversity and threatened tree species annual temperature ranges from 15 to 20 °C. The annual rainfall is still high, fluctuatingfrom1200to2500mm(Chan&Dung1992).Liketemperateforest,the subtropicalevergreenforesthasasimplestructureof2mainlayersoftimbertrees. The overall species richness is less than in the tropical evergreen forest (Chan & Dung1992).

Limestone forest Thisforestgrowsonthelimestonesubstrate(calcareoussoil),whichextendsovera largeKarsticareaoftheNorthandasmallerareaofNorthernMiddleofVietnam (GoVN1994,Truong1996).Theareaoflimestoneforestisestimatedatabout5.4% ofthetotalforestedland(Phonetal .2001,Dung2005).Infact,theseforestsare subtypesoftheclosedevergreenandsemideciduousbroadleavedforests.Theflora isdiverseandincludesalargenumberofconiferousandbroadleavedspecies(Chan &Dung1992,Truong1996,Dung2005).Growingoninfertilesoilandunderhard climaticconditions,theforeststructureissimple,with12layersofslowgrowingtree species(GoVN1994,Truong1996,Phuong2000).Thisforesttypehasrecentlybeen severelydegradedbyuncontrolledlogging,wildfireandslashandburncultivation, andneedstobeprotectedandreserved(GoVN1994,Phonetal .2001).

Coniferous forest ThisforestoccursintheNorthandtheCentralHighlands,atelevationsofover1000 ma.s.l.wheretheclimateiscoolinsummerandcoldinwinter(Chan&Dung1992, Truong1996).Theseareasarecomparativelydryasannualprecipitationisonlyfrom 600to1200mm(Chan&Dung1992).Thedryseasonislong,lastingfrom4to6 months,with1monthwithoutanyrain(Trung1998).Theforeststructureisoften simpleandtheforestisdominatedby2species, Pinus merkusii and P. kesiya (Chan& Dung 1992). However, more recently, large areas of plantations of P. merkusii, P. kesiya, P. massoniana and P. caribaea havebeenestablishedatlowerelevations(Truong 1996).

Mangrove forest Theseforestsgrowintidalareasalongthecoastofthecountry,especiallyinestuaries (Chan&Dung1992,Sametal .2005).Thistypeofforestismostprevalentinthe South,butalsooccursasshorterandsimplerforestintheNorth(GoVN1994).The structureoftheforestissimpleasitoftenhas1layer(Chan&Dung1992,Truong 1996).However,thistypeofforesthasdramaticallybeendestroyedandreplacedby farmingandlandreclamation(GoVN1994,Sametal .2005)

Bamboo forest

35 Chapter 2

Theseforestsaredistributedthroughoutthecountryandemergeafterharvestingof thenaturalforestsorafterslashandburncultivation(Chan&Dung1992).Thetotal areaofbambooforestsofVietnamisestimatedat1,489,000ha,ofwhich1,415,500 ha are natural bamboo forests (both monoculture and mixture) and 73,500 ha are plantations. The bamboo species of Vietnam are diverseastheycontainabout29 genera and 140 species (Dung & Lam 2005). This type of forests occurs as pure patchesorasmixtureswithtreespecies(Lam2005). Forest status

a. b.

Figure 4. ForestcoverofVietnamin1995(a)andin1943(b)(Maurand 1943,FIPI1995). TheforestsofVietnamhavedramatically decreased duringthelast60years,even thoughtheyhaveslightlyincreasedrecently.Before1945,whenVietnamwasunder FrenchColonialRule,forestshadheavilybeenharvestedfortimber,poleandalsofor rubberandcoffeeproduction(Dangetal.2001).However,atthattimetheforest areawasstillhighasitcoveredaround43%ofthecountry’sarea(Fig.4)(Maurand 1943).From1954to1975,theforestsofVietnamwereseverelydamagedbythelong war with the USA (the American war hereafter), overexploitation and shifting cultivation.By1976,thetotalareaofforestshadbeenreducedto11.2millionha (covering33.8%thecountry),ofwhichonly 10%were intact forests (Lung 2001, Nhat2001).Sine1976,moreforestshavestillbeendestroyedformanyreasons,such as overexploitation, shifting cultivation, and agricultural extension. As a result, the

36 Vietnamese forestry, biodiversity and threatened tree species forestcoverdeclinedtoanestimated30%in1985,and28%in1995(Fig.4)(Lung 2001).In1998,the5MillionhaReforestationProgramwaslaunchedwithatargetto plant5millionhaofforestsby2010,restoringtheforestcoverto 43%(Forestry Department 2001). The program aims not only to reforest, but also to protect existing natural forests. As a result, the forest cover of Vietnam has gradually increased. In 2003, the forested area of Vietnam was 12,094,518 ha, of which 10,004,709hawerenaturalforestsand2,089,809hawereplantationforests,resulting inaforestcoverof36.1%(Hung2004). However, the quality of forests is still low as most of the forests are poor in timbervolumeandlackvaluablespeciesasaresultofalongtimeofoverexploitation andrandomlogging(Thin1997,Dangetal.2001).Itisreportedthatnaturalforests richintimberresourcescoveronly1.4millionha(13%)whilepoorandyoungforests comprisearound6millionha(55%).Theamountofplantationforestshassharply increased(Hung2004),butthequalityalsostilllow.Mostplantationsareevenage andtobeestablishedbyexoticspecies(e.g. Pinus spp, Eucalyptus spp, Acacia spp).In general,theplantationshavelowgrowthrate (about 810 m 3 ha 1 year 1), and they mainlysupportsmallandmediumsizedstems(Dangetal.2001). TherearemanyreasonsfortherapidlossofforestsinVietnam,buttheAmerican warplayedamajorrole(Quy1985,Bouny2006).From1954to1975,theAmerican Armyusedaround74millionlitersofherbicides(AgentOrange)inordertodefoliate denseforestareas(Quy1985,Bouny2006).Around13milliontonsofbombs(some whatbetweentwoandfourtimesthebombs’tonnageofthewholeSecondWorld War)weredroppedonVietnam,mostofwhichseverelyimpactedtheforestedareas (Quy1985,Bouny2006).Asaresult,morethan2millionhaofnaturalforests,of which 500,000 ha of closed upland forests and 30,000 ha of mangroves were completelydestroyed(Westing1971,Quy1985,Truong1996). Overexploitationisalsoanimportantreasonforthedecreaseinforestresources inVietnam.DuringtheAmericanwar,manylargeforestareaswereheavilyloggedto supportpeopleandthewareffort.Subsequently,torebuildthecountryafterthewar, around 1.31.4 million m3 of timber and 100,000 tons of bamboo were exploited annually (Nhat 2001). As a developing countrywith 80%of the population being farmers,Vietnamneedsahugeamountoffirewood.Annually,from22to23million tons of firewood are harvested (Dang et al. 2001, Nhat 2001). In addition, illegal loggingisaseriousproblemasithasannuallydestroyedaround30,000haofforests inseverallastdecades(GoVN1994). Thepopulationof Vietnamhasincreasedquickly,andthishasalsoadramatic impactontheforests.Atthebeginningofthelastcentury,thepopulationofVietnam was about 15 million. However, this number had doubled by 1940, in just 3040 years.From1960onwards,thepopulationhasdoubledevery25years(Dangetal. 2001).In1999,thepopulationofVietnamwas77,263,000people,withadensityof

37 Chapter 2

233peoplepersq.km,5timeshigherthantheaveragedensityoftheworld(Toan 1998,Dangetal.2001).Suchalargepopulationputstheforestunderheavypressure, notonlythroughpracticesofshiftingcultivation,butalsobytransformingforested landintoagricultureproductionfields(Toan1998,Nhat2001). The impact of shifting cultivation on forests may be sustainable if the local populationdensityislow(Sam1996,Nhat2001).Toproduceenoughfoodforself sufficiency,peoplejustcultivatealimitedareaforawhile,andthenleaveitfora reasonabletimebeforegoingtouseitagain.So,thefieldhasenoughtimetorenewa coverandforthesoiltorejuvenate,andpeopledonotneedtogreatlyextendthearea forcultivation,sothattheydonotcausemuchfurtherlossofforests.However,ifthe densityofthepopulationincreases,therateofforestdestructionwillexceedtherate ofrecovery(GoVN1994,Nhat2001).Foreststhereforewillberapidlylostwhenthe populationdensityisextremelyhigh,andpeoplehavetokeepclearingnewforestsfor cultivationofagriculturalcrops(Sam1996). Vietnamhasseveralmillionpeoplewhoselivesarebasedonshiftingcultivation. IntheNorth,around1.4millionpeoplearereportedtopracticeshiftingcultivation. Thepopulationdensitiesofthemountainousareasarenowveryhigh,inmanyplaces up to100 people per sq.km (Dang et al. 2001). The government has introduced policiesandencouragedruralpeopletoconverttopermanentagriculture.However, moreattentionshouldbepaidtothispointinordertobetterpreservetheforests (Dangetal.2001). Transformationofforestedlandintoagriculturalfieldshasdecreasedtheforest cover quickly as a huge number of people from the delta areas moved to live in mountainousareas(GoVN1994).Forinstance,before1975around1millionpeople of the North moved from the Red River delta (very high population density) to mountainousareas (Dangetal.2001).From 1975to 1995, the Central Highlands receivedaround650,000peopleunderthepolicyofarelocationscheme,aswellas around334,000freemovingpeople(Dangetal.2001).Thebigmovementofpeople hasquicklychangedtheforests.Theyclearedforeststocultivateagriculturalcrops. Theyalsouncontrollablyharvestedtimber,firewood,foodandotherforestproducts. Particularly, in the Central Highlands and the SouthEast, large areas of natural forests have been cleared for planting industrial trees such as rubber and coffee. Alongthecoastlineandestuariesofthecountry,especiallyinMinhHaiprovince(in theSouth),certainareasofmangroveshavebeenclearedtoformfarmsforshrimp productionandotherseafood(GoVN1994,Nhat2001). Recently,thecountryhasbeenmovingtowardsamarketeconomy, which may haveanegativeimpactonforests(Nhat2001).Toincreaseyieldfromforestsand plantations,manyexoticandhybridspecieshavebeenimported.Thesespeciesmay invadethehabitatofthenativeforests,andalsobringnewpestsanddiseases,that

38 Vietnamese forestry, biodiversity and threatened tree species maydamageindigenousspecies(Nhat2001,SocialistRepublicofVietnam‘SRVN’ 2003). Threatened tree species TheforestsofVietnamhaveseverelydegradedforoverhalfacentury,notonlythe areaofforests,butalsotheirquality.ThishadsevereimpactsonthefloraofVietnam astheirhabitatwasfragmentedanddestroyed.AccordingtotheMinistryofScience, Technology and Environment ‘MSTE’ 1996), Vietnam has around 356 threatened treespecies(indifferentdegreesofendangerment)ofwhich337arevascularplant speciesand19lowerspecies.Inhisstudiesontheconservationofthreatenedtree species,Nghia(2005)classifiedanumberofvaluabletrees,whicharefacingdangerof extinction.ThisclassificationisgiveninTable6. Table 6. LevelsofendangermentofvaluabletreespeciesinVietnam,adaptedfromNghia 2005(UsingcategorizationofIUCN1997). Vietnamesename Latinname Family Threatened levels Sơnhuy t Melanorrhoea laccifera Pierre Anacardiaceae CRC Sơnñào Melanorrhoea usitata Wall Anacardiaceae CRC Sơn Toxicodendron succedanea (L)Mold Anacardiaceae ENC Thi tñinh Markhamia stipulata Seem Bignoniaceae VUAcd Trailý Garcinia fagraeoidesS.Chev. Clusiaceae NT ðnhtùng Cephalotaxus mannii Hook.f. Cephalotaxaceae ENC Báchxanh Calocedrus macrolepis Kurz Cupressaceae END Hoàngñàn Cupressus funebris Endle Cupressaceae EW Pơmu Fokienia hodginsii Henry&Thomas Cupressaceae VUAcd Tùng Tetrameles nudiflora R.Br Datiscaceae ENAcd Vênvên Anisoptera costata Korth Dipterocarpaceae VUAcd Dun ưc Dipterocarpus alatus RoxbexG.Don Dipterocarpaceae NT Ducát Dipterocarpus chartaceus Sym Dipterocarpaceae ENAcd Dusongnàng Dipterocarpus dyeri PierreexLaness Dipterocarpaceae NT Chònâu Dipterocarpus tonkinensis A.Chev. Dipterocarpaceae ENAcd Dubao Dipterocarpus baudii Korth Dipterocarpaceae END Dumít Dipterocarpus costatus Gaert.f. Dipterocarpaceae ENC Duñ ttím Dipterocarpus grandiflorus Blanco Dipterocarpaceae VUB

39 Chapter 2

Dulông Dipterocarpus intricatus Dyer Dipterocarpaceae LC Duñ ng Dipterocarpus tuberculatus Roxb Dipterocarpaceae LC Saoláhìnhtim Hopea cordata Vidal Dipterocarpaceae CRC Săngñào Hopea ferrea Pierre Dipterocarpaceae VUAcd Saoñen Hopea odorata Roxb Dipterocarpaceae NT Ki nki n Hopea pierrei Hance Dipterocarpaceae VUAcd Saom ng Hopea reticulata Tardieu Dipterocarpaceae CRC Ki nki n Hopea siamensis Heim Dipterocarpaceae VUAcd Chòch Parashorea chinensis H.Wang Dipterocarpaceae VUAcd Chòñen Parashorea stellata Kurz Dipterocarpaceae ENAcd Chailácong Shorea falcata Vidal Dipterocarpaceae VUAcd Sncát Shorea roxburghii G.Don Dipterocarpaceae VUAcd Cmliên Shorea siamensis Miq Dipterocarpaceae LC Chòchai Shorea guiso (Blco)BL Dipterocarpaceae LC Táutr ng Vatica odorata (Griff)Sym Dipterocarpaceae VUAcd Táuduyênh i Vatica mangachapoi Blanco Dipterocarpaceae VUAcd Táum t Vatica cinerea King Dipterocarpaceae VUAcd Mun Diospyros mun AChev.exLecomte Ebenaceae CRAcd Vngtr ng Endospermum chinense Benth Euphorbiaceae VUAcd Dñ Lithocarpus ducampii A.Chev. Fagaceae NT Chòñãi Annamocarya sinensis (Dode)j.Leroy Juglandaceae CRC Mych u Carya tonkinensis Lecomte Juglandaceae CRC Vùh ươ ng Cinnamomum balansae Lecomte Lauraceae CRAcd Xáx Cinnamomum glaucescens Drury Lauraceae CRAcd Reh ươ ng Cinnamomum parthenoxylum Meisn Lauraceae CRAcd Kháovàng Machilus odoratissima Nees Lauraceae NT Gõñ,càte Afzelia xylocarpa (Kurz)Craib Leguminosae ENAcd Tr cdây Dalbergia annamensis A.Chev. Leguminosae ENAcd CmlaiBàR a Dalbergia bariensis Pierre Leguminosae ENAcd Tr cngh Dalbergia cochinchinensis Pierre Leguminosae VUAcd Cmlaivú Dalbergia mammosa Pierre Leguminosae ENAcd Sưa Dalbergia tonkinensis Prain Leguminosae END Xoay Dialium cochinchinensis Pierre Leguminosae ENAcd

40 Vietnamese forestry, biodiversity and threatened tree species

Limxanh Erythrophloeum fordii Oliv. Leguminosae ENAcd Rángràngmít Ormosia balansae Drake Leguminosae VUAcd Gm t Sindora siamensis Teysm.ExMiq Leguminosae VUAcd Gbi n Sindora siamensis var.maritima Leguminosae NT Glau Sindora tonkinensis A.Chev. Leguminosae ENAcd Giángh ươ ng Pterocapus macrocarpus Kurz Leguminosae VUAcd Cămxe Xylia xylocarpa (Roxb)Taub. Leguminosae VUAcd TraiNamB Fagraea fragrans Roxb Loganiaceae CRC MBaVì Manglietia hainanensis Dandy Magnoliaceae END Láthoa Chukrasia tabularis A.Juss Meliaceae CRAcd Vânsam Abies delavayi Franchetsspfransipanensis Pinaceae END Fansipăng (Q.P.Xiang)Rushforth Dusamñávôi Keteleeria davidiana Beissn Pinaceae END Dusam Keteleeria evelyniana Master Pinaceae VUAcd ThôngðàL t Pinus dalatensis deFerre Pinaceae NT Thônghailád t Pinus krempfii H.Lecomte Pinaceae VUAcd ThôngPàCò Pinus kwangtungensis ChunexTsiang Pinaceae END Thi tsamgi Pseudotsuga sinensis Dode Pinaceae VUAcd Thi tsam Tsuga chinensis (Franchet)PritzelexDiels Pinaceae END Trúcvuông Chimonobambusa yunnanensis Hsuehet Poaceae CRD Zhang Trúchoálong Phyllostachys aurea Carr.ExA.et Poaceae CRD Trúcñen Phyllostachys nigra Munro Poaceae CRD Trúcdây Ampelocalamus sp. Poaceae CRD Bchtùng(Thông Dacrycapus imbricatus (Blume)deLaub. VUAcd nàng) Hngtùng Dacrydium elatum (Roxb.)Wall Podocarpaceae VUAcd (H.D.gi ) KimgiaoB c Nageia fleuryi (Hicke)deLaubenfels Podocarpaceae ENB KimgiaoNam Nageia wallichiana (Prest.)Kuntze Podocarpaceae VUAcd Thôngtre neriifolius D.Don Podocarpaceae VUAcd Thôngtreláng n Podocarpus pilgeri Foxwonrthy Podocarpaceae VUAcd Hngquang Rhodoleia championii Hook Rhodoleiaceae VUAcd Snm t Madhuca pasquieri H.J.Lam Sapotaceae VUAcd

41 Chapter 2

Dtùngs ctr ng Amentotaxus argotenia Pilg Taxaceae NE Dtùngs cnâu Amentotaxus hatuyenensis HiepetVidal Taxaceae END DtùngPoalan Amentotaxus poilanei Ferguson Taxaceae NE DtùngVânNam Amentotaxus yunnanensis Li Taxaceae NE Thôngñ Taxus chinensis Pilger Taxaceae END Thôngñ Taxus wallichiana Zucc Taxaceae CRC Samud u Cunninghamia konishi Hataya Taxodiaceae VUAcd Thu tùng Glyptostrobus pensilis (Staunton)K.Koch Taxodiaceae CRAcd BáchtánðàiLoan Taiwania cryptomerioides Hataya Taxodiaceae CRD Báchvàng Xanthocyparis vietnamensis Farjon&Hiep Taxodiaceae END Tr mh ươ ng Aquilaria crassna PierreexLecomte Thymeleaceae CRAcd Dógi y Wikstroemia balansae (Drake)Gilg. Thymeleaceae VUAcd Nghi n Burretiodendron tonkinensis Kost Thymeleaceae ENA

Note: EW:Extinctioninthewild CR:Criticallyendangered(threatenedleveldecreasesfromAtoE) EN:Endangered(threatenedleveldecreasesfromAtoE) VU:Vulnerable(threatenedleveldecreasesfromAtoD) cd:Conservationdependent NT:Nearthreatened LC:Leastconcern NE:notevaluated

National Park and nature reserve system Toaddressthebiodiversitythreatsduetohabitatloss,Vietnamestablishedasystem ofprotectedforestswiththeaimofprotectingthemainecosystemsrepresentedin Vietnam,aswellasthethreatenedandendemicspeciesoffloraandfaunaandtheir habitats,andthevaluablelandscapesforculture,ecologyandbiodiversity(Tai1995, SRVN2003). ThefirstNationalPark(CucPhuong)wasestablishedin1962asanimportant pointforforestprotectionandconservationinVietnam(Thu2002).Sincethen,the nationalparkandnaturereservesystemofVietnamhasdevelopedquickly.Bythe year1986,Vietnamhadestablished87protectedareas,occupying3.3%ofthetotal areaofthecountry(SRVN2003).From1986onwards,moreattentionhasbeenpaid to forest protection and conservation and a large number of protected areas was established.Bytheyear2003,Vietnamhad126areasofspecialpurposeforestswith totalareaof2,541,675ha(Table7),occupying7.7%ofthetotalareaofthecountry (ForestDepartment2004).

42 Vietnamese forestry, biodiversity and threatened tree species

Table 7. Systemofspecialpurposeforests(ForestDepartment2004) Classification Number Area(ha) NationalParks 27 957,330 Naturereserveareas 49 1,283,209 Species/habitatmanagementprotectedareas 11 85,849 Protectedlandscapeorseascapeareas 39 215,287 Total 126 2,541,675

The4kindsofspecialpurposeforests(protectedareas)havedifferentpurposes, andthustheydifferintermsofimportanceforprotectionandconservationandalso managementlevel.ForestTechniquesandScienceAssociationofVietnam(FSTA) (2001)definedthe4kindsofprotectedareasasfollows: • National Park: Anareaonthemainlandorintheseathathasnot or only slightly been impacted by human activities. It contains rare, precious or endemicspeciesorhaspopularlandscapesatnationalorinternationallevels. TheobjectivesofestablishingaNationalParkaretoprotecttheecosystemof threatenedspecies,astheyhaveimportantrolesforthecountryandtheworld, andtoprovidefacilitiesforscientificstudyandecotourism. • Nature Reserve: A large area having typical ecosystems or containing populationsofvaluablespeciesthatneedconservation.NatureReservesareto protectandmaintainecosystemsandfloralandfaunalspeciesintheirnatural conditions.Theyaimalsotoprovideforscientificresearchandenvironmental • management.However,incontrasttoNationalParks,ecotourismislimited innaturereserves. • Species/Habitat Management Protected Area :Aforestareaestablishedtoprotect, maintainandfavorparticularthreatenedspeciesandtheirenvironment. • Protected Landscape or Seascape :Aprotectedlandscapeorseascapeestablishedto protectfamousnaturallandscapesornationalculturalproperties.Itisalsoto protect the natural beauty of forests, caves, waterfalls, sand dunes, coral islandsandvolcaniccraters. National parks are the most important for protection and conservation. In NationalParks,activitiessuchaslogging,firewoodandfoodcollection,huntingor fishingarenotallowed.Incontrast,alltheseactivitiesareallowedintheProtected Landscape or Seascape areas. In Nature Reserve Areas and Species/Habitat Management Protected Areas, several activities are allowed, as long as they are in harmony with the purpose of conservation of the area. The location, sizes and purposesofprotectedareasarespecifiedinTable8(SRVN2003).

43 Chapter 2 * ,* ,* lfloodedgrassLand* ins * Diospyros mun , Nageia fleuryi ,* Tsugadumosa , , ,* ,* Hopea Hopea siamensis * * Excentrodendron tonkinense Fokienia lanceolata, hodginsii, Cunninghamia Calocedrus macrolepis Fokienia hodginsii Erythrophleum fordii Abies fansipanensis Nageia fleuryi eenforests,* estoneforests,* Forestsontheisland, Objectives 7,610 Limestoneforests,naturallakesinthemounta 91,113 Evergreenforests, 31,422 Forestsontheisland, 16,634 Evergreenforests, 18,765 Deciduousandsemideciduousforests,seasona 41,862 Mangroveforests,* 29,865 Dryforests 85,754 Limestoneforests, 58,947 Evergreenforests,* 29,845 Evergreenforests, 41,780 Evergreenforests, 26,032 Evergreenforests,* 15,200 Limstoneforests, 56,621 Evergreenforestsandsemievergreenforests, 957,330 2,541,675 RVN2003) ProtectedareasandtheirobjectivesinVietnam(S Nameofprotectedarea Location(provinces) Area(ha) Total 2 BaVi3 BachMa4 BaiTuLong HaTay,HoaBinh ThuaThienHue QuangNinh 12,023 22,030 Evergreenforests, Evergreenforests,* 15,738 1 BaBe5 BenEn BacCan ThanhHoa 6 BuGiaMap7 CatBa BinhPhuoc HaiPhong 8 CatTien9 ConDao DongNai,LamDong,BinhPhuoc BaRiaVungTau 70,548 Evergr 19,998 Forestsontheisland, 20 PuMat NgheAn 19 PhuQuoc KienGiang 15 LoGoSaMat TayNinh 16 MuiCaMau17 NuiChua18 PhongNhaKeBang CaMau QuangBinh NinhThuan 11 ChuYangSing12 CucPhuong13 HoangLienSonSapa DakLak LaoCai NinhBinh,ThanhHoa,HoaBinh 22,200 Lim 14 KonKaKinh GiaLai 10 ChuMomRay KonTum I NationalParks

Table8.

44 Vietnamese forestry, biodiversity and threatened tree species dendron dendron ,* * rassland,* * Fokienia hodginsii, , * Cupressus torulosa, tonkinense Excentrodendron Markhamia stipulata, Garcinia Excentrofagraeoides, Garcinia Markhamiastipulata, Fokienia hodginsii Pinuskrempfii Fokienia hodginsii, * Fokienia hodginsii, eninsula,beautifullandscapes,* ocarpforests,* reenforests,* vergreenforests, tonkinense, Chukrasia tabularis, tabularis, Chukrasiatonkinense, Objectives 5,675 Evergreenforests, 8,038 Mangroveforests,* 7,588 Mangroveforests,floodedecosystem,floodedg 1,535 7,100 Mangroveforests,* 24,801 Evergreenforests,* 19,353 24,293 Forestsonlimestonehills 40,526 Evergreenforests,* 22,000 Dipterocarpforests,naturalgrasseslands,* 10,640 Limestoneforests, 64,366 Evergreenforests, 27,800 Limestoneforests, 55,029 Evergreenforests, 15,048 Limestoneforests,* 115,545 DryDipterocarpforests,* 1,283,209 Area(ha) Location(provinces) Nameofprotectedarea 6 ChamChu7 Copia8 CuLaoCham9 DuGia TuyenQuang QuangNam SonLa HaGiang 58,187 Limestoneforests,* 4 BinhChauPhuocBuu5 BidoupNuiBa BaRiaVungTau LamDong 11,392 DryDipter 1 BaNaNuiChua2 PeninsulaSonTra3 BacMe DaNangCity,QuangNam DaNangCity HaGiang 38,210 Everg 4,370 Forestsonthep 13 KeGo14 KheRo HaTinh BacGiang 10 Dakrong11 Easo12 HuuLien QuangTri DakLak LangSon 23 UMinhThuong24 VuQuang KienGiang HaTinh 22 TramChim DongThap 21 TamDao VinhPhuc,ThaiNguyen,TuyenQuang 34,995 E 25 XuanSon26 XuanTruong27 YokDon PhuTho NamDinh DakLak I NationalParks

II Nature conservation areas

45 Chapter 2 ,* ,* ,* ,* ,* ,* ,* Excentrodendron tonkinense,Excentrodendron Podocarpus Excentrodendron tonkinense , * Craibiodendron selenranthum Cunninghamia Cunninghamia lanceolata * , , Cunninghamia lanceolata Cunninghamia , Fagraea fragrans, tonkinense Excentrodendron Pinuskwangtungensis Markhamiastipulata * Fokienia hodginsii, Fokienia hodginsii Pinuskesiya, Hopea siamensis Panax vietnamensis, Dacrydium elatum Afzelia xylocarpa, Dalbergia Afzelia Dalbergia oliveri xylocarpa, Fokienia hodginsii Objectives pilgeri. pilgeri. 5,647 5,000 1,500 7,091 Limestoneforests, 9,107 Dipterocarpforests,Semideciduousforests,* 27,503 Evergreenforests,Chukrasiatabularis, 19,81467,934 Evergreenforests, Evergreenforests, 10,84941,424 Evergreenforests, Evergreenforests, 25,468 Evergreenforests,* 10,000 18,840 Limestoneforests, 17,66293,249 Limestoneforests,* 27,886 Evergreenforests,* 18,893 15,900 Evergreenforests, 24,555 Evergreenforests, 15,461 Limestoneforests, 50,075 Evergreen, 182,000 Nameofprotectedarea Location(provinces) Area(ha) 33 PuHu ThanhHoa 29 PhongDien30 PhuCanh31 PhuocBinh32 PuHoat ThuaThienHue HoaBinh NinhThuan NgheAn 41,548 Evergreenforests, 21 NamNung22 NgocLinh DacLak KonTum 23 NuiOng24 NuiDaiDinh25 NuiCam26 NuiPiaOac27 HangKia–PaCo28 LamDong PhongQuang BinhThuan AnGiang HoaBinh CaoBang HaGiang 35 PuLuong36 SongThanh37 SopCop38 TaDung ThanhHoa QuangNam SonLa DacLac 16 KonChaRang GiaLai 17 KrongTrai18 KyThuong19 MuongNhe20 NamCa PhuYen QuangNinh LaiChau DacLak 17,640 Evergreenforests 15 KimHy BacCan 34 PuHuong NgheAn

II Nature conservation areas 46 Vietnamese forestry, biodiversity and threatened tree species s,* Excentrodendron tonkinense,Excentrodendron , ,* ,* Fokienia hodginsii Cupressus torulosa Podocarpus chinensis Fokienia hodginsii Madhuca Madhuca pasquieri , Podocarpuspilgeri ,Nageia fleuryi , forests,* Glyptostrobus pensilis Objectives Glyptostrobus pensilis Dacrydium elatum Dacrydium Melaleuca 50 100 127500 * Evergreenforests, 2,6433,394 Limestoneforests,* Mangroveforests,* 6,0004,000 Mangroveforests,* Limestoneforests,* 7,3083,000 Limestoneforests 4,510 14,605 Mangroveforests,seasonalfloodedgrassland 17,823 17,650 28,261 Limestonebambooforests, 12,500 Mangroveforests,* 27,668 Evergreenforests, 16,466 38,069 Limestoneforests,* 85,849 Nameofprotectedarea Location(provinces) Area(ha) protected area protected 2 KienLuong KienGiang 1 Earal DakLak 8 TienHai9 TrapKso ThaiBinh DakLak 6 SanChimBacLieu7 TamQuy BacLieu ThanhHoa 3 LungNgocHoang4 MoReBacSon5 NaHang CanTho LangSon TuyenQuang 41,930 Limestoneforests, 10 VanLong11 VoDoi NinhBinh CaMau 39 TaKou BinhThuan 40 TaSua41 TayConLinh HaGiang SonLa 44 ThanSaPhuongHoang45 ThuongTien46 ThaiNguyen TrungKhanh47 XuanLien HoaBinh CaoBang ThanhHoa 11,220 42 TayYenTu43 ThachPhu BacGiang BenTre 48 XuanNha49 YenTu SonLa QuangNinh,BacGiang 3,040 Limestoneforests

II Nature conservation areas III Species/Habitat management

47 Chapter 2 eKing nPass Objectives 562 300 285 VestigeofHungKings 267 1,000 6,770 6,770 5,000 1,000 2,000 1,4775,000 Pineforests,NguyenTraiVestige 3,000 8,876 LandscapeofCaPassandcoastlineforests 2,616 Landscapeandhistoricalarea 5,6246,000 Limestoneforests,VestigesofDinhKingandL 3,4954,355 Limestonelandscapes Limestoneforests,HuongTichPagoda 11,488 15,000 12,744 Naturallakeinthehighlands 215,287 Nameofprotectedarea Location(provinces) Area(ha) 1 Antoankhu2 AiChiLang ThaiNguyen LangSon 10,059 3 BaTo4 BaiChay5 BacHaiVan6 CaoMuon7 IslandsofThacBa8 IslandsofHalongBay9 BinhDinh QuangNinh ChangRiec ThuaThienHue YenBai QuangNinh QuangNgai TayNinh 14,547 LandscapeofHaiVa 10 ChienKhuBoiLoi11 ConSonKiepBac12 DuongMinhChau13 TayNinh BaTrieuTemple14 HaiDuong HungTemple15 TayNinh IslandsofSongdaLake16 CaHonNuaPass17 ThanhHoa HoaBinh DoSon18 PhuTho GhenhRang19 CamSonLake PhuYen 20 HoLac21 HoaLu22 NuiCoc23 BinhDinh HaiPhong BacGiang HonChong24 HuongSon DakLak NinhBinh ThaiNguyen KienGiang HaTay

IV Protected LandscapesSeascape or

48 Vietnamese forestry, biodiversity and threatened tree species Objectives ricalHeritageSite 300 300 400 940 177 600 KimLienHeritageSite 1,855 1,500 1,883 HistoricalHeritageSite 10,850 LandscapeofHaiVanPass 32,05132,051 Limestoneforests,historicalHeritageSite PineforestontheHighLands 24,842 Severalrarewildlifespecies : * Nameofprotectedarea Location(provinces) Area(ha) 27 NorthofHaiVan28 NgocTrao29 NguHanhSon30 BaDenMountain DaNang 31 BaRaMountain32 SamMountain33 ThanhHoa DaNang TayNinh ThanhMountain34 ChungMountain35 BinhPhuoc PacPo36 AnGiang PineforestsofDaLat37 QuangNam TanTrao38 NgheAn VucMau39 LamDong YenThe CaoBang TuyenQuang NgheAn BacGiang 6,633 Evergreenforests,histo 25 KimBinh26 LamSon TuyenQuang ThanhHoa 1,937 HistoricalHeritageSite

IV Protected LandscapesSeascape or

49 Chapter 2

Theestablishmentof126protectedareascoveringmorethan2.5millionhahas required a substantial effort (SRVN 2003). However, this system still has several problems and needs to be improved in order to protect and conserve effectively forests,landscapesandbiodiversity. TheprotectedareainVietnamisnotaslargeenoughforaneffectivestrategyof protection and conservation and several protected areas are too small for conservationpurposes(FSTA2001).ThetotalprotectedareainVietnamwasaround 8% of the country in 2003 (Forest Department 2004). This is low compared to neighboringcountriessuchasCambodia(18.05%),Lao(11,6%),Thailand(13.01%) and Indonesia (11.62%) (IUCN 1997). It is also below the minimum of 10% recommended by IUCN (1997). Recently, Vietnam has developed the watershed protectionregimeforseveralimportantbasins,whichmayhelpprotectforestsand threatenedtreespeciesinthoseareas(Taylor&Wright2001).However,inorderto protectandeffectivelyconservethreatenedspeciesandlandscapes,thecountrystill needsnotonlytoincreasethenumberofprotectedareas,butalsotoexpandsome smallprotectedareas,andensurethatprotectedareasareindeedproperlyprotected. In most protected areas, basic research such as on taxonomy of the species, inventoriesofbiodiversityorsurveysofthreatenedspeciesarestillinsufficient(FSTA 2001).Controlofhumanactivitiesinprotectedareashasproveddifficultduetoa largenumberoflocalpeople,whorelyontheforestsforaliving(Quy1985).They practice agriculture in the forests, also extract timber from the forests, collect fire wood, medicinal plants and other forest products, hunt and fish. In addition, a movement from the neighboring areas to protected areas has increased the population density, which makes protection and conservation more difficult. For instance,manypeoplehavemovedtoBaBeNationalPark,NamCatTienNational ParkandYokdonNationalPark(Tai1995). Toreducethepressureofahighhumanpopulationdensityonprotectedareas, localpeoplefromthecores(restrictedzones)havebeenmovedtothebufferzones, asimplementedinCucPhuongNationalParkin1987 (Thu 2002).Other national parksarealsodividedintotwoparts,inwhichthecoresarestrictlyprotected,but localpeoplecanliveandpracticeagricultureinthebufferzones.However,thisisnot sufficienttoprovideasustainablestrategyofprotectionandconservationiftheliving standard of local people is not improved. Local people should be taught new methods of cultivation and production or should be provided with other ways to improvetheirlivingconditions. Severalother problemsarealsoaffectingprotected areas. Investment from the Government for protection and conservation is limited. Lack of funds and useful equipment for implementing protection and conservation is common in protected areas(Tai1995,FTSA2001).Humanresourcesarealsolimited:Thecapacityofstaff to implement protected and conservation projects is limited both by insufficient

50 Vietnamese forestry, biodiversity and threatened tree species numberofpeopleandbythelackofqualification,experienceorskillsofthestaff (Tai1995).Toimprovethissituation,protectedareasshouldseekadditionalfunding from donors, particularly international donors. The staff should also be increased both in quantity and quality in order to implement sustainable protection and conservationactivities. In summary, Vietnam is characterized by a monsoonal climate and a complex terrain.Vietnampossessesaverydiverseforestvegetation,rangingfrommangrove, limestone, and tropicalrain forests to subtropical, bamboo and coniferous forests. Beingavenueofplantsemigratedfromthethreeflorasnearby,Vietnamalsoharbors ahugenumberofplantspecies.Nevertheless,duetomanyreasons,theforestsof Vietnamhaveseverelyreducedforlastdecades,leadingtoathreatofextinctionrisks formanyspecies.Recently,byagreateffort,Vietnamhasestablishedagoodsystem ofprotectedareas,andincreasedtheforestcoverinthewholecountry.Toeffectively conservethreatenedspecies,however,moreattentionisrequired,notonlytoprotect andincreasetheforestcover,butalsotostudyandimprovethesituationsofthese species. Acknowledgements WearegratefultoPieterZuidema,MaureenMarray,NielsAntenandPhamQuang Vinhforvaluablediscussionandcommentsonthischapter. We also acknowledge MarjoleinKortbeekforpreparingmapsforfigures.

References *Binh,N.N.1996.ForestsoilsinVietnam.AgriculturalPublishingHouse.HaNoi. Bouny,A.2006.SprayingofAgentOrangebyUSArmyinVietnamandits consequences.Availablefromhttp://www.stopusa.be/scrips/texte.php (access September2006). *Chan,L.M.,andV.V.Dung.1992.Foresttreetextbook.VietnamForestryUniversity. XuanMai. *Chan,L.T.,T.Ty,N.H.Tu,H.Nhung,D.T.Phuong,andT.T.Van.1999.Some basischaractersofVietnamflora.ScienceandTechnicsPublishingHouse.Ha Noi. Chevalier,A.1918.PremierinventairedesboisetautresproduitsforestiersduTonkin. *Chi,V.V.1988.DictionaryofmedicinalplantspeciesinVietnam.WorldPublishing House.HaNoi. *Chuyen,V.V.,L.T.Chan,andT.Hop.1987.GeographyofplantfamiliesinVietnam. ScienceandTechnicsPublishingHouse.HaNoi. *Dang,N.V.,T.D.Mai,H.C.Chu,T.D.Huy,andN.H.Kinh.2001.Forestryin

51 Chapter 2

Vietnam(19452000),developmentprogressandexperiencedlessons. AgriculturalPublishingHouse.HaNoi. *Dung,N.H.2005.Forestresourceinlimestonemountainsandmanagementplan.Pages 329inMARD,editor.PaperfortheConferenceofforestscienceand technologyfor20yearsunderrenovation,89/4/2005.HaNoi. *Dung,V.V.,andL.V.Lam.2005.ResourceofbambooinVietnam.Pages301311 ininMARD,editor.PaperfortheConferenceofforestscienceandtechnology for20yearsunderrenovation,89/4/2005.HaNoi. Engler,A.1882.VersucheinerEntwicklungsgeschichtederPflazenwelt.Engelmann, Leipzig. *ForestDepartment.2004.Forestdevelopmentinperiodof20062010.Journalof AgricultureandRuralDevelopment 12 :1317. *ForestInventoryandPlanningInstitute(FIPI)1995.Forestcoveranditschangeinthe periodof19911995. *ForestTechniquesandScienceAssociationofVietnam(FTSA).2001.Nationalparksin Vietnam.AgriculturalPublishingHouse.HaNoi. Good,R.1969.Thegeographyofthefloweringplants.Longmans.London. GovernmentoftheSocialistRepublicofVietnamandtheGlobalEnvironmentFacility Project(GoVN).1994.BiodiversityactionplanforVietnam.HaNoi. Hung,N.D.1996.ThefloraandfaunaresourceintheforestsofVietnam.Pages7591 inM.L.Quang,editor.Vietnamesestudies.HaNoi. *Hung,T.V.2004.Forestryresearchforthecomingtime.JournalofAgricultureand RuralDevelopment 12: 2629. *Keo,H.V.2003.Researchonecologicalcharacteristicsandreproductivecapability bycuttingof Dacrydium elatum (Roxb.)WallichexHooker)inBachMaNational Park.PhDthesis.HueScienceUniversity,Hue. *Lam,L.V.2005.TaxonomyofbamboosubfamiliesinVietnam.Pages312321in MARD,editor.PaperfortheConferenceofforestscienceandtechnologyfor 20yearsunderrenovation,89/4/2005.HaNoi. *Lap,V.T.1999.NaturalGeographyofVietnam.EducationPublishingHouse.HaNoi. Laurance,W.F.1999.Reflectionsonthetropicaldeforestationcrisis. BiologicalConservation 91 :109117. Linh,V.B.1996.DryopenDipterocarpusinVietnam.Pages5368inM.L.Quang, editor.Vietnamesestudies.HaNoi. *Lung,N.N.2001.ThestatusofforestresourcesinVietnam:matterofenvironment, economy,societyandresolutions.JournalofAgricultureandRural Development 12 :891893. *Ly,T.D.1993.1900valuableplantspeciesinVietnam.WorldPublishingHouse.Ha Noi. Maurand,P.1943.L’Indochineforestiere.BEI,HaNoi. *MinistryofScience,TechnologyandEnvironment(MSTE).1996.RedDataBookof Vietnam.Volume2Plant.ScienceandTechniquesPublishingHouse,Ha Noi.

52 Vietnamese forestry, biodiversity and threatened tree species

Nghia,N.H.2000.SomethreatenedtreespeciesofVietnam.AgriculturalPublishing House,HaNoi. *Nghia,N.H.2005.Resultsfromresearchonconservationofforestplantgenetic resources.Pages212inMARD,editor.PaperfortheConferenceofforest scienceandtechnologyfor20yearsunderrenovation,89/4/2005.HaNoi. *Nhat,P.2001.Lecturesonbiodiversity.VietnamForestryUniversity.XuanMai. *Phon,N.H.,N.H.Dung,andV.V.Dung.2001.Thelimestoneforestsin Vietnam–strategyformanagement,protectionanddevelopment.Journalof AgricultureandRuralDevelopment 8:577579. Pocs,T.1965.ProdromedelabryofloreduVietnam.RevueBryologigue 38 :5361. Quy,V.1985.RarespeciesandprotectionmeasuresproposedforVietnam.Page98 102inJ.W.Thorsell,editor.ConservingAsia’sNaturalHeritage.HaNoi. Sam,D.D.1996.Forestlandinrelationtoforestvegetationcover.Pages3951inM.L. Quang,editor.Vietnamesestudies.HaNoi. *Sam,D.D.,andN.N.Binh.2001.Evaluationofproductivepotentialofforestsoilsin Vietnam.StatisticalPublishingHouse.HaNoi. *Sam,D.D.,N.N.Binh,N.D.Que,andV.T.Phuong.2005.Overviewofmangrove forestsinVietnam.AgriculturalPublishingHouse.HaNoi. Schmid,M.1962.Contributional’etudedelavegetationduVietnam:LemassifSud Annamitiqueetlesregionslimitrophes.Thesededoctoratpresenteeal’Universite deParis. Schmid,M.1993.Vietnam,KampucheaandLaos.Pages8589inD.J.Campbelland H.D.Hammond,editors.Floristicinventoryoftropicalcountries.NYBGand WWF. Schmithusen,J.1968.AllgemeineVegetationsgeographie.DeGruyter,Berlin. Schnell,R.1962.Remerquespreliminairessurquelquesproblemesphytogeographiques dusud–estAsiatique.RevueGeneraledeBotanique69 :301368. *SocialistRepublicofVietnam(SRVN).2003.Managementstrategyforthesystemof natureconservationareasinVietnamto2010.HaNoi. Sodhi,N.S.,L.P.Koh.,B.W.Brook,andP.K.L.Ng.2004.SoutheastAsian biodiversity:animpendingdisaster.TrendsinEcologyandEvolution 19: 654 660. *SoilScienceAssociationofVietnam(SSA).1996.SoilsofVietnam.Agricultural PublishingHouse.HaNoi. *Tai,N.M.1995.SystemofnationalparksandnaturereserveareasinVietnam.Pages 6775inFSTA,editor.NationalparksandnaturereserveareasinVietnam. AgriculturePublishingHouse.HaNoi. Takhtajan,A.1971.Floweringplants–originanddispersal.Oliver&Boyd,Edinburgh. Taylor,P.,G.Wright.2001.EstablishingriverbasinorganisationsinVietnam:RedRiver, DongNaiRiverandLowerMekongDelta.WaterScienceandTechnology 43 : 273281. *Thao,L.B.1998.Vietnam:territoryandgeographicalareas.WorldPublishingHouse. HaNoi.

53 Chapter 2

*Thin,N.N.1997.Manualforbiodiversityresearch.AgriculturalPublishingHouse.Ha Noi. *Thin,N.N.2000.Biodiversityandresourcesofplantheredity.NationalUniversity Press.HaNoi. *Thu,N.B.2002.SystemofnaturereserveareasinVietnam–StatusandDemand thatneedstobechanged.JournalofAgricultureandRuralDevelopment 7: 627628. *Toan,D.N.1998.EconomicalgeographyofVietnam.UniversityofNational Economy.HaNoi. *Trung,T.V.1970.ForestvegetationcoverofVietnam.ScienceandTechnicsPublishing House.HaNoi. *Trung,T.V.1998.EcosystemsoftropicalforestsinVietnam.ScienceandTechnics PublishingHouse.HaNoi. Truong,N.V.1996.Theforest.Pages538inM.L.Quang,editor.Vietnamesestudies. HaNoi. Vidal,J.F.1973.FloreduVietnam.HaNoi. Walter,H.,andH.Straka.1970.Arealkunde.Ulmer,Stuttgart. Westing,A.H.197.EcologicaleffectsofmilitarydefoliationontheforestsofSouth Vietnam.BioScience 21 :893898. Whitmore,T.C.1997.Tropicalforestdisturbance,disappearance,andspeciesloss.Pages 312inW.R.LauranceandR.O.Bierregaard,editors.TropicalForestRemnants: Ecology,ManagementandConservationofFragmentedCommunities.University ofChicagoPress,Chicago. Willis,K.J.,J.C.McElwain.2002.Theevolutionofplants.OxfordUniv.Press,Oxford. Wilson,E.O.1988.Biodiversity.NationalAcademyofSciences,Washington,DC. WorldConservationUnion(IUCN).1997.TheIUCNRedListofThreatenedPlants. Gland,Switzerland. Wright,S.J,andHCMullerLandau.2006.Theuncertainfutureoftropicalforest species.Biotropica 38 :443445. Note: *TheinitialtitlesinVietnameseweretranslatedintoEnglish.

54

55

56 Chapter 3 Conservation prospects for threatened Vietnamese tree species: results from a demographic study With P.A. Zuidema & N.H. Nghia Abstract Effective conservation of threatened tree species requires information on the future prospectsofpopulationsthatobtainedfromdemographicstudies.Weinvestigatedthe demographyofsixthreatenedtreespeciesinfourprotectedareasinVietnam:thebroad leaved Annamocarya sinensis , Manglietia fordiana and Parashorea chinensis ,andtheconiferous Calocedrus macrolepis , Dacrydium elatum and Pinus kwangtungensis .Inatwoyearfieldstudy,we quantified recruitment, growth and survival, and used these data to build matrix projectionmodels.Recruitmentofnewseedlingswasfoundforbothstudyyearsand over all research plots, indicating that all six species were regenerating naturally. Furthermore,thecontinuousandinverseJshapedpopulation structures of all species alsosuggestabundantandcontinuousnaturalregeneration. Toevaluatewhethernaturalrecruitmentissufficient,wecalculatedthreeparameters. First, asymptotic growth rates (λ) obtained from matrix models were slightly below 1 (0.970.99)forallspecies,butasignificantpopulationdeclinewasonlyfoundfortwoof the six species. Second, projected population growthratesforthenext50100yalso suggested slight population decline (03%/y) for five of the six species. Third, we evaluatedwhetherlifetimeproductionofseedlingsbyanadulttreeissufficienttoreplace itself–aprerequisiteforpopulationmaintenance.Forthreeofthesixspecieslifetime recruitmentwassufficient,butthethreeotherspeciesrequiredextremelylong(4801000 y)reproductiveperiodtoproducesufficientrecruitstoreplacethemselves.Combining thethreeparameters,weconcludedthatthefutureprospectforpopulationsof Dacrydium and Parashorea is good, that for Annamocarya , Manglietia and Pinus is worrisome, while Calocedrus takesanintermediateposition. Wesuggestthatconservationmeasuresincludestrictprotectionofjuvenileandadult trees,asthesearemostimportantforpopulationmaintenance (high elasticity values). Othereffectiveconservationsinclude:improvinggrowthofseedlingsandjuveniletrees, enrichingpopulationswithplantedseedlingsobtainedfromcontrolledgerminationand– for Calocedrus and Pinus specieswithverylowpopulationsizes(<500)–restoringhabitat toincreasepopulations. Finally,wearguethat–aslonglivedspeciesareslowinrespondingtoconservation measures – these measures should be taken before populations decline below critical levels.

Key words: Threatenedtreespecies,protectedarea,matrixpopulationmodels,elasticity analysis, conservation strategy, Annamocarya , Calocedrus , Dacrydium , Manglietia , Parashorea , Pinus . Chapter 3

Introduction Tropicalandsubtropicalforestareahasdeclinedatanalarmingrateoverthepast decades(Achardetal.2002),particularlyinSoutheastAsia(Whitmore1997,Sodhiet al.2004).Asaconsequence,manytreespecieshavelostasubstantialpartoftheir habitatandhavebecomerare,eitherduetotheirrestricteddistributionortheirlow abundance. This is illustrated by the large amount of critically endangered (477), endangered (333) and vulnerable (962) tree species in Southeast Asia (World Conservation Union ‘IUCN’ 2006). The survival of such endangered species is stronglydependingonprotectedareas(Bawa&Ashton1991).But,withinprotected areas, isolated populations of endangered species may also be vulnerable to local extinction due to demographic stochasticity or lack of genetic variation (Menges 1992,Lande1993,Oostermeijeretal.2003).Itisthereforeimportanttoevaluatethe viabilityofremainingpopulationsofthreatenedtreespecies,byansweringquestions such as: Are they growing or declining? What factors determine their fate? What processes or stages in the life cycle are most important for the survival of the population?Toanswerthesequestions,studiesonspatialdistribution,densities,or geneticvariationorcultivationofthespeciesarenotsufficientastheydonotprovide informationonlikelypopulationchangesintime(Schemskeetal.1994,Doweetal. 1997, Keith 2000). Demographic (or population dynamics) studies on the other hand – do provide such information, and have shown to be useful to evaluate viability of threatened populations, e.g., using matrix population models (Harvey 1985,Lande1988,Silvertownetal.1996,Menges2000). Inthispaper,wepresentastudyonthedemographyofthreatenedtreespeciesin Vietnam, a country where natural forest cover declined from 43% natural forest coverin1943to30%in2003(Hung2004).Westudiedsixthreatenedtreespeciesin fourprotectedareas.AllspeciesareincludedinVietnam’sRedList:fourareendemic toVietnamandSouthernChina,andtwoothersarerelictspeciesthatoccurinonlya fractionoftheirhistoricalgeographicalrange(MinistryofScience,Technologyand Environment‘MSTE’1996,Nghia2000).Toourknowledge,thisisthefirststudy that evaluates conservation prospects of Southeast Asian tree species using demographicanalyses. Weaddressedthefollowingquestions:(i)Arepopulationsofourstudyspecies naturally regenerating? To answer this, we carried out a 2 year demographic field study, in which we examined recruitment and evaluated population structures. (ii) Whatisthefutureprospectforthesespecies?Tothisend,weconstructedpopulation transitionmatricesforallsixspecies,andcalculatedpopulationgrowthrates,survival curvesandages.(iii)Whatarethemostimportantprocessesorstagesinthelifecycle ofthespeciesthatshouldbethefocusforconservationmeasures?Thisquestionwas answeredbycalculatingelasticityvaluesfrommatrixmodels(deKroonetal.2000), andcomparingtheseamongvitalrates(survival,growthandfecundity)andspecies.

58 Conservation prospects – Results from a demographic study

Our study delivers essential information for effective conservation of our study species,butalsoforsimilartreespeciesintheregion.

Methods

Study species ThestudyfocusesonsixthreatenedVietnamesetreespecies(Table1),referredtoby genusname. Annamocarya sinensis , an endemic species of Vietnam and Southern China, is a largesize deciduous forest tree species. Annamocarya occurs in evergreen tropical forestsatelevationsof100600ma.s.l(abovesealevel)(MSTE1996).InVietnam, Annamocarya isrestrictedtoseveralprotectedareassuchasCucPhuong(NinhBinh), TamDao(VinhPhuc)andLangChanh(ThanhHoa)(Fig.1).Eveninsuchareas,its populations are limited in both the number of individuals and the range of distribution(MSTE1996,Nghia2000). Annamocarya fruitsannually,producingheavy (5060grams)seeds(Thu&Can1999). Calocedrus macrolepis is a relict coniferous species that dominates the canopy of subtropicalforestsinhighmountains.Despiteitswidedistribution(southwestChina, Myanmar, Thailand, Laos and Vietnam), this species has become rare and is represented only in small populations (Hiep et al. 2004, Wang et al. 2004). In Vietnam,itoccursinsmallpopulationsintheCentralHighlandandBaViMountains intheNorth(Fig.1)(Hiepetal.2004). Dacrydium elatum is also a relict coniferous species, occurring in tropical and subtropical rain forests (5001800 m a.s.l) in Southeast Asia and Hainan Island (China).InVietnam,thedistributionofDacrydium hasseverelydeclinedduetohabitat loss (MSTE 1996), and is currently sparsely found in high mountains of some provinces(Fig.1),particularlyinBachMaNationalPark(ThuaThienHueprovince) (Hiepetal.2004).Regenerationofthespecieshasbeenobservedinopenandmoist forestsclosetoparenttrees(Keo2003). Manglietia fordiana is an endemic species of Vietnam and Southern China. In Vietnam, Manglietiaissparselydistributedintropicalrainforestsatelevationsfrom 1001000 m a.s.l. (Fig. 1). Seedlings are shadetolerant and adults reach the forest canopy.Currently,thespeciesisrestrictedtosmallpopulationsin protectedareas, anditisanimportantfocalspeciesforconservation(MSTE1996). Parashorea chinensis is a largesize tree species that reaches the canopy of dense evergreentropicalforestsintheNorthofVietnam(Fig.1).Bothhabitatextentand localabundanceof Parashorea haveseverelydeclinedstronglyduetodeforestationand overexploitation.Adulttreesofthespeciesarestronglyrestrictedtoprotectedareas, such as Cuc Phuong National Park (Nghia 2000). Seeds of the species are small,

59 Chapter 3 wingedand winddispersed.Abundantnaturalregeneration is found along streams andinwetopenareas(MSTE1996). Table 1. CharacteristicsofthestudyspeciesandtheircategoriesintheIUCNRedList. Species Max Max Mainuses Mainthreats IUCN (family) height DBH RedList (m) (cm) category Annamocarya 35 a 150 a Timber,seed Habitatlossand CRD b sinensis (Dode) consumption fragmentation, Leroy overexploitation,low (Juglandaceae) naturalregeneration Calocedrus 1525 b >100 b Timber,incense Habitatlossand END b macrolepis Kurz extractedfrom fragmentation, (Cupressaceae) wood,youngtree overexploitation, forornamental restricteddistribution purpose Dacrydium elatum 2025 b 5070 b Timber,incense, Habitatlossand VUAcd b (Roxb)Wallex chemicalsfor fragmentation, Hook pesticide overexploitation, (Podocarpaceae) restricteddistribution Manglietia 1520 b 5060 b Timber Habitatlossand END b fordiana (Hemsl.) fragmentation, Oliv. overexploitation, (Magnoliaceae) restricteddistribution Parashorea 60 b >100 b Timber Habitatlossand VUAcd b chinensis Wang fragmentation, Hsie(Diptero highdemandforwood, carpaceae) overexploitation Pinus 1520 b 5070 b Timber, Habitatlossand END b kwangtungensis resinextraction fragmentation, ChunexTsiang overexploitation, (Pinaceae) restricteddistribution, lownaturalregeneration aModifiedfromThuandCan(1999). bMofifiedfromNghia(2000) CR:Criticallyendangered(threatenedleveldecreasesfromAtoE) EN:Endangered(threatenedleveldecreasesfromAtoE) VU:Vulnerable(threatenedleveldecreasesfromAtoD) cd:Conservationdependence.

60 Conservation prospects – Results from a demographic study a b Figure 1. Distribution of six threatened tree species in Vietnam: Annamocarya sinensis : a, Calocedrus macrolepis : b, Dacrydium elatum : c, Manglietia fordiana : d, Parashorea chinensis : e, Pinus kwangtungensis : f (adapted from MSTE 1996,Hiepetal.2004). c d

e f

61 Chapter 3

Pinus kwangtungensis isabigsubtropicalconiferousforesttreethatisendemicto VietnamandSouthernChina.InVietnam,itsdistributionisrestrictedtolimestone mountainsat12001400ma.s.l(Fig.1)(MSTE1996).Ishasbeenreportedthatonly lessthan100adulttreesofthespeciesremaininthecountry,andseedlingsarerarely found(Nghia2000).

Study sites Table 2. CharacteristicsofstudysitesforsixthreatenedVietnamesetreespecies. Species Studysite cAltitude Mean Meanannual cCanopy (Coordinates) (m) annual temperature height

rainfall (ºC) (m) (mm) Annamocarya aCucPhuong(21ºN, 250 2160 20.6 2530 105ºE) Calocedrus aBaVi(21ºN,105ºE) 1200 2590 23.4 1520 Dacrydium aBachMa(16ºN,107ºE) 1200 3600 25 1520 Manglietia aBaVi(21ºN,105ºE) 900 2590 23.4 1520 Parashorea aCucPhuong(21ºN,105º 300 2160 20.6 2530 E) Pinus bHangKia–PaCo(20º, 1100 1925 20 1520 104ºE)

aNationalPark bNatureReserve cValuespecificforstudyplots The six threatened tree species were studied in 3 National Parks and one Nature Reserve(Table2).CucPhuongNationalParkislocatedontwoparallellimestone mountains,atabout300400ma.s.l.Studyplotsfor Annamocarya werelocatedinthe central valley of the park on flat terrain and in highly diverse forests, those for Parashorea werelocatedatsimilarforeststructureandterrainconditions,buthigher elevation.BaViNationalParkincludesthreemainmountainpeaks(>1000ma.s.l), surroundedbyplains.ThestudyplotsforCalocedrus werelocatedonpeaks,inrather open subtropical evergreen coniferousbroadleaved forest, with abundance of bamboos. Plots for Manglietia were at lower elevation in denser tropical evergreen broadleaved forest. Bach Ma National Park is located in Central Vietnam, and

62 Conservation prospects – Results from a demographic study includes forests at different elevations (1001200 m a.s.l). The study plots for Dacrydium wereestablishedat10001200ma.s.linevergreensubtropicalforest.Hang KiaPaCoNatureReserveislocatedonthehighlimestonemountainsofHoaBinh province,andexperiencesasubtropicalclimatewithhotandcoldseasons.Thestudy plotswerecoveredbysubtropicalconiferousbroadleavedforests,inwhich Pinus is oneofthedominantcanopytreespecies. Data collection Inthestudysites,permanentplotswereestablishedin2003:3plots(2.5ha/plot)for Annamocarya ,2plots(2.5ha/plot)for Calocedrus ,3plots(2ha/plot)for Dacrydium ,2 plots (3 ha/plot) for Manglietia , 3 plots (4 ha/plot) for Parashorea , and 3 plots (2 ha/plot) for Pinus . At first measurement, all juvenile and adult trees (diameter at breastheight,DBH>5cm)ofthestudyspeciesintheplotsweresearched,tagged and measured. Remeasurements were carried out in 2004 and 2005. At each measurement, DBH,totalheight,and height tothefirst branch of the trees were measured.Mortalityandreproductivestatusofindividualswerealsorecorded. Withintheplots,subplots(20x20m)wererandomlyestablishedtostudyseedlings and saplings (< 5 cm DBH). Per species a total 2060 subplots were established, depending on seedling density. At first measurement in 2003, all seedlings and saplingsofthestudyspeciesinthesubplots were searched, tagged and measured. Measured parameters were total height and diameter at ground level (or DBH if possible). Remeasurements were conducted in 2004 and 2005. Mortality and recruitmentofseedlingsandsaplingswererecordedduringremeasurements.

Data analysis Asthedemographicparameterswerecollectedatdifferentplotsandyears,survival andgrowthratesweretestedfordifferencesbetweenplotsandyears,usinganalysis ofvariance(ANOVA),linear,nonlinearorlogisticregressionmodels.Incaseofno significantdifference,datawerepooledforconstructingtransitionmatrices. We related height growth of seedlings and seedling height, using the linear regressions, and used logistic regressions to relate seedling survival probability to height. Growthofthetreediameteristypicallynonlinearlyrelatedtotheinitialdiameter, withhighgrowthratesforintermediatesizedtrees.Therefore,diametergrowthwas relatedtoDBH,usingHossfeldIVequation(Zeide1993): b*c*DBH (c 1) ∆DBH= (1) [b+(DBH c/a )] 2

63 Chapter 3 where∆DBHisDBHgrowthrate(cmy 1),anda,bandcarefittedparameters.We used nonlinear regression analysis with a leastsquare loss function to fit this functionthroughobserveddataonDBHgrowthandDBH. The relation between reproductive status and DBH was analysed using logistic regression. Transition matrix construction and analysis WeusedtheLefkovitchmatrixmodel(Caswell2001)toprojectpopulationdynamics ofourstudyspecies.Thesemodelsusetheequation:n(t+1)= An(t),wheren(t)and n(t+1) are population structures at time t and t+1, and A is a square matrix containing transition probabilities among categories during one time step. For our study,thetimestepwas1year.Whenthemultiplication of Aandn(t)isrepeated many times, the relative structure and growth rate of the population will become stable.Whenastablesizedistributionisreached,thedominanteigenvalue(λ)andthe right eigenvector of matrix A are equal to the growth rate and the stable stage distributionofthepopulation,respectively. The populations of the six study species were divided into 14 to 18 size categories, depending on the abundance and size structure of each population (Appendix 1). For all species, the four smallest categories were based on seedling heightandtheremainingonDBH.Elements(aij )ofmatrix Acanbegroupedinto growth,stasisorfecundity.Growthelements(G,elementsinthesubdiagonalofthe matrix)thatrepresenttheprobabilityofanindividualtogrowfromonecategoryto thenext,werecalculatedasG i =σ ix γi,where γiistheprobabilitythatasurviving individualincategoryimovestoi+1,σiisthesurvivalprobabilityincategoryi.The valueof γiwascalculatedasgi /c i,inwhichg iistheheightorDBHgrowthratefor category i (in cm yr 1) and c i the category width (in cm height or DBH). Stasis elements (P, in the diagonal of the matrix) presenting the probability that an individual survives and stays at the same category, were calculated as Pi = σi G i. Fecundityelements(F,theupperrow,exceptforthetopleftelement)representthe number of seedlings produced by an adult individual. We assumed that all reproductive individuals had the same reproductive output (number of seedlings). Therefore,FwascalculatedasF i=σ i x Prob {f} i xf i, where Prob {f} i isprobabilityof beingreproductiveforindividualsincategoryi,andf iwascalculatedbydividingthe abundanceofnewseedlings(perha,peryear),bythatofreproductivetrees. Weestimatedthesimilaritybetweenthestablestagestructuresresultingfromthe matrixmodelsandtheobservedpopulationstructuresusingthesimilarityindexPS

(Horvitz & Schimske 1995). PS = ∑(min[ ops i, ssd i] x 100, where ops i, is vector of observedpopulationstructures,and ssd i isthevectorofstablesizedistribution.Both vectors were scaled to sum to one. High values of PS indicate high values of similarity.

64 Conservation prospects – Results from a demographic study

Dominanteigenvalues(λ)werecalculatedforallsixmatrixmodels(Caswell2001). Ifλ>1,populationsareprojecttogrow,whilsttheydecreaseforλ<1.Toexamine whetherλissignificantlydifferentfromunity,wecalculatedthe95%confidentlimits ofλwiththeseriesapproximationapproach(Caswell2001),andusingsensitivityand varianceofvitalrates(survival,growthandreproduction)respectively.Aswelacked information on variation in reproductive output among individuals, this was not taken into account in the calculation, thus probably leading to a slight underestimation of the confidence interval. Transient dynamics of the populations wereanalysedbymultiplyingpopulationstructurewiththetransitionmatrices.This wasdonefor50and100years,forallsixspecies.Basedontherelativeincreaseinthe population over these periods, we then calculated the annual growth rate and comparedthesevaluestothevalueofλ. The elasticity of λ to vital rates (survival, growth and reproduction) is the proportionalchangeinλduetoaproportionalchangeinavitalrate(deKroonetal. 2000), and that it indicates the importance of vital rates to λ. We calculated the elasticityofλtovitalratesusingtheapproachofCaswell(2001)andZuidemaand Franco (2001). It should be noted that vital rate elasticities differ from those for matrixelementsinthattheymaybenegative(ifanincreaseinacertainvitalrateleads toareductioninλ)andthattheydonotsumtoone(Caswell2001). Lastly,usingthetransitionmatrices,weconstructedsurvivalcurvesforeachof thesixstudyspeciesfollowingtheapproachofCochranandEllner(1992).Wealso calculatedtheageatwhichreproductivesizeisreachedbycalculatingtheconditional age(τinCochran&Ellner1992)ofenteringthefirstreproductivesizecategory. Results

Size distribution and natural regeneration ThesixstudyspeciesdifferedconsiderablyinmaximumDBH.Thelargesttreesof Dacrydium , Manglietia and Pinus werejustover60cmDBH,thoseof Calocedrus 85cm DBH,whilethoseof Annamocary and Parashorea reachedmorethan 100cmDBH. The variation in maximum size corresponds to differences in forest structure: Annamocaryaand Parashorea occurinforestsatlowelevationwithhighcanopyheight (2530 m), while the other study species are typically found in forests with lower canopyathigherelevations(Table2). Population structures of the six study species showed inverse Jshaped curves (Fig. 2), with most individuals present in the seedling and juvenile categories. Althoughtheabundancedifferedstronglybetweenspecies,allpopulationstructures showedacontinuousabundanceofindividualswithoutanyclear‘bottleneck’(Fig.2). Thisresultsuggeststhatthereiscontinuousregenerationforallstudyspecies.

65 Chapter 3

20 Annamocarya 150 Calocedrus 15 100 10 5 50

0 0 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13

) 80 60 Dacrydium Manglietia 60 40 40 20 20

Abundance (/ha Abundance 0 0 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 60 60 Parashorea Pinus 40 40 20 20

0 0 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 17 Size category Figure 2. PopulationstructuresofsixthreatenedVietnamese tree species, as observed in fourprotectedareas.Thefirstfoursizecategoriesareforseedling(<1cmDBH,diameter atbreastheight)andbasedonplantheight,theremainingcategoriesarebasedonDBH(see Appendix1forcategorisation).Arrowsshowthecategoryatwhichtreesstartreproducing. Annamocarya Figure 3. Recruitmentof six threatened tree Calocedrus species in Vietnam, Dacrydium expressed as number of new seedlings appearing Manglietia per year and per adult tree. Dotted bars are for Parashorea 20034, open bars for Pinus 200405. Error bars indicate the maximum 0 1 2 3 4 5 6 7 and minimum values of Numberofnewseedlings thestudyplots.

66 Conservation prospects – Results from a demographic study

Naturalregenerationwasindeedobservedinthepopulationsofallstudyspecies: in both observation years new seedlings were found. For Annamocarya , Calocedrus , Dacrydium , Manglietia , Parashorea and Pinus wecounted5.2,85,47,14.5,16.3and7.3 seedlings per ha and per year, respectively (averaged over the two years). When expressedperreproductivetree,thenumberofseedlingsproducedbyareproductive tree ranged from 15 among species, without varying much between observation years(Fig.3).

Vital rates Survivalprobabilityofallstudyspeciesincreasedfrom6585%for smallseedlings (category1)to9699%foradulttrees,andwaspositivelyrelatedtoseedlingheight forallbutoneofthestudyspecies( Annamocarya ,logisticregression,seeAppendix1). Incontrast,largeindividuals(fromcategory5andlarger)maintainedarelativelyhigh andratherstablesurvivalrateof9099%.

0.9 Annamocarya Calocedrus 0.6 0.3 0 0 20 40 60 80 100 0 20 40 60 80 0.9 Dacrydium Manglietia 0.6 0.3

growthDBH (cm/y) 0 0 20 40 60 0 20 40 60 0.9 Parashorea Pinus 0.6 0.3 0 0 20 40 60 80 100 120 0 20 40 60 DBH (cm) Figure 4. SizedependentpatterninDBHgrowthofsixthreatenedtreespeciesinVietnam. ShownarefittedHossfeldIVcurves(lines),andobservedaverage(±1SD)growthratesper category (dots). Fitted parameters a, b, c and R 2: Annamocarya 58.8, 68.4, 1.99 and 0.73, Calocedrus 38.4,76.2,1.89and0.59, Dacrydium 51.2,29.4,1.69and0.61, Manglietia 42.2,141.3, 2.25 and 0.73, Parashorea 64.3, 70.4, 1.98 and 0.75, and Pinus 24.4, 228.5, 2.29 and 0.61, respectively. The six study species differed in seedling height growth rate with Maglietia seedlings growing fastest (>11 cm/y for large seedlings) and Dacrydium seedlings

67 Chapter 3 growingslowest(<6cm/y,Appendix1).Seedlingheightgrowthwaslinearlyrelated toinitialheightofseedlingsforallspecies.DBHgrowthrateforallspeciesincreased fromlowvalues(0.10.2cmy 1)forsmalltreestohighvalues(0.40.7cm 1)formid sizedtrees(2050cmDBH),andthengraduallydecreasedtolowervaluesagain(Fig. 4). DBH growth of the broadleaved species tended to be faster than that of the coniferous species. Also, the peaks in DBH growth curves of the broadleaved specieswerehigherandwiderthanthoseoftheconiferousspecies(Fig.4). Reproductivestatusofthesixspecieswasstronglyrelatedtotreesizes(Fig.5). Treesofallstudyspeciesstartedreproducingatsizesof1020cmDBH,although this tended to besmallerforconiferous speciesthan for the broadleaved species (Fig.5).TheDBHatwhich90%oftheindividualsisreproductiverangedfrom3070 cmamongspecies. 1 Figure 5. Relation between DBH and the proportion 0.5 reproductive individuals of six threatened Vietnamese tree Annamocarya Calocedrus 0 species. Dots are observed values for reproductive status, 0 30 60 90 0 30 60 90 and lines are fitted logistic 1 regression: Y = 1/(1+Exp( (a+b*DBH))). Fitted parameters a, b and R 2: 0.5 Annamocarya 2.32, 0.069 and Dacrydium Manglietia 0.54, Calocedrus 3.838,0.29and 0 0.592, Dacrydium 4.027, 0.187 Proprotion reprouctive 0 30 60 90 0 30 60 90 and 0.591, Manglietia 3.232, 0.146 and 0.559, Parashorea 1 2.114, 0.055 and 0.531, and Pinus 2.396,0.139and0.483. 0.5 Parashorea Pinus 0 0 30 60 90 120 0 30 60 90 DBH (cm)

68 Conservation prospects – Results from a demographic study

Matrix model output ThevaluesforthesimilarityindexPSwerehigh(range:85for Annamocarya and Pinus to95forCalocedrus ),indicatingthatourmodelsproviderealisticalprojectionofthe observedpopulationstructures. Figure 6. Threeestimatesof Annamocarya 50y population growth rates for 100y six threatened Vietnamese Calocedrus λ tree species obtained from matrix models. Shown are Dacrydium the projected population growth rates based on Manglietia transient dynamics over 50 years and over 100 years, as Parashorea well as the asymptotic population growth rate (λ, Pinus with 95% confidence interval). 0.9 0.95 1 Population growth rate (/y) The asymptotic population growth rates (λ) of the six study species were all slightly below 1 (Fig. 6). This suggests that populations are slightly declining. Nevertheless,the95%confidenceintervalsofλincludedthevalue1forfouroutof sixspecies( Dacrydium , Manglietia , Parashorea and Pinus ).Forthesespecies,thereisno indicationofasignificantdeclineinsizeofthestudiedpopulations.Forthetwoother speciesAnnamocarya and Calocedrus ,the95%confidencelimitsdidnotinclude1, suggestingthatthesepopulationsweredeclining. As λ is the asymptotic population growth rate when the population structure equalstostablestagestructure,itsvaluemaydifferfromthepopulationgrowthrate thatobtainedwhenprojectingthepresentpopulationstructureforalimitedperiodof time(basedonthetransientdynamicsofthepopulation).Forthecomparison,we thereforecalculatedtheannualpopulationgrowthratebasedonmatrixprojectionof 50and100years.Forallsixspecies,theprojected population growth rates based ontransientdynamicswereclosetoasymptoticgrowthrates(λ,Fig.6).Theprojected growth rates based on 50y projections were lower than unity for five of the six species,whileforthosebasedon100yprojectionsthiswasthecaseforallspecies. Theprojectionssuggestthatpopulationsizeswilldeclineintimeby<13%peryear. But,theseresultshavetobeinterpretedwithcaution,asnaturalvariabilityinvital

69 Chapter 3

ratesandestimationerrorsmayleadtostrongvariationintheprojectedpopulation growth.Thisvariabilityisprobablyofthesamemagnitudeasthatofλ..

1 Figure 7. Survivorship Annamocarya Calocedrus curvesforsixthreatenedtree Dacrydium Manglietia 0.1 Parashorea Pinus speciesinVietnam,basedon matrix models. Symbols show the age at which trees 0.01 reach the first reproductive category (conditional age τ, 0.001 Survival probability Survival Cochran&Ellner1992),and the corresponding survival 0.0001 probabilitytothatage.Note 0 20 40 60 80 that the Y axis has a Estimated age (y) logarithmicscale. 0.14 Ŵ Annamocarya Calocedrus σ 0.09 f 0.04 0.01 1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 0.14 Dacrydium Manglietia 0.09

0.04 0.01 Vital rate elasticity rate Vital 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 0.14 Parashorea Pinus 0.09 0.04 0.01 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 17 Size category

Figure 8. VitalrateelasticityforsixthreatenedVietnamesetreespecies.Showniselasticity forgrowth( γ),survival(σ)andfecundity(f),denotingtheproportionalchangeinλduetoa proportionalchangeinthatvitalrate.

70 Conservation prospects – Results from a demographic study

Theestimatedageatfirstreproductionvariedamongspecies,from35yearsfor the relatively fast growing Manglietia to 60 years for the slowgrowing Pinus . We obtained these age values with survival curves to estimate the average fraction of newbornsthatbecomesreproductive.Theresults(Fig.7)showthatonlyaverysmall fraction(0.11%)oftheseedlingsrecruitedinthepopulationsurvivestoreproductive size.Thisvaluevariedstronglyamongspecies,beingoneordertomagnitudelarger for Dacrydium and Parashorea comparedto Manglietia . Elasticity analysis showed that survival was the most important vital rate for population growth, in all species, followed by growth and fecundity (Fig. 8). In particular,survivalofjuvenileandsmallreproductivetrees(category58)wasmost important for population growth. The negative elasticity values for tree growth in Annamocarya (Fig.8)showthatthatincreaseddiameteroflargetrees(category10and larger)reducesthepopulationgrowth.

1 0 0.25 0.75

γγγ σσσ 0 1 1 f 0 σσσ

γγγ

0 1

0.25 f 0

Figure 9. PositionofsixthreatenedVietnamesetreespeciesinrelationtothatof22other treespecies(opendots)inatriangularordinationofvitalrateelasticityvalues(survival,σ, growth, γ,fecundity,f).Dataforthe22treespeciesarefrompublisheddemographicstudies (reviewedbyFranco&Silvertown2004).Thesixstudyspeciesareindicatedbyopentriangle (Annamocarya ),opensquare( Calocedrus ),opendiamond( Dacrydyum ),filledtriangle( Manglietia ), filleddot( Parashorea )andfilledsquare( Pinus ).Absolutevaluesofelasticitywereused,these weresummedovercategoriespervitalrateandscaledtosumto1. To compare elasticities ofvital rates between our study species and other tree speciesforwhichmatrixmodelsareavailable,weconstructedatriangleordination usingelasticitiesofvitalrates,followingFrancoandSilvertown (2004,Fig.9).We foundthattheelasticitydistributionovervitalratesofourstudyspeciesisconsistent

71 Chapter 3 withthatforothertreespecies,representedbypointsclosetothesurvivalvertexof the triangle, indicating strong importance of survival for population maintenance. Nevertheless,ourstudyspecieshadrelativelyhighelasticityforsurvivalandlowfor fecundity.

Discussion

Differences between species Althoughourstudyspeciesareallnonpioneertreesthatreachtheforestcanopyas adult, they show differences in performance and population dynamics. These differences are probably partly caused by variation among habitats. The relatively slowDBHgrowthof Calocedrus , Dacrydium and Pinus isprobablyrelatedtothetypical mountain microclimate of these species with shallow soils and periodical low temperature.Theseconiferousspeciesalsodemonstrateratherconstantgrowthrates overtheirsizerange,comparedtothepeakedgrowthdiameterrelationofthebroad leaved species (Fig. 4). High juvenile growth is probably possible due to typically openstructureofhighelevationforests.

Natural regeneration and future prospects of populations Ultimatelytheprospectofpopulationsurvivaldependsonwhetherpopulationsare regenerating naturally, and whether this is sufficient to maintain populations. We found that all six species were regenerating naturally in all sites and in both observation years. Our results are consistent with those of previous studies on recruitmentforsomeofthestudyspecies(Thu&Can1999,Nghia2000,Keo2003). Anotherindicationofnaturalregenerationwasobservedinpopulationstructures:all speciesshowedcontinuousandinverseJshapedsizedistributions,withoutsignsof regenerationbottlenecks(e.g.,Peresetal.2003).Suchsizedistributionsaretypically foundforforesttreespecieswithgoodrecruitment(Poorteretal.1996,Newbery& Gartlan1996,Zuidema&Boot2002).Clearly,unfavourablerecruitmentconditions outsideprotectedareasduetoharvestpressureoranthropogenicdisturbances,may leadtopopulationstructuresthatdifferfromtheonesweobservedinsideparks. Tofindoutwhethernaturalregenerationissufficientforpopulationmaintenance wecalculatedthreemeasures.First,weusedthecommonasymptoticgrowthrateof population,λ.Thevalueofλwasbelow1forallspecies,butonlysignificantlyfor two species. For these two species, the real confidence interval is likely larger as variability in vital rates has been underestimated due to lacking information on variationinseedproduction.Thus,thereisapossibilitythatpopulationgrowthrates forthesespeciesarenotdifferentfromunity.Theconfidenceintervalswecalculated

72 Conservation prospects – Results from a demographic study may be relatively high as the sampled populations are rather small (less than 450 individuals),whichisunavoidableinstudiesonthreatenedtreespecies(Bierzychudek 1999,Coulsonetal.2001).Inaddition,theaccuracyofλanditsconfidenceintervalis likelylimitedbytheshortstudyperiodthatdidnotcapturetherangeoftemporal variability that determines longterm dynamics of tree populations (Menges 1990, Enright&Watson1991,Bierzychudek1999,VanMantgem&Stephenson2005). Second, we estimated population growth based on transient dynamics (Fox & Gurevitch2000,VanMantgem&Stephenson2005).Thesepopulationgrowthrates areclosetothevaluesofλ.Thiscomparisonisusefulasitshowstheextenttowhich the differences between observed and stable population structures determine populationgrowthrates.Ifdifferencesarelarge,transientdynamicsarecharacterized bystrongfluctuations,andresultingpopulationgrowthratesdiffermuchformλ.In ouranalysesthedifferencesweresmall(highvaluesforsimilarindexPS),andthese differencesdidnotleadtostrongdeviationbetweenthetwoestimatesforpopulation growth rate. Population growth rates based on transient dynamics consistently suggested population declines for all six species, except for Dacrydium (Fig. 6). However,asthesemeasureslackconfidenceintervals,growthratescouldalsohave been higher due to variation among individuals and uncertainty in parameter estimation. Finally,thethirdmeasureoffuturepopulationgrowththatweapplieddidnotuse thepopulationgrowthrate,butcombinedinformationonrecruitmentandagesto check whether an adult tree produces sufficient seedlings to replace itself. For example,in Manglietia ,survivaltoadultsizeamountsto0.1%(Fig.7),implyingthat anadulttreeshouldproduce1000seedlingsinitsentirereproductivelifetoreplace itself.Attherateoflessthanoneseedlingperyearthatweobserved(Fig.3),this takesover1000years.Inasimilarway,wecalculatedtherequiredreproductivelife spanfortheotherspecies:thiswas480yfor Annamocarya,70for Calocedrus ,52for Dacrydium ,25for Parashorea and580for Pinus .For Annamocarya, Manglietia and Pinus , thesereproductiveperiodsarefarlongerthanmaximumagesestimatedfrommatrix models (ranging from 150 to 250 y, P.D.C., unpublished data). Clearly, these calculations are based on the recruitment rates estimated over the twoyear study periodandassumethattherearenostrongfluctuationsinrecruitmentovertime.For instance,yearswithexceptionalseedproductioncouldstronglyreducetherequired reproductive period. To our knowledge, most of our study species are fruiting annually,andwearenotawareofstronglyinterannualvariationinrecruitmentfor anyofthespecies(Nghia2000). We combined the results obtained from the three measures (Table 3) to draw conclusionsonfutureprospectsforpopulationsofourstudyspecies.Itappearedthat therewaslittleconsistencyamongthe measures.This discrepancy underscores the

73 Chapter 3 limitationofdrawingconclusionsaboutthefateofpopulationsonthebasisofjust oneparameter,asisoftendone(Floyd&Ranker1998,Bierzychudek1999).

Table 3. Comparingthreemeasurestoestimatefutureprospectsforpopulations ofsixthreatenedVietnamesetreespecies. Species Futureprospectsofpopulationsbasedon: aλ bTransient cReproductive dynamics output Annamocarya - - Calocedrus - + Dacrydium + + + Manglietia + - - Parashorea + - + Pinus + - - a +indicatesasymptoticpopulationgrowthrate(λ)above1ornotsigndifferent from1,–indicatesasymptoticpopulationgrowthrate<1. b+indicatesexpectedpopulationincreaseover50100y,–indicatesexpected populationdeclineover50100y. c +indicatesthatanadulttreeproducessufficientoffspringtoreplaceitself,– indicatesthereverse. Thefutureprospectsfor Dacrydium and Parashorea aregood,astheirpopulations arenotdecliningandrecruitmentissufficientto replace adult trees. On the other hand, the future prospects for Annamocarya , Manglietia and Pinus are worrisome: althoughthereisnoevidenceforapopulationdeclinebasedonthevarianceofthe asymptoticpopulationgrowthratefortwoofthesespecies,theamountofrecruits producedperyearisclearlyinsufficienttoguaranteereplacementoftheadulttree. For Calocedrus ,thefutureprospectsarenotjustgoodaspopulationsareprojectedto decline,butrecruitmentappearstobesufficientforadultreplacement. Finally, all three measures presented here were based on a shortterm demographicstudyanddothereforenottakeintoaccountsporadiceventsleadingto peaksinrecruitmentormortality.Totheextentthatsucheventsdrivethelongterm populationdynamicsofourstudyspecies,theconclusionsonpopulationprospects presentedheremaybechanged(Keith2000,VanMantgem&Stephenson2005). Implications for conservation Ourresultssuggestthatsuccessfulprotectionofthesixstudyspeciesrequiresvarious conservationmeasures.First,strictprotectionofjuvenileandadulttreesiscrucialas thesearethestagesthataremostimportantforpopulationmaintenance(cf.Zuidema

74 Conservation prospects – Results from a demographic study

&Boot2002,Franco&Silvertown2004,Kwitetal.2004).Preventingdamageand logging within and outside protected areas therefore is of high priority. Second, growthofseedlingsandjuveniletreesmaybeimproved(e.g.,bycontrolledliberation) inordertoincreasepopulationgrowth.Althoughelasticityanalysessuggestthatthe effectofsuchmeasuresislimitedincomparisontomaximizingtreesurvival,seedling and tree growth can probably be altered more than tree survival, and with less difficulty (Batista et al. 1998, Zuidema & Boot 2002, Kwit et al. 2004). A third conservation measure is enrichment of populations with seedlings grown under controlledconditions. Ifgermination success undercontrolledconditionsishigher than that under natural conditions, seeds can be collected from the same natural populationswhichareenrichedwithseedlings.Thismeasureisparticularlyimportant for species with an apparent insufficient recruitment ( Annamocarya , Manglietia and Pinus ). Finally, for species with small remaining populations such as Calocedrus and Pinus (populations of <500 trees, MSTE 1996, P.D.C., personal observation), the expansionofhabitatareathroughnaturerestorationwouldbeaneffectivemeasure. Declinesinpopulationsizesoftreespeciesareslow,astheyarelonglived.Asa consequence,thereismoretimefortakingconservationmeasures,butslowdynamics also imply that it takes long before such measures result in population increase. Taking action before populations have declined to critical levels is therefore important,aswellasclosemonitoringofpopulationsizeandrecruitment. Acknowledgements WeareverygratefultoLeVanBinh,VuVanCan,TranQuangChuc,LePhuong Trieu,BuiVan Duong,DuongNgocAnh,LuuCu,Nguyen Van The, Dinh Duc Huu,LeVanThu,BuiCongVinhandothersfortheirassistancewiththefieldwork. Wethank themanagersofthefourprotectedareasfor their permission and help duringourstudies.WespeciallyacknowledgeMarinusWergerandFrancisPutzfor helpful comments on the paper, and Marjolein Kortbeek for preparing maps for figures. This study was financially supported by Tropenbos International Vietnam, UtrechtUniversity,andtheForestScienceInstituteofVietnam.

75 Chapter 3

References Achard,F.,H.D.Eva,H.J.Stibig,P.Mayaux,J.Gallego,T.Richards,andJ.P. Malingreau.2002.Determinationofdeforestationratesoftheworld’shumid tropicalforests.Science 297: 9991002. Batista,W.B.,W.J.Platt,andR.E.Macchiavelli.1998.Demographyofashadetolerant tree( Fagus grandifolia )inahurricanedisturbedforest.Ecology 79: 3853. Bawa,K.S.,andP.S.Ashton.1991.Conservationofraretreesintropicalrainforests:a geneticperspective.Pages6271inD.A.FalkandK.E.Holsinger,editors. Geneticsandconservationofrareplants.OxfordUniversityPress,Oxford. Bierzychudek,P.1999.Lookingbackwards:Assessingtheprojectionsofatransition matrixmodel.EcologicalApplication9: 12781287. Caswell,H.2001.MatrixPopulationModels.2nd edition.SinauerAssociates,Sunderland, Massachusetts. Cochran,E.M.,andS.Ellner.1992.Simplemethodsforcalculatingagebasedlife historyparametersforstagestructuredpopulations.EcologicalMonographs 62: 345364. Coulson,T.,G.M.Mace,E.Hudson,andH.Possingham.2001.Theuseandabuseof populationviabilityanalysis.TrendsinEcology&Evolution16: 219221. Dowe,J.L.,J.Benzie,andE.Ballment.1997.Ecologyandgeneticsof Carpoxylon macrospermum H.Wendl.&Drude(Arecaceae),anendangeredpalmfrom Vanuatu.BiologicalConservation 79: 205216. Enright,N.J.,andA.D.Watson.1991.Amatrixpopulationmodelanalysisforthe tropicaltree,Araucariacunninghamii.AustralianJournalofEcology 16: 507520. Floyd,S.K.,andT.A.Ranker.1998.Analysisofatransitionmatrixmodelfor Guara neomexicana spp. coloradensis (Onagraceae)revealsspatialandemporaldemographic variability.InternationalJournalofPlantSciences159: 583563. Fox,G.A.,andJ.Gurevitch.2000.Populationnumberscount:Toolsfornearterm demographicanalysis.AmericanNaturalist 156: 242256. Franco,M.,andJ.Silvertown.2004.Comparativedemographyofplantsbasedupon elasticitiesofvitalrates.Ecology85: 531538. Harvey,H.F.1985.Populationbiologyandtheconservationofrarespecies.Pages111 123inJ.White,editor.Studiesinplantdemography:FetschriftforJohnL. Harper.AcademicPress,Inc.,Orlando,Florida. Hiep,N.T.,P.K.Loc,N.D.T.Luu,P.I.Thomas,A,Farjon,L,Averyanov,andJ. RegaladoJr.2004.VietnamConservationStatusReview.Labourand SocietyPublishingHouse,HaNoi. Horvitz,C.C.,andD.W.Schemske.1995.Spatiotemporalvariationindemographic transitionsofatropicalunderstoryherbprojectionmatrixanalysis.Ecological Monographs 65: 155192. *Hung,T.V.2004.Forestryresearchforthecomingtime.JournalofAgricultureand RuralDevelopment12: 2629. Keith,D.A.2000.Samplingdesigns,fieldtechniquesandanalyticalmethodsfor

76 Conservation prospects – Results from a demographic study

systematicplantpopulationssurveys.Ecology,ManagementandRestoration1: 125139. *Keo,H.V.2003.Researchonecologicalcharacteristicsandreproductivecapabilityby cuttingof Dacrydium elatum (Roxb.)WallichexHooker)inBachMaNational Park.PhDthesis.HueScienceUniversity,Hue. deKroon.H.,J.vanGroenendael,andJ.Ehrlen.2000.Elasticities:areviewofmethods andmodellimitations.Ecology81: 607618. Kwit,C.,C.C.Horvitz,andW.J.Platt.2004.Conservingslowgrowing,longlivedtree species:InputfromthedemographyofarareunderstoryConifer, Taxus floridana . ConservationBiology 18:432443. Lande,R.1988.Geneticanddemographyinbiologicalconservation.Science 241: 1455 1460. Lande,R.1993.Risksofpopulationextinctionfromdemographicandenvironmental stochasticityandrandomcatastrophes.TheAmericanNaturalist142: 911927. Menges,E.S.1990.Populationviabilityanalysisforanendangeredplant.Conservation Biology4: 5262. Menges,E.S.1992.Stochasticmodelingofextinctioninplantpopulation.Pages253 276inP.L.FiedlerandS.K.Jain,editors.ConservationBiology:theTheoryand PracticeofNatureConservation,PresentationandManagement.Chapmanand Hall,NewYork. Menges,E.S.2000.Populationviabilityanalysesinplants:challengesandopportunities. TrendsinEcology&Evolution15: 5156. *MinistryofScience,TechnologyandEnvironment(MSTE).1996.RedDataBookof Vietnam.Volume2Plant.ScienceandTechniquesPublishingHouse,HaNoi. Newbery,D.McC.,andJ.S.Gartlan.1996.AstructuralanalysisofrainforestatKorup andDoualaEdea,Cameroon.Proc.R.Soc.Edinburgh,Se.B., 104: 177224. Nghia,N.H.2000.SomethreatenedtreespeciesofVietnam.AgriculturalPublishing House,HaNoi. Oostermeijer,J.G.B.,S.H.Luijten,andJ.C.M.DenNijs.2003.Intergrating demographicandgeneticapproachesinplantconservation.Biological Conservation 113: 389398. Peres,C.A.,C.Baider.,P.A.Zuidema,L.H.O.Wadt,K.A.Kainer,D.A.P.Gomes Silva,R.P.Salomao,L.L.Simoes,E.R.N.Franciosi,F.C.Valverde,R.Gribel, G.H.ShepardJr,M.Kanashiro,P.Coventry,D.W.Yu,A.R.Watkinson,andR. P.Freckleton .2003.DemograhicthreatstothesustainabilityofBrazilnut exploitation.Science 302: 21122114. Poorter,L.,F.Bongers.,R.S.A.R.vanRompaey,andM.deKlerk.1996.Regeneration ofcanopytreespeciesatfivesitesinWestAfricanmoistforest.ForestEcology andManagement84: 6169. Schemske,D.,B.B.Husband,M.Ruckelshaus,C.Goodwillie,I.Parker,andG.Bishop. 1994.Evaluatingapproachestotheconservationofrareandendangeredplants. Ecology 75: 584606. Silvertown,J.,M.Franco,andE.Menges.1996.Interpretationofelasticitymatricesasan

77 Chapter 3

aidtothemanagementofplantpopulationsforconservation.Conservation Biology10: 591597. Sodhi,N.S.,L.P.Koh.,B.W.Brook,andP.K.L.Ng.2004.SoutheastAsian biodiversity:animpendingdisaster.TrendsinEcologyandEvolution 19: 654 660. *Thu,N.B.,andV.V.Can.1999.ChoDaitree( Annamocarya sinensis ).Agricultural PublishingHouse,HaNoi. VanMantgemP.J.,andN.L.Stephenson.2005.Theaccuracyofmatrixpopulation modelprojectionsforconiferoustreesintheSierraNevada,California.Journalof Ecology 93: 737747. Wang,DL.,ZC.Li,G.Hao,TY.Chiang,andXJ.Ge.2004.Geneticdiversityof Calocedrus macrolepis (Cupressaceae)insouthwesternChina.Biochemical SystematicandEcology32: 797807. Whitmore,T.C.1997.Tropicalforestdisturbance,disappearance,andspeciesloss.Pages 312inW.R.LauranceandR.O.Bierregaard,editors.TropicalForestRemnants: Ecology,ManagementandConservationofFragmentedCommunities.University ofChicagoPress,Chicago. WorldConservationUnion(IUCN).2006.TheIUCNRedListofThreatenedSpecies. Availablefrom http://www.redlist.org/info/tables/table6a (accessMay2006). Zeide,B.1993.AnalysisofGrowthEquation.ForestScience 39: 594616. Zuidema,P.A.,andM.Franco.2001.Integratingvitalratevariabilityintoperturbation analysis:anevaluationformatrixpopulationmodelsofsixplantspecies.Journal ofEcology89: 9951005. Zuidema,P.A.,andR.G.A.Boot.2002.DemographyoftheBrazilnuttree( Bertholletia excelsa )intheBolivianAmazon:impactofseedextractiononrecruitmentand populationdynamics.JournalofTropicalEcology 18: 131. Note: * InitialtitlesinVietnameseweretranslatedintoEnglish.

78 Conservation prospects – Results from a demographic study

Appendix 1. Classificationcriteriaandvitalratevaluesusedforconstructionoftransition matricesforthesixstudyspecies .Categories14arebasedonseedlingheight,518onDBH. Shownareestimatesforvitalratesbasedonregressionanalyses:growthrate(g,inheightfor seedlings, and in DBH for trees), percentage of reproductive individuals (Rep), survival probability(σ)andsamplesize(n).SeedlingheightgrowthasrelatedtoheightasY=ax+b, with a, b and R 2are0.0243,3.483and0.74 for Annamocarya ,0.0195,3.2451and0.73for Calocedrus , 0.0167, 2.9977 and 0.64 for Dacrydium , 0.0533, 4.3551 and 0.52 for Manglietia , 0.0358,32838and0.75for Parashorea ,and0.0287,4.1816and0.47for Pinus .DBHgrowth wasfittedbyHossfeldIVcurve(seeFig.3).Seedlingsurvivalratewascalculatedusingthe logisticequationY=1/(1+EXP((c+d*height))),wherefittedparameterscanddandR 2 (Nagelkerke) for Annamocarya ns, Calocedrus 0.313,0.006and0.039, Dacrydium 0.304,0.011 and 0.123, Manglietia 0.095,0.008and0.109, Parashorea 0.427,0.01and0.084,and Pinus 0.814,0.032and0.329,respectively.Survivalpercentageofjuvenileandadulttreeswasnot significantlyinfluencedbytreeDBH,andwascalculatedasaverageovervariouscategories.

Annamocarya Calocedrus

Cat Height g Rep σ n Height g Rep σ n orDBH orDBH [cm] [cm/y] [%] [cm] [cm/y] [%] 1 0-30 3.8 0.85 31 0-30 3.5 0.77 140 2 30-60 4.5 0.86 21 30-60 4.1 0.80 42 3 60-100 5.4 0.87 18 30-120 5.0 0.84 21 4 100-175 6.8 0.88 17 120-195 6.3 0.91 17 5 15 0.09 0 0.90 15 15 0.07 0 0.93 12 6 510 0.21 0 0.94 8 510 0.15 0 0.96 35 7 1015 0.33 0 0.98 6 1015 0.22 30 0.96 30 8 1520 0.43 25 0.98 8 1520 0.27 59 0.96 27 9 2025 0.51 32 0.98 8 2025 0.32 83 0.96 16 10 2530 0.56 43 0.98 9 2530 0.34 94 0.96 17 11 3035 0.59 57 0.98 7 3040 0.36 99 0.96 10 12 3540 0.57 69 0.98 8 4050 0.35 100 0.96 10 13 4050 0.52 81 0.98 9 5060 0.32 100 0.96 6 14 5060 0.45 90 0.98 8 >60 100 0.96 5 15 6070 0.38 95 0.98 7 16 7080 0.32 96 0.98 6 17 8090 0.23 97 0.95 7 18 >90 99 0.95 15 ∑ 208 388

79 Chapter 3

Dacrydium Manglietia

1 0-30 3.2 0.78 93 0-30 5.4 0.74 57 2 30-60 3.7 0.83 31 30-60 7.0 0.78 34 3 60-100 4.3 0.88 20 60-100 8.9 0.82 24 4 100-160 5.1 0.92 17 100-165 11.5 0.87 27 5 15 0.12 0 0.96 25 15 0.07 0 0.96 30 6 510 0.22 0 0.97 46 510 0.19 0 0.98 42 7 1015 0.29 16 0.99 26 1015 0.34 0 0.98 38 8 1520 0.35 32 0.99 26 1520 0.47 34 0.98 31 9 2025 0.39 55 0.99 33 2025 0.56 51 0.98 16 10 2530 0.41 75 0.99 28 2530 0.61 67 0.98 25 11 3035 0.42 88 0.99 35 3035 0.60 82 0.98 18 12 3540 0.41 95 0.99 31 3540 0.57 90 0.98 12 13 4045 0.40 99 0.99 10 4045 0.51 95 0.98 15 14 4550 0.36 99 0.99 6 >45 98 0.98 17 15 >50 97 0.99 2 ∑ 432 386 Parashorea Pinus

1 0-30 3.8 0.80 80 0-30 3.4 0.65 54 2 30-60 4.9 0.84 46 30-60 4.9 0.81 27 3 60-120 6.5 0.89 34 60-100 8.0 0.92 30 4 120-190 8.8 0.93 12 100-154 10.4 0.98 12

5 15 0.08 0 0.92 13 15 0.04 0 0.95 11 6 510 0.20 0 0.96 13 510 0.13 0 0.96 9 7 1020 0.38 22 0.98 12 1015 0.23 0 0.99 6 8 2030 0.54 32 0.98 9 1520 0.31 51 0.99 5 9 3040 0.60 45 0.98 9 2025 0.37 68 0.99 11 10 4050 0.60 59 0.98 7 2530 0.39 81 0.99 15 11 5060 0.56 71 0.98 6 3035 0.38 94 0.99 15 12 6070 0.49 81 0.98 7 3540 0.36 97 0.99 18 13 7090 0.39 91 0.98 10 4045 0.33 99 0.99 16 14 90110 0.28 97 0.98 9 4550 0.29 99 0.99 9 15 >110 99 0.98 8 5055 0.25 99 0.99 13 16 5560 0.22 100 0.98 7 17 >60 100 0.98 5 ∑ 275 263

80

81

82 Chapter 4

Population viability analysis of threatened tree species in Vietnam

With P.A. Zuidema

Abstract Populationviabilityanalysisisagoodtooltoestimatetheimpactofstochasticfactorson the persistence of threatened tree species. We used population viability analysis to investigate the impact of demographic and environmental stochasticity on population developmentandextinctionriskforsixthreatenedtreespeciesinVietnam( Annamocarya sinensis , Calocedrus macrolepis , Dacrydium elatum , Manglietia fordiana , Parashorea chinensis , and Pinus kwangtungensis ).Wecarriedoutatwoyearfieldstudy,inwhichwequantifiedthe vitalrates(survival,growth,reproductionandrecruitment)andtheirvariation,andused thosetoconstructstochasticmatrixmodels.Wealsoincludedinthemodelsthevariation inDBHgrowthrate,whichwasestimatedfromringindicesoftrees.Toconsiderhow sensitivetheextinctionriskistochangesinmeanandvariationofvitalrates,andinitial populationsize,wechangedtheinputsofthestochasticmodelsby1%,andcompared theresults. Stochastic variation in vital rates due to environmental stochasticity decreased population sizes, leading to increasing extinction risk. Of the two components of environmentalstochasticity,temporalvariationhaslessimpactonextinctionriskthan smallscalevariation.Demographicstochasticitydecreasedthetimetoextinction,butby chanceitcouldslightlyreducefullextinctionriskfromaround7%for Pinus to49%for Manglietia at300y.Extinctionriskwasmoresensitivetochangesinthemeansofvital ratesandinitialpopulationsizethantochangesinvariationofvitalrates.Amongthe vitalrates,survivalwasthemostimportanttoestimateextinctionrisk.Thisimpliesthat reliableestimatesofmeanvitalratesarecrucialforobtainingreliableextinctionrates. Thefutureprospectsof Dacrydium and Parashorea aregood,astheirpopulationsare expectednottofaceextinctionin300y.Thatoftheotherspecies,however,isworseas they are predicted to face extinction in around 100 y. We suggest that effective conservation should be implemented for these species before population sizes drop belowcriticallevels. Keywords: Threatenedtreespecies,demographicstochasticity,environmental stochasticity,stochasticmatrixmodels,extinctionrisk.

Chapter 4

Introduction Conservationofthreatenedtreespeciesisafocalconcernforconservationistsand managers. As these species often have small and/or isolated populations, they are likely to face extinction due to unpredictable elements such as demographic and environmental stochasticity (Menges 1998, Menges & QuintanaAscencio 2003, Munzbergova 2006). Demographic stochasticity is the variation in population dynamics that is generated by independent stochastic contribution from each individualofthepopulationtothenextgeneration(Engenetal.1998,Menges2000). Demographicstochasticitydoesnotstronglyimpactonpopulationdevelopmentof abundant species, but it can severely increase the extinction risk for rare species (Menges1998).Environmentalstochasticity,ontheotherhand,isrelatedtovariation in demographic parameters (e.g. survival, growth and reproduction) due to environmental variation. Natural catastrophes can be considered as especially extreme, episodic or discrete types of environmental stochasticity (Menges 2000). Environmental stochasticity can strongly increase the extinction risk for both abundant and rare species (Menges 1998). In order to protect and effectively conservethreatenedtreespecies,itisthereforeimportanttoestimatetheeffectof demographic and environmental stochasticity on the extinction risks for these species. Populationviabilityanalysis(PVA)isausefultoolforestimatingextinctionrisks, andforprioritizingconservationneedsforthreatenedspecies(Shaffer1990,Clarket al.1991,Boyce1992,Possinghametal.1993,Carrolletal.1996,Menges1998,2000, Brooketal.2000b,Chapmanetal.2001,Beissinger&McCullough2002,Morris& Doak2002,Garcia2003,Kaye&Pyke2003,Reedetal.2003,Boyceetal.2006).By takingintoaccountthecombinedimpactsofunpredictablefactors(e.g.demographic, environmentalandgeneticstochasticity)anddeterministicelements(e.g.habitatloss, overexploitation,fragmentation),PVAprovidesastochasticprojectionofpopulation sizeovertime(Miller&Lacy1999,Chapmanetal.2001,Beissinger&McCullough 2002). Most commonly PVAs are conducted using simulation models that incorporatedeterministicmatriceswithdemographicandenvironmentalstochasticity (Burgmanetal.1993,Akçakayaetal.1997,Menges2000).Currently,severalsoftware packages [e.g. VORTEX (Lacy 1993), RAMAS/Stage (Ferson 1994), ALEX (Possingham&Davies1995),RAMAS/Metapop(Akçakaya1997),MATLAB(Math Works1999)]havebeendevelopedandapplied,leadingtoanincreaseinusingPVAs inconservationscience(Fieberg&Ellner2001). AsmostPVAsfortreespeciesarebasedonstudies onafewpopulationsand short periods (e.g. several years), the data collected are not likely to be sufficient, particularlyforthreatenedtreespecies(Groom&Pascual1998,Menges2000).Poor datacancausedifficultiesinparameterestimation,whichinturnleadstounreliable estimatesofextinctionrisk(Beissinger&Westphal1998).Inordertoimprovethe

84 Population viability analysis accuracyofprediction,highqualityofdataisrequired.However,thiscannotalways beachievedasfieldstudyforPVAsisoftentimeconsumingandexpensive(Menges 2000).Alternatively,wecouldfocuseffortsonthemostimportantfactorsforprecise predictions. It is therefore important to evaluate the role of parameters in the estimateofextinctionrisk. Inthisstudy,wepresentPVAsforsixthreatenedtreespeciesinprotectedareasin Vietnam.Allsixspecieshaveseverelydeclinedinbothdistributionandpopulation sizesdue tooverexploitationandhabitatloss.Population sizesofthese speciesin protectedareasrangefrom300to2500individuals(>5cmDBHdiameteratbreast height). All six species are considered as threatened species in the Red List of Vietnam (Ministry of Science, Technology and Environment ‘MSTE’ 1996, Nghia 2000). Ourmaingoalwastoestimatepopulationdevelopmentandthetimetoextinction for the six threatened tree species under the influence of demographic and environmental stochasticity. We also considered the effects of parameter and variationestimationontheestimatesofextinctionrisk.Specifically,weaddressedthe followingquestions:(a)Howdodemographicandenvironmentalstochasticityaffect population development of the study species? To answer this question, we used transition matrices incorporating demographic and environmental stochasticity to estimate population sizes over time for these species. (b) What are the future prospects for the study species? From the results generated from the stochastic matrixmodelsabove,weestimatedtheextinctionprobabilityover300y.(c)How sensitivearefluctuationsinthemeanandthevariationofvitalrates?Tothisend,we changedtheinputsofthePVAs,andcomparedtheoutcomesofthemodels.Our results contribute information on the relationship of means and variances of vital rateswithpopulationdevelopment,andwiththeextinctionriskforthethreatened treespecies.

Methods

Species and sites We studied six threatened Vietnamese tree species: three are broadleaved (Annamocarya sinensis , Manglietia fordiana and Parashorea chinensis )and threeothersare coniferous( Calodecrus macrolepis , Dacrydium elatum and Pinus kwangtungensis ).Fromnow onwards,thespecieswillbeindicatedbytheirgenusnamesonly.Allspeciesarelong lived tree species and reach the canopy as adult. The broadleaved species are distributed in tropical forests at low altitudes, whereas the conifers occur in subtropicalforestsathigherelevation(fordetailsseeChapter3).Thepopulationsof the six species have been reduced in both density and distribution range due to

85 Chapter 4 overexploitationandhabitatloss(MinistryofScience,TechnologyandEnvironment ‘MSTE’1996),andallareincludedintheVietnamRed List as threatened species (Nghia2000). The study was carried out in four protected areas in Vietnam. Study plots for Annamocarya and Parashorea were located in tropical rain forests of Cuc Phuong NationalPark.InBaViNationalPark,plotsfor Calocedrus wereconstructedonpeak areas,inratheropensubtropicalforest,whereasthosefor Manglietia werelocatedat lowerelevationindensetropicalforest.Plotsfor Dacrydium wereestablishedat1000 1200ma.s.l.inevergreensubtropicalforestofBachMaNationalPark,andthosefor Pinus wereconstructedatthesameelevationinsubtropicalforestofHangKia–Pa CoNatureReserve(fordetailsseeChapter3). Data collection To quantify the vital rates (annual rates of survival, seedling height growth, tree diameter growth and fecundity) of the six study species, we established 23 permanentplots(24ha/plot)foreachspeciesintheprotectedareasin2003,and performedmeasurementsin2003,2004and2005.WemeasuredDBH(diameterat breastheight)ofalljuvenileandadulttrees(DBH≥1cm),totalheightofseedlings (DBH≤1cm),andrecordedmortalityandreproductivestatus ofindividualsand seedlingrecruitmentinthestudyplots(fordetailsseeChapter3). We obtained data on the population sizes of the six study species in the four protected areas using information from previous studies (Huy & Cu 1990, Huyen 1997,Thu&Can1999,Nghia2000,Keo2003,Can2005)andourfieldtripstocheck thedistributionareasanddensitiesofthesespecies.Ourestimatesforthenumberof mature individuals (>5 cm DBH) of these species in protected areas were: Annamocarya :850, Calocedrus :450, Dacrydium :2500, Manglietia :700, Parashorea :300,and Pinus 400. We then converted these estimates to values of the entire populations, usingtheobservedstructuresinthestudyplots. Wealsoobtaineddiametergrowthratesfromwoodcorestakenfrom3040trees (DBH>30cm)perspeciesforfourspecies(Annamocarya , Calocedrus , Dacrydium and Pinus )(fordetailsseeChapter5).Ringwidthdatawere used to quantify temporal variationindiametergrowth.

Matrix model construction WeusedLefkovitchmatrixmodels(Caswell2001)as the basisforourPopulation Viability Analysis. The models use the equation: n(t+1) = An(t), where n(t) and n(t+1) are population structures at time t and t+1, and A is a square matrix containingtransitionprobabilitiesamongcategoriesduringonetimestep.

86 Population viability analysis

We divided populations of the six study species into 1418 categories. For all species,thefoursmallestcategorieswerebasedonseedlingheight,andtheremaining onDBH.Elements(a ij )ofmatrix A canbegroupedintogrowth(G,elementsinthe subdiagonalofthematrix),stasis(P,elementsinthediagonalofthematrix),and fecundity(F,theupperrow,exceptforthetopleftelement)(fordetailsseeChapter 3). Using the values obtained from the vital rates, transition matrices were constructed. One transition matrix was constructed per species, as differences betweenyearsandbetweenplotswerenotsignificantlydifferent(seeChapter3).We usedthesemeanmatricesasabasisforthePVAanalysis:thematricesareincludedin Chapter3.

Stochastic matrix model construction and analysis We used the information on temporal variation in diameter growth and seedling recruitment,andvariationamongindividuals(partlysmallscalespatialvariation)in growth,survivalandreproductiontoconstructstochasticmatrixmodels(Table1). Table 1. Overview of types of variation included in simulation with environmental stochasticity. Vitalrate Environmentalstochasticity

Temporalvariation Variationamong Both individuals (temp) (ind) (t+i) Survival Insurvivalofseedlings Insurvivalofseedlingsand andtrees trees Growth Indiameter Inseedlingheightgrowth Indiametergrowthfrom growthfromindex andDBHgrowth indexofringseries 1,andin ofringseries 1 seedlingheightgrowthand DBHgrowth Productivityof Intheprobabilityof Intheprobabilityof reproduction reproductionoflargetrees reproductionoflargetrees Recruitment Innumberofnew Innumberofnewseedlings seedlingsproduced producedperadulttree, peradulttree, amongplotsandyears amongplotsand years

1:Onlyfor Annamocarya , Calocedrus , Dacrydium and Pinus .

87 Chapter 4

ThetemporalvariationthatwequantifiedincludedchangesinDBHgrowthand seedling recruitment over time. For DBH growth, we obtained information on variationfromringdata:Foreachcoredtree,wecalculatedthe5yearmovingaverage fortheentireringseriestofilterthelongtermtemporalprocessesandontogenetic changesingrowthrate.Wethencalculatedtheresiduals around this curve. These values are indicative for the growth variation caused by yeartoyear temporal (climatic) variation. We calculated the standard deviation (SD) of the residuals for individualspersizecategory.Wedidsuchmeasurementsfor Annamocarya , Calocedrus , Dacrydium and Pinus , but not for Manglietia and Parashorea as these species do not produce clearly visible rings. For these two species, we considered the temporal variationforgrowthtobezero.Forrecruitmentvariation,wecalculatedthestandard deviationofthenumberofnew seedlings produced per adult tree over plots and years;thisvariationincludesbothspatialandtemporalvariation. The variation in vital rates among individuals may reflect smallscale spatial variation(e.g.inlightandsoilconditions),sizedifferencesanduncertainty/errorin parameter estimation. We were unable to separate these sources of variation. For probability of plant survival and reproduction, we estimated variation in each category, using the equation: SD = sqrt(p*(1p)/n), where p is the proportion of plantssurvivingorreproducing,andnisthenumberofindividualsinthecategory. Forthevariationofgrowthrates,wecalculatedthestandarddeviationof seedling height growth for categories 14, but for larger categories, we calculated standard deviationofDBHgrowth(Appendix1). WedevelopedstochasticmatrixmodelsrunninginMATLAB(MathWorks1999) to project the population sizes over time and the extinction risk. We started constructingmodelswiththepopulationstructureasobservedinZuidema&Franco (2001).Everysimulationmodelwasruninthreesteps.First,randomvaluesforthe vital rates (survival, growth and fecundity) were drawn from normal distributions withmeanandstandarddeviationasmeasuredinthefield(Appendix1).Themodel only accepted values that were biologically realistic (e.g. survival probability of an individualmustbeequalorlessthan1),andwerewithin95%confidenceintervals. Second,atransitionmatrixwasconstructed,usingtheserandomvalues.Third,the populationvectorwaspremultipliedwiththerandomtransitionmatrix. We carried out six types of simulations (temp, ind and t+1, with and without demographicstochasticity).First,werandomlydrewvaluesofvitalratesusingonly temporalvariationintreegrowthandrecruitment.Forthevitalratesthatwerevaried, newrandomvaluesweredrawnforeachtimestep,fortheothervitalrates mean valueswereused.Second,weconstructedtransitionmatrices,usingvariationamong individuals (survival, growth and probability of reproduction), and did the same above procedure. Third, we used both temporal variation and variation among individualstoconstructtransitionmatrices.Thefourth,thefifthandthesixthwere

88 Population viability analysis similartothefirst,secondandthirdbutnowdemographicstochasticitywasincluded in the simulations. The demographic stochasticity was implemented following Akçakayaetal.(1997). Forthesensitivityanalysisofextinctionrisk,weranthestochasticmatrixmodels usingtemporalvariation,variationamongindividualsanddemographicstochasticity. Beforerunningthemodel,wechangedtheinputsbyincreasingordecreasingoneby onethemeanorthestandarddeviationofvitalrates,ortheinitialpopulationsizes, by1%.Foreachinputconstructed,weranthestochastic matrix models with 100 simulations over 200 y, and calculated the extinction risk as the % of simulation, whichendedwithapopulationsizeof0or1.Thiswholeprocedurewasrepeated10 timesforeachsetofinputvalues. Results

Effect of stochasticity on population dynamics Our simulations showed decreasing populations for all species and all types of stochasticity,althoughthepatternofdecreasedependedsomewhatonthetypesof stochasticity,whichwereineffects(Fig.1,Fig.2).Thevariationinpopulationsizesat eachtimestepforthesespecieswasnotlarge,particularlyforthosethatwerenot affectedbydemographicstochasticity(Fig.2).

No demographic Demographic

stochasticity stochasticity

10000 10000 det det temp temp 1000 ind 1000 ind t+i t+i 100 100 10 10

Population size 1 1 0 100 200 300 0 100 200 300 Time (y)

Figure1. Examplesofsimulatedpopulationtrajectoriesof Annamocarya sinensis .Shownare projected population sizes of one simulation under the influence of temporal variation (temp), variation among individuals (ind), both temporal variation and variation among individuals(t+i),populationsizesobtainedfromdeterministicmatrixmodels(det),andwith orwithoutdemographicstochasticity.

89 Chapter 4

No demograhic Demographic stochasticity stochasticity 10000 det det temp temp 1000 ind ind t+i i+t

100 Annamocarya

10 1 10000 1000 100 Calocedrus 10 1

100000

10000 1000 Dacrydium 100 10

size Population 10000

1000

100 Manglietia 10 1 10000 1000

100 Parashorea 10

1

10000 1000 100 Pinus 10 1 0 100 200 300 0 100 200 300 Time (y) Figure 2. Simulated population trajectories for six threatened tree species under the influenceofdifferentkindsofstochasticity.Shownareprojectedpopulationsizes(median population size of 100 simulations and 95% confidence interval) affected by temporal variation (temp), variation among individuals (ind), both temporal variation and variation among individuals (t+i), and no environmental variation (det), with and without demographicstochasticity.Notethatonlypopulationswith>1individualwereincluded.

90 Population viability analysis

Withoutdemographicstochasticity,populationtrajectories affected by temporal variation and variation among individuals differed greatly (Fig. 2). The trajectories describing the impact of temporal variation were similar to those obtained from deterministicmatrixmodels(Fig.2).Thisindicates that temporalvariationdidnot much affect the population growth rate. The influence of variation among individuals,however,wasmuchstrongerthanthatcausedbytemporalvariation(Fig. 2).Accordingly,after200y,populationsizesundertheinfluenceofbothtypesof variation were similar to those affected by variation among individuals only, but significantlysmallerthanthoseaffectedbytemporalvariation(Table2).Thissuggests thatthevariationamongindividualsofthesixstudyspecieshadthelargestimpacton populationdynamics. Table 2. Projected population sizes of six Vietnamese threatened tree species under the influence of temporal variation (temp), variation among individuals (ind), both temporal variationandvariationamongindividuals(t+i),andnoenvironmentalvariation(det).Shown are medians of population size of 100 simulations at 200 y (only populations with > 1 individualwereincluded).Differentlettersindicatesignificantdifference(DunnTest).Det (withnodemographicstochasticity)wasnotincludedinthetestsbecauseitwasobtained fromdeterministicmatrixmodels(novariation).ForinitialpopulationsizesseeAppendix1. Species Populationsizeafter200y Nodemographicstochasticity Withdemographicstochasticity

det temp ind t+i det temp ind t+i *** a c c a b b b Annamocarya 41 42 4 4 43 9 11 9 Calocedrus*** 11 10 b 8 c 8c 12 b 47 a 50 a 49 a Dacrydium *** 4860 4416 b 3027 c 2995 c 5021 a 4048 b 3038 c 3007 c Manglietia *** 10 9 b 2c 2c 10 b 12 a 11 a 10 b Parashorea *** 781 577 a 105 b 104 b 542 a 97 c 88 c 84 c *** a c c b b b Pinus 19 18 3 3 20 a 9 9 8 ***:P<0.000(KruskalWallisTest). Duringthefirst5080yearsinthesimulations,whilepopulationsizeswerestill large,populationtrajectoriesundertheinfluenceofdemographicstochasticitywere

91 Chapter 4 not much different from those unaffected by demographic stochasticity (Fig. 2). Whenpopulationsizesweresmaller,thedecreaseinpopulationtrajectoriesaffected bydemographicstochasticitywasmuchstrongerthanthatofpopulationsunaffected bydemographicstochasticity(Fig.2).Inaddition,thevariationinpopulationsizes wasalsogreaterifpopulationswereaffectedbydemographicstochasticity(Fig.2). However,whenpopulationswereverysmall(lessthan100individuals),population trajectoriesaffectedbydemographicstochasticityremainedratherstable(around10 80 individuals/population), whereas population trajectories unaffected by demographicstochasticitycontinued todeclinetooneindividual (Fig.2).Clearly, demographic stochasticity did not affect much large populations, but had a great impactonsmallpopulations. Risk of extinction Table3. Meantimeandaccumulativeriskofextinctionforfivethreatenedtreespecies. Species Pseudoextinctionrisk Fullextinctionrisk

Withoutdemo Withdemo Withoutdemo Withdemo stochasticity stochasticity stochasticity stochasticity

Mean *Accurisk Mean *Accurisk Mean *Accurisk Mean *Accurisk time at150y time at150y time at300y time at300y (y) (%) (y) (%) (y) (%) (y) (%)

Annam- 110 100 85 100 250 100 175 65 ocarya Calo- 125 100 85 100 275 100 11 cedrus Mang- 120 100 100 100 275 100 200 51 lietia Para- 205 0 190 5 0 0 shorea Pinus 100 100 75 100 250 100 150 93 Note: *Accumulative Thepopulationdevelopmentandtheextinctionriskofallsixspecieswereinfluenced by the combined effect of demographic and environmental stochasticity. In our study, the environmental stochasticity included temporal variation and variation amongindividuals.Wethereforeusedthestochasticsimulationmodelsaffectedby

92 Population viability analysis temporal variation, variation among individuals and demographic stochasticity to measuretheprobabilityofextinctionforthestudyspecies.Weappliedtwomeasures ofextinction: (1)‘full extinction’ifa populationdeclines to≤1individual,or(2) ‘pseudoextinction’ for a population that drops below 100 individuals, which is consideredtobemuchlowerthantheminimumviablepopulation(MVP)sizefor longlivedplantspecies(Geburek1992). Without demographic With demographic stochasticity stochasticity

60 60 Annamocarya 50 Calocedrus 50 Manglietia 40 Parashorea 40 Pinus 30 30 20 20 10 10 0 0 Risk of pseudo-extinction (%) of pseudo-extinction Risk 0-65 0-65 75-80 90-95 75-80 90-95 105-110 120-125 140-145 155-160 170-175 185-190 200-205 215-220 230-235 245-250 260-265 275-280 105-110 120-125 135-140 150-155 165-170 180-185 195-200 210-215 225-230 240-245 255-260 270-275

100 100 Annamocarya 80 Calocedrus 80 Manglietia Pinus 60 60 40 40

20 20 Risk of Risk full (%) extinction 0 0

0-100 0-100

100-125 125-150 150-175 175-200 200-225 225-250 250-275 275-300 100-125 125-150 150-175 175-200 200-225 225-250 250-275 275-300 Time (y) Figure3. Projectedextinctionriskforthreatenedtreespecies.Shownareprobabilitiesof arriving at pseudoextinction (top panels) or full extinction (bottom panels) during the interval indicated on the Xaxis of the populations under the combined influence of temporalvariationandvariationamongindividuals,andwithout(leftpanels)orwith(right panels)demographicstochasticity. Amongthesixstudyspecies, Dacrydium wasnotexpectedtogoextinctordrop below100individualswithinthetimespanstudied,astheprojectedpopulationsize remainedabove1000individualsafter300y(Fig.2).Similarly, Parashorea didnotface fullextinction,butdidhave100%ofpseudoextinctionafter300y(Table3,Fig.3). Fortheotherspecies,extinctionwascommon.After150y,allpopulationsofthese

93 Chapter 4 specieswereprojectedtobesmallerthan100individuals(Table3,Fig.3).Themean timeforpseudoextinctionwasalsoshort,from70115y(Table3).Moreover,the probability of full extinction of these populations after 300 y was high: 65% for Annamocarya ,11%for Calocedrus ,51%for Manglietia ,and93%for Pinus (Table3).The meantimeforfullextinctionwas150225yfor Annamocarya ,175200yfor Manglietia , and125200yfor Pinus (Table3). Demographic stochasticity decreased the time to extinction for all five study species(Fig3).For Annamocarya , Calocedrus , Manglietia and Pinus , populations under the impact of demographic stochasticity were predicted to face pseudoextinction after 7090 y, compared with 90100 y without the impact of demographic stochasticity(Fig.3).Thesefourspeciesalsofacedfullextinctionafteraround100y ifaffectedbydemographicstochasticity,whereasthistimewas200ywithnoeffect of demographic stochasticity (Fig. 3). Similarly, Parashorea was expected to have a pseudoextinctionriskafter120yifaffectedbydemographicstochasticity,andafter 170ywithnoimpactbydeterministicstochasticity(Fig.3).However,theextinction riskwashighlyconcentratedforpopulationsunaffectedbydemographicstochasticity (Fig.3),indicatingasmallvariationinpopulationsizesofthesepopulations. Sensitivity analysis of extinction risk Toanalysehowsensitivetheextinctionriskistochangesinthemeanandvariation ofvitalrates,andtheinitialpopulationsize,wecarriedoutsimplesensitivityanalyses forthefourspeciesfacingextinctionrisk. Thesensitivityanalysesshowedthatchangesinthemeanofvitalrateshasgreater impactontheextinctionriskthanchangesinvariationofvitalrates,andthesurvival ratewasthemostimportantforextinctionrisk(Fig.4).Forinstance,for Annamocarya , when we decreased survival, growth, productivity or recruitment with 1%, the respective changes in extinction risk were 11%, 3.5%, 1.5% and 2.5% (Fig. 4). However, when we decreased the variation of survival, growth, probability of reproductionorrecruitmentwith1%,therespectivechangesinextinctionriskwere 2.5%,1.5%,0%,and1.5%(Fig.4).Thechangeinpopulation size was also more importantfortheestimateofextinctionriskthanthechangeinvariationofvitalrates (Fig.4).Forexample,thechangeinextinctionrisk of Calocedrus was11.5%ifwe decreasedtheinitialpopulationsizeby1%,butthiswas00.5%ifwechangedthe variationofvitalrateswith1%(Fig.4).Itisclearthatthesimulatedextinctionrisk forourstudyspeciesisthusmuchmoresensitivetothemeanvalueandtheinitial populationsizethantothevariationinvitalrates.

94 Population viability analysis

20 5 Annamocarya Calocedrus 15 4 3 10 2 5 1 0 0 -5 -1 -2 -10 -3 -15 -4 -20 -5 25 25 Manglietia Pinus 20 20 15 15 10 10

y in(%) 200 Change extinction risk after 5 5 0 0 -5 -5 -10 -10 -15 -15 -20 -20 -25 -25 Growth Growth Survival Survival SD(sur) SD(gro) SD(sur) SD(gro) SD(rcrui) SD(rcrui) SD(repro) SD(repro) Population Population Recruitment Recruitment Reproduciton Reproduciton Parameter changed Figure4 .Thesensitivityanalysisofextinctionriskforthreatenedtreespecies.Weranthe stochastic matrix models (under the combined impact of temporal variation, variation among individuals and demographic stochasticity) 100 simulations at 200 y, and with 10 replicates.Shownarechangesinextinctionrisk(%)ofpopulationswhenweincreasedthe means,standarddeviation(SD)ofvitalratesorinitialpopulationsizeswith1%(openbars), andwhendecreasedthosevalueswith1%(filledbars). Discussion

Extinction risk in relation to stochasticity Ingeneral,wefoundallpopulationtrajectoriesweregoingdownovertime(Fig.2), indicatingthatallsixspeciescouldprobablyfaceextinctioninthefuture.Yet,the timetoextinctionofpopulationsdependedontypesofstochasticityandthestudied speciesandsizeofinitialpopulations. We found that including variation in vital rates (both temporal variation and variation among individuals) due to environmental variation strongly decreased simulatedpopulationsize,leadingtoincreasedextinctionriskandearlierextinction

95 Chapter 4

(Table2,Fig.2).Ourresultsresemblethoseofpreviousstudies,whichshowedthat environmentalstochasticitydecreasespopulationgrowthrateandincreasesextinction risk(Menges1998,Landeetal.2003,Tuljapurkaretal.2004,Doaketal.2005,Engen et al. 2005). We distinguished two types of environmental stochasticity: temporal variation and variation among individuals (often related to smallscale spatial variation). Comparing these two types of stochasticity, we found that temporal variation had much smaller effects on population sizes for all species (Fig. 2). Furthermore, the population trajectories affected by temporal variation was some howsimilartothoseobtainedfromdeterministicmatrixmodels(Fig1,Fig.2).This indicates that the effect of temporal variation on the development of the study populationswassmall.ThiscorrespondstoareportofColling&Matthies(2006), showingthattheeffectoftemporalvariabilityonpopulationsof Scorzonera humilis (an endangered, longlived perennial herb) is small, leading to a small decrease in populationgrowthrate.However,theeffectoftemporalvariationonpopulationcan also be very large, leading to strong decreases in population size and increased extinctionrisk(Pfister1998,Picó&Riba2002). Forourstudyspecies,thetemporalvariationisprobablyunderestimatedduetoa lackofdata.First,wedidnotfindmuchvariationinrecruitmentforthetwoyearsof study,butthisislikelytofluctuatemoreoverlongertimespans.Moreover,ourdata didnotexperienceextremeyears,whichmayhaveastrongimpactonvitalrates,and alsoonextinctionrisk.Finally,wedidnotincludetemporalautocorrelation,which maystronglyimpactpopulationdynamics(Pfister&Stevens2003). Wefoundthatdemographicstochasticitydidnotaffectmuchlargepopulations, but decreased population sizes of small populations, leading to an early threat of extinction(Fig.2,Fig.3).Ourresultsareconsistentwiththoseofpreviousstudieson the impact of demographic stochasticity on population growth rate and extinction timeforplantspecies(Dinnétz&Nilsson2002,Morris&Doak2002,Engenetal. 2005,Boyceatal.2006).Wealsofoundthatthevariationinpopulationtrajectories without the influence of demographic stochasticity was much smaller than that affected by demographic stochasticity (Fig. 2). This accounts for a decrease in populationsizetoextinctionwithoutmuchfluctuationofpopulationsunaffectedby demographicstochasticity(Fig.2,Fig.3).Forverysmallpopulations(lessthan100 individuals)thataffectedbydemographicstochasticity,however,severalpopulations bychancecouldincreasethetimetoextinctionduetoagreatvariationinpopulation sizes(Fig.2). The relative importance of parameters for extinction risk Wefoundthattheextinctionriskwasmoresensitivetochangesinthemeanofevery vitalratethantochangesintheirvariation(Fig.4),suggestingthatthemeanismore important for extinction than the variation. It also is clear that the mean of the

96 Population viability analysis survivalratehadthelargestinfluenceonextinctionrisks(Fig.4).Thisconfirmsthe resultsofelasticityanalysisarguingthatthesurvivalrateiscrucialforthepopulation growth rate and the extinction risk of longlived plant species (Caswell 2001, Zuidema&Boot2002,Franco&Silvertown2004,Kwitetal.2004,Chapter3).Ifthe meanofsurvivalrateisnotestimatedwithprecision,thePVAwillgivebadresults. Theextinctionriskwasalsosensitivetochangesininitialpopulationsize(Fig.4), indicatingthattheinitialpopulationsizeisalsoimportantfor extinctionrisk.This resultresemblesthoseotherstudiesrevealingthatpopulationviabilityisexpectedto increasewithpopulationsize,andthatalargepopulationsizeislikelytodecreasethe risksofextinction(Pimmetal.1988,Barrett&Kohn1991,Ellstand&Elam1993, Youngetal.1996,Munzbergova2006).Populationsize,however,maynotbeagood indicatorof populationviabilityforlonglivedplantspecies,due to thetime delay betweenthedeteriorationofconditionsandthereductioninsizeoflocalpopulations (Colling&Matthies2006).Toallowbettercomparisonacrossspecieswithdifferent lifespans,weshouldperhapsexpresstimetoextinctioninnumberofgenerations ratherthanyears. Future prospects of the study species Among the six study species, the future prospects of Dacrydium and Parashorea is alright,astheyareexpectednottofacefullextinctionin300y(Fig.2),eventhough Parashorea mayfacepseudoextinctionin150y(Fig.3).Thefutureof Calocedrus isnot reallygood,becausethespeciesislikelytofacepseudoextinctionin90y(Fig.3), although its risk of full extinction is low (11% in 300 y, Fig. 3). The futures of Annamocarya and Manglietia are worse, because they are predicted to face pseudo extinctionin80y,andfullextinctioninaround125y.Thefutureof Pinus isworst,as thespeciesisprojectedtofacepseudoextinctionin70y.Moreover, Pinus isprojected tofacefullextinctionin120y,andthespeciesispredictedtobeextinctinaround 300y(93%accumulativeofchancetogoextinct,Table3). Ourresults,however,shouldbeinterpretedwithcaution,becausetheestimateof themeanofvitalrates,particularlysurvival,iscrucialforthepreciseprojectionfor the study species. In order to make a more precise prediction that leads to an effectiveconservationstrategy,greatcareshouldbepaidtotheestimateofthemean ofvitalratesandtheinitialpopulationsize.Asregardsconservation,itistherefore notnecessarytotakeanyspecialconservationmeasurefor Dacrydium and Parashorea , buttoprotecttheirnaturalhabitatsfromhumandisturbances(seeChapter3).Forthe other species, however, more attention should be paid, not only to protect their habitats,butalsotoimprovetheirpopulationgrowthrates(seeChapter3)beforethe populationsdeclinebelowcriticallevels.

97 Chapter 4

Acknowledgements WethankNguyenHoangNghia,VuVanCan,DinhDucHuu,NguyenVanThe, and Le Van Thu for valuable information and discussion on the distribution and populationsizesofthestudyspeciesinthefourprotectedareas.MarinusWergerand Heinjo During are kindly acknowledged for improving the manuscript in many aspects.ThisstudywasfundedinpartbyTropenbosInternationalVietnam,Utrecht University,andtheForestScienceInstituteofVietnam.

References Akçakaya,H.R.,M.A.Burgman,andL.R.Ginzburg.1997.AppliedPopulation Ecology.AppliedBiomathematics.Setauket,NewYork. Barrett,S.C.H.,andJ.R.Kohn.1991.Geneticandevolutionaryconsequencesofsmall populationsizeinplants;implicationforconservation.Pages130inD.A.Falk andK.E.Holsinger,editors.Geneticsandconservationofrareplants.Oxford UniversityPress,Oxford. Beissinger,S.R.,andM.I.Westphal.1998.Ontheuseofdemographicmodelsof populationviabilityinendangeredspeciesmanagement.JournalofWildlife Management 62 :821841. Beissinger,S.R.,andD.R.McCullough.2002.PopulationViabilityAnalysis.University ofChicagoPress,Chicago,USA. Boyce,M.S.1992.Populationviabilityanalysis.AnnualReviewofEcologyand Systematics 23 :481506. Boyce,M.S.,C.V.Haridas,C.T.Lee,andtheNCEASStochasticDemography WorkingGroup.2006.Demographyinanincreasinglyvariableworld.Trends inEcologyandEvolution 21 :141148. Brook,B.W.,J.J.O’Grady,A.P.Chapman,M.A.Burgman,H.R.Akçakaya,andR. Frankham.2000b.Predictiveaccuracyofpopulationviabilityanalysisin conservationbiology.Nature 404 :385387. Burgman,M.A.,S.Ferson,andH.R.Akçakaya.1993.RiskAssessmentinConservation Biology.ChapmanandHall,London. Can,V.V.2005.Researchonsomebiologicalcharacteristicsof Parashorea chinensis ,aimed todevelopthespeciesinCucPhuongNationalPark.ForestinformationJournal. 9:270277. Carroll,R.,C.Augspurger,A.Dobson,J.Franklin,G.Orians,andG.Reid.1996. Strengtheningtheuseofscienceinachievingthegoalsoftheendangeredspecies act,anassessmentbytheEcologicalSocietyofAmerica. Caswell,H.2001.MatrixPopulationModels.2 nd edition.SinauerAssociates,Sunderland, Massachusetts. Chapman,A.P.,B.W.Brook,T.H.CluttonBrock,B.T.Grenfell,andR.Frankham. 2001.Populationviabilityanalysesonacyclingpopulation:acautionarytale.

98 Population viability analysis

BiologicalConservation 97 :6169. Clark,T.W.,G.N.Backhouse,andR.C.Lacy.1991.Reportofaworkshopon populationviabilityassessmentasatoolforthreatenedspeciesmanagement andconservation.AustralianZoologist 27 :2835. Colling,G.,andD.Matthies.2006.Effectsofhabitatdeteriorationonpopulation dynamicsandextinctionriskofanendangered,longlivedperennialherb (Scorzonera humilis )JournalofEcology 94 :959972. Dinnétz,P.,andT.Nilsson.2002.Populationviabilityanalysisof Saxifraga cotyledon ,a perennialplantwithsemelparousrosettes.PlantEcology 159 :6171. Doak,D.F.,W.F.Morris,C.Pfister,B.E.Kendall,andE.M.Bruna.2005.Correctly estimatinghowenvironmentalstochasticityinfluencesfitnessand populationgrowth.AmericanNaturalist 166 :E14E21. Ellstrand,N.C.,andD.R.Elam.1993.Populationgeneticconsequencesofsmall populationsize:implicationsforplantconservation.AnnualReviewofEcology andSystematics 24 :217242. Engen,S.,Ø.Bakke,andA.Islam.1998.Demographicandenvironmentalstochasticity –conceptsanddefinitions.Biometrics 54 :840846. Engen,S.,R.Lande,B.ESæther,andH.Weimerskirch.2005.Extinctioninrelationto demographicandenvironmentalstochasticityinagestructuredmodels. MathermeticalBiosciences 195 :210227. Ferson,S.1994.RAMASStage:GeneralizedStagebasedModelingforPopulation Dynamics.AppliedBiomathematics,Setauket. Fieberg,J.,andS.P.Ellner.2001.Stochasticmatrixmodelsforconservationand management:acomparativereviewofthemethods.EcologyLetters 4:244266. Franco,M.,andJ.Silvertown.2004.Comparativedemographyofplantsbasedupon elasticitiesofvitalrates.Ecology 85: 531538. Garcia.M.B.2003.Demographicviabilityofarelictpopulationofthecritically endangeredplant Borderea chouardii .ConservationBiology. 17 :16721680. Geburek,T.1992.Howbigshouldbethepopulationsizetoconserveendangered animalorplant–species.AllgemeineForstundJagdzeitung 163 :129133. Groom,M.J.,andM.A.Pascual.1998.Theanalysisofpopulationpersistence:an outlookonthepracticeofviabilityanalysis.Pages427inP.L.FiedlerandP.M. Kareiva,editors.Conservationbiology.2 nd edition.ChapmanandHall,New York. Huy,P.T.,andN.V.Cu.1990.InitialresearchonCalocedrus marcrolepis atBaViNational Park.BaViNationalPark,HaTay,Vietnam. Huyen,P.T.1997.Researchonsomebiologicalcharactersof Manglietia fordiana ,aimedto contributeinformationforforestenrichmentandplantationatBaViNational Park.Masterthesis.VietnamForestryUniversity.HaTay. Kaye,T.N.,andD.A.Pyke.2003.Theeffectofstochastictechniqueonestimatesof populationviabilityfromtransitionmatrixmodels.Ecology 84 :14641476. Keo,H.V.2003.Researchonecologicalcharacteristicsandreproductivecapabilityby cuttingof Dacrydium elatum (Roxb.)WallichexHooker)inBachMaNational

99 Chapter 4

Park.PhDthesis.HueScienceUniversity,Hue. Kwit,C.,C.C.Horvitz,andW.J.Platt.2004.Conservingslowgrowing,longlivedtree species:InputfromthedemographyofarareunderstoryConifer, Taxus floridana . ConservationBiology 18: 432443. Lacy,R.C.1993.VORTEX:acomputersimulationmodelforpopulationviability analysis.WildlifeResearch 20 :4565. Lande,R.,S.Engen,andB.E.Sæther.2003.StochasticPopulationDynamicsinEcology andConservation.OxfordUniversityPress,Oxford. MathWork,Inc.1999.MATLAB:thelanguageofTechnicalComputing.PrenticeHall, UpperSaddleRiver,NewJersey,USA. Menges,E.S.1998.Evaluatingextinctionrisksinplantpopulations.Pages5965inP.L. FiedlerandP.M.Kareiva,editors.Conservationbiologyforthecomingdecade. ChapmanandHall,NewYork,USA. Menges,E.S.2000.Applicationofpopulationviabilityanalysisinplantconservation. EcologicalBulletins 48 :7384. Menges,E.S.,andP.F.QuintanaAscencio.2003.Modelingtheeffectsofdisturbance, spatialvariationandenvironmentalheterogeneityonpopulationviabilityof plants.Pages288311inC.A.BrighamandM.W.Schwartz,editors.Population viabilityinplants.SpringerVerlag,Heidelberg,Germany. Miller,P.S.,andR.C.Lacy.1999.Vortex:AStochasticSimulationoftheExtinction process.Version8User’sManual.IUCN/SSCCBSG,AppleValley,MNUSA. MinistryofScience,TechnologyandEnvironment(MSTE).1996.RedDataBookof Vietnam.Volume2–Plant.ScienceandTechnicsPublishingHouse,HaNoi. Morris,W.F.,andD.F.Doak.2002.Quantitativeconservationbiology:theoryand practiceofpopulationviabilityanalysis.SinauerAssociates,Sunderland, Massachusetts. Munzbergova,Z.2006.Effectofpopulationsizeontheprospectofspeciessurvival. FoliaGeobotanica 41 :137150. Nghia.N.H.2000.SomethreatenedtreespeciesofVietnam.AgriculturalPublishing House,HaNoi. Pfister,C.A.1998.Patternsofvarianceinstagestructuredpopulations:evolutionary predictionsandecologicalimplications.ProceedingsoftheNationalAcademy ofSciencesoftheUnitedStatesofAmerica 95 :213218. Pfister,C.A.,andF.R.Stevens.2003.Individualvariationandenvironmental stochasticity:implicationsformatrixmodelpredictions.Ecology 84 :496510. Picó,X.,andM.Riba.2002.Regionalscaledemographyof Ramonda myconi :remnant populationdynamicsinapreglacialrelictspecies.PlantEcology 161 :113. Pimm,S.L.,H.L.Jones,andJ.Diamond.1988.Ontheriskofextinction.American Naturalist 132 :757785. Possingham,H.P.,D.B.Lindenmayer,andT.W.Norton.1993.Aframeworkfor theimprovedmanagementofthreatenedspeciesbasedonpopulationviability analysis,PVA.PacificConservationBiology 1:3945. Possingham,H.P.,andI.Davies.1995.ALEX:amodelfortheviabilityofspatially

100 Population viability analysis

structuredpopulations.BiologicalConservation 73 :143150. Reed,D.H.,J.J.O’Grady,B.W.Brook,J.D.Ballou,andR.Frankham.2003.Estimates ofminimumviablepopulationsizesforvertebratesandfactorsinfluencingthose estimates.BiologicalConservation 113 :2334. Shaffer,M.L.1990.Populationviabilityanalysis.ConservationBiology 4:3940. Thu,N.B.,andV.V.Can.1999.ChoDaitree( Annamocarya sinensis ).Agricultural PublishingHouse,HaNoi. Tuljapurkar,S.,C.C.Horvitz,andJ.B.Pascarella.2004.Themanygrowthratesand elasticitiesofpopulationsinrandomenvironments.AmericanNaturalist 164 : 821823. Young,A.,T.Boyle,andT.Brown.1996.Thepopulationgeneticconsequencesof habitatfragmentationforplants.TrendsinEcologyandEvolution 11 :413418. Zuidema,P.A.,andM.Franco.2001.Integratingvitalratevariabilityintoperturbation analysis:anevaluationformatrixpopulationmodelsofsixplantspecies.Journal ofEcology 89 :9951005. Zuidema,P.A.,andR.G.A.Boot.2002.DemographyoftheBrazilnuttree( Bertholletia excelsa )intheBolivianAmazon:impactofseedextractiononrecruitmentand populationdynamics.JournalofTropicalEcology 18:131.

101 Chapter 4

Appendix1. Meanandstandardvariationofvitalrates,andinitialpopulationsizesofthe threatened tree species used in stochastic matrixmodels.Cat:category, σ:survival rate, g: growthrate,Pr:probabilityofreproductionoflargetrees,f:seedlingrecruitment,Catwid: category width, ini Po: initial population size, SD: standard deviation, SD(g,t): standard deviationofDBHgrowthobtainedfromringindexseries. Spe Cat σ SD(σ) g SD(g) SD(g,t) Pr SD(P f SD(f) Cat Ini cies r) wid Po 1 0.854 0.064 3.848 1.005 0 0 0 0 0 30 960 Anna- 2 0.860 0.076 4.577 1.269 0 0 0 0 0 30 600 mocrya 3 0.868 0.08 5.427 1.639 0 0 0 0 0 40 392 4 0.880 0.079 6.812 1.385 0 0 0 0 0 75 352 5 0.894 0.079 0.086 0.021 0.053 0 0 0 0 4 152 6 0.935 0.06 0.21 0.043 0.07 0 0 0 0 5 80 7 0.982 0.062 0.332 0.068 0.078 0 0 0 0 5 48 8 0.982 0.054 0.433 0.164 0.086 0.247 0.176 0.48 0.215 5 64 9 0.982 0.054 0.509 0.072 0.103 0.317 0.165 0.48 0.215 5 64 10 0.982 0.051 0.559 0.104 0.093 0.396 0.173 0.48 0.215 5 72 11 0.982 0.058 0.586 0.132 0.105 0.481 0.167 0.48 0.215 5 56 12 0.982 0.054 0.592 0.139 0.104 0.566 0.187 0.48 0.215 5 64 13 0.982 0.051 0.575 0.125 0.113 0.687 0.164 0.48 0.215 10 72 14 0.982 0.054 0.52 0.119 0.076 0.814 0.13 0.48 0.215 10 64 15 0.982 0.058 0.45 0.085 0.069 0.897 0.107 0.48 0.215 10 56 16 0.982 0.062 0.381 0.097 0.069 0.946 0.086 0.48 0.215 10 48 17 0.982 0.058 0.319 0.087 0.069 0.972 0.067 0.48 0.215 10 56 18 0.950 0.044 0 0 0 0.986 0.045 0.48 0.215 0 120 1 0.774 0.065 3.538 0.529 0 0 0 0 0 30 2275 Calo- 2 0.801 0.062 4.123 0.752 0 0 0 0 0 30 780 cedrus 3 0.837 0.081 5 1.048 0 0 0 0 0 60 390 4 0.882 0.078 6.307 1.229 0 0 0 0 0 75 315 5 0.913 0.081 0.066 0.015 0.028 0 0 0 0 4 225 6 0.958 0.017 0.145 0.046 0.04 0 0 0 0 5 105 7 0.958 0.017 0.217 0.051 0.046 0.302 0.084 4.7 2.25 5 90 8 0.958 0.017 0.274 0.05 0.049 0.59 0.095 4.7 2.25 5 81 9 0.958 0.017 0.315 0.071 0.056 0.827 0.095 4.7 2.25 5 48 10 0.958 0.017 0.341 0.082 0.069 0.941 0.057 4.7 2.25 5 51 11 0.958 0.017 0.357 0.066 0.062 0.99 0.031 4.7 2.25 10 30 12 0.958 0.017 0.347 0.063 0.056 0.99 0.031 4.7 2.25 10 30 13 0.953 0.064 0.317 0.051 0.051 0.99 0.044 4.7 2.25 10 15 14 0.953 0.064 0 0 0 0.99 0.04 4.7 2.25 0 18

102 Population viability analysis

Spec Cat σ SD(σ) g SD(g) SD(g,t) Pr SD f SD Cat Ini ies (Pr) f) wid Po Dacr- 1 0.784 0.043 3.248 0.95 0 0 0 0 0 30 5115 ydium 2 0.831 0.067 3.749 1.26 0 0 0 0 0 30 1705 3 0.875 0.074 4.334 1.64 0 0 0 0 0 40 1100 4 0.922 0.065 5.169 1.36 0 0 0 0 0 60 935 5 0.959 0.04 0.122 0.028 0.03 0 0 0 0 4 1188 6 0.967 0.012 0.222 0.045 0.039 0 0 0 0 5 506 7 0.987 0.007 0.299 0.053 0.043 0.156 0.071 1.84 0.6 5 286 8 0.987 0.007 0.352 0.081 0.049 0.32 0.091 1.84 0.6 5 286 9 0.987 0.007 0.387 0.104 0.05 0.545 0.087 1.84 0.6 5 363 10 0.987 0.007 0.406 0.079 0.049 0.753 0.081 1.84 0.6 5 308 11 0.987 0.007 0.414 0.081 0.059 0.886 0.054 1.84 0.6 5 385 12 0.987 0.007 0.412 0.07 0.055 0.952 0.038 1.84 0.6 5 341 13 0.987 0.007 0.404 0.087 0.044 0.981 0.044 1.84 0.6 5 110 14 0.987 0.007 0.362 0.03 0.042 0.992 0.036 1.84 0.6 5 66 15 0.97 0.076 0 0 0 0.992 0.039 1.84 0.6 0 55 1 0.74 0.058 5.455 1.59 0 0 0 0 0 30 780 Mang- 2 0.78 0.071 7.054 1.66 0 0 0 0 0 30 304 lietia 3 0.84 0.075 8.919 2.60 0 0 0 0 0 40 214 4 0.90 0.058 11.58 3.30 0 0 0 0 0 60 242 5 0.91 0.052 0.063 0.04 0 0 0 0 0 4 260 6 0.95 0.034 0.193 0.06 0 0 0 0 0 5 140 7 0.98 0.011 0.342 0.08 0 0.197 0.064 0.83 0.36 5 127 8 0.98 0.011 0.47 0.13 0 0.337 0.085 0.83 0.36 5 103 9 0.98 0.011 0.559 0.16 0 0.513 0.125 0.83 0.36 5 53 10 0.98 0.011 0.605 0.13 0 0.686 0.093 0.83 0.36 5 83 11 0.98 0.011 0.613 0.09 0 0.820 0.091 0.83 0.36 5 60 12 0.98 0.011 0.591 0.16 0 0.904 0.085 0.83 0.36 5 40 13 0.98 0.011 0.515 0.09 0 0.951 0.056 0.83 0.36 5 50 14 0.94 0.041 0 0 0 0.976 0.037 0.83 0.36 0 57

103 Chapter 4

Spec Cat σ SD(σ) g SD(g) SD(g,t) Pr SD f SD(f) Cat Ini ies (Pr) wid Po 1 0.80 0.04 3.78 1.10 0 0 0 0 0 30 1500 Para- 2 0.84 0.05 4.86 1.26 0 0 0 0 0 30 863 shorea 3 0.89 0.05 6.48 1.55 0 0 0 0 0 60 638 4 0.94 0.07 8.82 1.31 0 0 0 0 0 70 225 5 0.92 0.08 0.08 0.03 0 0 0 0 0 4 244 6 0.96 0.05 0.20 0.05 0 0 0 0 0 5 33 7 0.98 0.04 0.38 0.09 0 0.22 0.12 3.68 1.36 10 30 8 0.98 0.04 0.54 0.07 0 0.32 0.16 3.68 1.36 10 23 9 0.98 0.04 0.60 0.15 0 0.45 0.17 3.68 1.36 10 23 10 0.98 0.05 0.60 0.17 0 0.59 0.19 3.68 1.36 10 18 11 0.98 0.05 0.56 0.14 0 0.71 0.18 3.68 1.36 10 15 12 0.98 0.05 0.49 0.10 0 0.81 0.15 3.68 1.36 10 18 13 0.98 0.04 0.39 0.05 0 0.91 0.09 3.68 1.36 20 25 14 0.98 0.04 0.28 0.06 0 0.97 0.06 3.68 1.36 20 23 15 0.98 0.05 0 0 0 0.99 0.04 3.68 1.36 0 20 1 0.646 0.065 4.912 1.622 0 0 0 0 0 30 405 Pinus 2 0.807 0.076 6.373 2.068 0 0 0 0 0 30 225 3 0.91 0.052 8.078 2.225 0 0 0 0 0 60 186 4 0.92 0.078 10.36 2.671 0 0 0 0 0 80 105 5 0.92 0.082 0.041 0.011 0.039 0 0 0 0 4 78 6 0.96 0.065 0.129 0.031 0.05 0 0 0 0 5 27 7 0.98 0.057 0.23 0.056 0.061 0 0 0 0 5 18 8 0.987 0.05 0.314 0.039 0.07 0.509 0.224 0.42 0.19 5 15 9 0.987 0.034 0.368 0.052 0.069 0.675 0.141 0.42 0.19 5 33 10 0.987 0.029 0.39 0.098 0.081 0.806 0.102 0.42 0.19 5 45 11 0.987 0.029 0.385 0.049 0.066 0.893 0.08 0.42 0.19 5 45 12 0.987 0.026 0.361 0.088 0.062 0.944 0.054 0.42 0.19 5 54 13 0.987 0.028 0.328 0.079 0.075 0.971 0.042 0.42 0.19 5 48 14 0.987 0.037 0.291 0.092 0.055 0.985 0.04 0.42 0.19 5 27 15 0.987 0.031 0.254 0.038 0.069 0.993 0.024 0.42 0.19 5 39 16 0.98 0.053 0.219 0.082 0.053 0.996 0.023 0.42 0.19 5 21 17 0.96 0.063 0 0 0 0.998 0.019 0.42 0.19 0 15

104

105

106 Chapter 5

What dimension to use for matrix models of trees? Recommendations based on a validation of age estimate by tree ring analysis

With P. A. Zuidema

Abstract Thechoiceofthenumberofcategoriesinconstructingmatrixmodelsisanimportant one,asithasconsequencesformodeloutput(populationgrowthrate(λ),elasticityofλ andagesoftrees).WevalidatedtheoutputofmatrixmodelsoffourVietnamesetree speciesbycomparingageestimatesobtainedfrommatrixmodelswithvaryingamountof categories with ring counts. Our study species were Annamocarya sinensis , Calocedrus macrolepis , Dacrydium elatum and Pinus kwangtungensis .Wecarriedoutatwoyearfieldstudy, inwhichwequantifiedtheprobabilityofsurvival,growthandreproduction,andused thosetoconstructmatrixmodelswithdifferentsizes.Wethenestimatedλ,elasticityofλ and ages of trees for each matrix model. We also carried out a dendrochronological study,inwhichringdatawerecollectedforestimatingtreeages. Ageestimatesstronglyincreasedwhenthenumberofcategorieswasincreased.The populationgrowthrateslightdecreased(by0.11.2%)withincreasedmatrixsize,froma smallmatrixwithbroadcategories(10cmDBH)to avery large matrix with narrow categories(1.25cmDBH).Theelasticityofλtostasisandfecundity(matrixelements) decreasedwithincreasingmatrixsizes,whiletheelasticityvalueforprogression(matrix element) increased. However, the elasticity of λ to vital rates (growth, survival and reproduction)wasmuchlesssensitivetochangesin matrix sizes compared to matrix elements. Ourresultsshowedthatthewidthofcategoriesforwhichmatrixageestimatesbest correspondtoobserved(ring)agesequals2.5cmDBHfor Annamocarya sinensis ,1.5cm for Calocedrus macrolepis ,1.5cmfor Dacrydium elatum and3cmfor Pinus kwangtungensis . Wearguethatnarrowcategories(1.53cmDBH)areusedinmatrixmodelsoftrees toobtainbestestimatesoftreeage,populationgrowthrateandelasticity. Key words: Matrixdimension,populationgrowthrate,elasticity,treeages.

Chapter 5

Introduction Matrixpopulationmodelsarewidelyusedindemographicanalysesastheyareeasily constructedandprovideclearlyinterpretableoutput(Caswell2001).Todate,matrix modelshavebeenconstructedforalargenumberofspecies,includingbirds(Saether & Bakke 2000), mammals (Heppell et al. 2000) and plants (Franco & Silvertown 2004).Toconstructamatrixpopulationmodel,individualsareclassifiedintodiscrete classes according to their age (often applied to animals) or size (often applied to plants) (Caswell 2001). The main outputs of matrix models are the asymptotic populationgrowthrate(λ)andtheelasticityofλtodifferentlifehistorytransitions (Caswell 2001). These two parameters are used to evaluate the population performanceandthemostimportantlifestagesforthepopulationgrowthrate,and to suggesteffectiveconservationactions (Ratsirarsonetal.1996,Benton&Grant 1999, Contreras & Valverde 2002, Zuidema & Boot 2002, Kwit et al. 2004). In addition, sizeclassified matrix models can be used to estimate ages of trees using algorithms developed by Cochran & Ellner (1992) (Zagt 1997, Zuidema 2000, Caswell2001,Barotetal.2002).Fortreespecies,thismethodallowstoestimateages withoutusingannualringsorotherdatingtechniques(MartinezRamos&Alvarez Buylla1998). Animportantchoiceintheconstructionofsizestructuredmatrixmodelsisthe dimension (or size) of the transition matrix, i.e. the number of size categories in whichthepopulationisdivided.Fortransitionmatricesinwhichthevaluesofthe elements are observed transitions from one to another category, or based on the averageofgrowthandsurvivalinacategory,choosingwideornarrowcategorieshas implicationsfortheerrorsofdistributionandsampling(Vandermeer1978,Moloney 1986).Ifatransitionmatrixhasfewandwidecategories,theerrorofdistributionmay belarge,asindividualswithinacategorybehaveverydifferently(Vandermeer1978, Moloney 1986). In a transition matrix with many narrow categories the error of sampling is large as the number of individuals used to calculate transition is low (Vandermeer1978,Moloney1986).Iftransitionsarecalculatedusingoverallrelations ofgrowthandsurvivalvs.size,insteadofobservedtransitionsoraveragesofgrowth andsurvival,theseerrorsarenotapplicable,butalsointhesemodels,thenumberof categoriesinfluencesmodeloutput.Inlargetransition matrices, population growth rate and the elasticities of λ to stasis and fecundity are generally smaller, while elasticityforprogressionincreases(Zagt1997,Zuidema2000,Yearsley&Fletcher 2002,Ramula&Lehtilä2005). Different criteria have been proposed to determine matrix dimension. Vandermeer(1978)andMoloney(1986)developedamathematicalmethodtoclassify individualsintostageclassesbyminimizingbotherrorsofdistributionandsampling. Otherstudiessuggestedthatthestageclassificationshouldbebaseduponbiological criteria that maximize differences in vital rates among categories (Caswell 2001,

108 What matrix dimension to use

Zuidema&Boot2002).Recently,Ramula&Lehtilä(2005),arguedthatconstructing smallmatricesismoresuitable,particularlyforwoodyspecies,asthissavestimeand moneyrequiredforobtainingdemographicdata. Inspiteoftheampledebateonchoosingmatrixmodelsize,sofarnovalidation hasbeencarriedouttodeterminewhatistheoptimalmatrixdimension.Onewayto determinethemostsuitablenumberofcategoriesistocorrelateageestimatesfrom matrix models to those from annual rings, which are obtained from a dendrochronologicalstudyorotherageingmethods. In this paper, we validate tree ages obtained from matrix models of different dimension for four Vietnamese tree species. Specially, we address the following questions:(1)Whatistheeffectofmatrixdimensionontreeageestimates?(2)What matrixdimensionbestcorrespondswithindependentlyobtainedtreeages?(3)What istheeffectofmatrixdimensiononpopulationgrowthrateandelasticity?Toanswer these, we carried out a 2year demographic study and constructed stagebased transition matrices with different dimensions for four study species. From these matrices, we calculated tree ages, population growth rates and elasticities. We also carriedoutadendrochronologicalstudytodetermineactualages of theindividual trees.Basedonthecomparisonbetweenthematrixoutputsandtheresultsobtained fromringcounts,recommendationsforapplyingmatrixdimensionareproposed. Methods

Studyspecies We studied four Vietnamese tree species: Annamocarya sinensis , Calocedrus macrolepis , Dacrydium elatum ,and Pinus kwangtungensis (hereafterreferredtotheirgenusnames).All fourspeciesarelonglived,andreachtheforestcanopywhenbeingmature.Three species ( Calocedrus , Dacrydium and Pinus ) are conifers while Annamocarya isabroad leaveddeciduousspecies.Theconiferousspeciesgrowinsubtropicalforestsinhigh mountains,whilstthebroadleavedspeciesoccursinlowlandtropicalforests.Several characteristicsofthefourspeciesandtheirfieldsitesaredescribedinTable1(more detailsinChapter3). Studysites ThestudywascarriedoutinfourprotectedareasinVietnam(Table1).Thestructure oftheconiferousforests(e.g.,canopylayers,speciesdiversity)issimplerthanthatof thelowlandforests,where Annamocarya occurs.Thecanopytheconiferousforestis alsolowerandmoreopenthanthecanopyof Annamocarya forest.

109 Chapter 5

Theprecipitationishighinthefourstudyareas:around2000mmy 1 inBaVi, CucPhuongandHangkia–PaCo,andmorethan3000mmy 1inBachMa.Inall fourareas,rainfallisnotevenlydistributedovertheyear.Thedryseasonisrather pronouncedinallareaswith5drymonths (<100mm mo 1)inBaVi,6inCuc PhuongandHangKia–PaCo,and3inBachMa. Table 1. Characteristicsofthestudyspeciesandstudyareas Species Max Max Location Altitude Canopy (family) height DBH (Coordinates) (m) height(m) (m) (cm) (*) (*) Annamocarya sinensis (Dode) 35 1 150 1 CucPhuong(21º 250 2530 Leroy N,105ºE) (Juglandaceae) Calocedrus macrolepis Kurz 1525 2 >100 2 BaVi(21ºN, 1200 1520 (Cupressaceae) 105ºE) Dacrydium elatum (Roxb)Wall 2025 2 5070 2 BachMa(16ºN, 1200 1520 exHook 107ºE) (Podocarpaceae) Pinus kwangtungensis Chunex 1520 2 5070 2 HangKia–PaCo 1100 1520 Tsiang (20ºN,104ºE) (Pinaceae) Note: 1:fromThuandCan(1999), 2:fromNghia2000,*:atthestudysite Datacollection Forthedemographicstudy,permanentplotswereestablishedinthestudysitesin 2003. Measurements of individuals (parameters: DBH, total height, fruit status, recruitmentandmortality)werecarriedoutin2003,2004and2005(moredetailssee Chapter 3). For the dendrochronological study, in 2004 and 2005 we took wood samples from selected trees using a hand drill. We selected adult trees (> 30 cm DBH)thathadroundboles,occurringbothinsideandoutsidetheplots.Oneach tree,weextracted12woodcoresfromthestematapproximately1.3mabovethe ground. Allcoresweresandeduntilwecouldeasilyseetherings.Ringboundariescould beidentifiedvisuallybyamagnifier.Ringwidthsweremeasuredtothenearest0.1 mm.Whenthecoresdidnotincludethetreepith,weestimatedthedistancetothe pithandusedtheaveragenumberofringsoftheothersamplesofthesamespecies

110 What matrix dimension to use toobtainanestimateofthenumberofmissingrings.However,weofteneliminated corestakenfromhollowtreesorcoresthatdeviatedfarfromthepith.Forthetrees havingtwocores,theaveragevaluesofthesecoresweretakentodescribeaverage diameter increment. The numbers of Annamocarya , Calocedrus , Dacrydium and Pinus treesfromwhichthecoreswereusedwere30,32,34and31,respectively. Inordertoexaminetherelationshipbetweenrainfallofthestudysitesandtree growthforthefourspecies,wecollectedannualrainfalldata(19702004)fromthe nearestmeteorologicalstations:NhoQuanfor Annamocarya,SonTayfor Calocedrus , NamDongfor Dacrydium ,andMaiChaufor Pinus .

Dendrochronologicaldataanalysis The annual ring data of the four species were first tested for accuracy using correlation analysis (COFECHA Program, GissinoMayer 2001) to detect measurementerrorssuchaswedgingormissingrings.Treeringseriesthathadhigh correlation to the rest of the collective were chosen for establishing a tree ring chronologyforeachspeciesusingprogramARSTAN(Cook&Holmes1985).For thispurpose,therawringserieswerestandardizedusingthecubicsplinewiththe same stiffnessasused inCOFECHA. Thestandardized series were then averaged into one sizedependent growth pattern per species. These values were used to compare with tree ages obtained from matrix models. To study the relationship betweenprecipitationandtreegrowth,werelatedthesizedependentgrowthpattern ofeachspecieswithannualrainfallofthestudysitesusingPearsoncorrelations. Dataanalysisandmatrixmodelconstruction As stem growth is nonlinearly related to the diameter, we used a Hossfeld IV equation(Zeide1993)todescribethispattern:

(c 1) b *c* d g(d)= [b+(d c/a )] 2 whereg(d)istheexpectedDBHgrowthrate(cmy 1),disDBH,anda,bandcare fittedparameters. Reproductiveprobabilityofatreerelatespositivelytoitsstemsize.Todescribe thispattern,weusedthelogisticregressionfunction: Prof{f}=1/(1+Exp((m+n*d))) whereProf{f}istheprobabilitythatthetreeisreproductive,disDBH,andmandn arefittedparameters.

111 Chapter 5

Thepopulationsofthefourspeciesweredividedinto14to18sizecategories, dependingontheabundanceandsizestructureofeachpopulation(Appendix1– Chapter3).Forallspecies,thefirstfourcategorieswerebasedonseedlingheightand theremainingonDBH(formoredetailsseeChapter3). WeappliedaLefkovitchmatrixmodel(Caswell2001),usingtheequation:n(t+1) = An(t),wherenisavectorcontainingthepopulationstructureattimet(ort+1), and A is a square matrix containing demographic information of the population duringonetimestep(1yearforourstudy).Thepopulationstructureattimet+1is obtainedbymultiplyingthepopulationstructureattimetwithmatrix A.Whenthe multiplicationof Aandn(t)isrepeatedmanytimes,therelativestructureandgrowth rateofthepopulationwillbecomestable.Atthattime,thedominanteigenvalue(λ) andtherighteigenvectorofmatrix Aareequaltothegrowthrateandthestablestage distributionofthepopulation,respectively(Caswell2001). Elements (a ij ) of matrix A can be grouped according to their position in the matrix:growthelements(G),stasiselements(P)orfecundityelements(F).Growth elements(inthesubdiagonalofthematrix)werecalculatedasG i =σ i* gi* ci1,where Giistheprobabilityfortreesincategoryiofgrowingtocategoryi+1,σ ithesurvival probabilityoftreesincategoryi,g ithegrowthrate(cmyr 1)andc ithecategorywidth (cm, for height or diameter). Stasis elements (in the diagonal of the matrix) were calculatedasP i= σiG i.Fecundityelements(inthetoprightrow)werecalculatedas Fi = σ i * Prob {f} i * f i, where Prob {f} i is probability of being reproductive for individuals in category i, and f i was calculated by dividing the abundance of new seedlings (per ha, per year), by that of reproductive trees per ha. The vital rates (survival,growthandprobabilityofreproduction)weusedherewereobtainedfrom regressiondata,butnotfromtheobservedclassaverage. Matrixdimensionandageestimation Weappliedtwowaysofchangingthematrixsize(weusedmatricesinAppendix1– Chapter3).First,wechangedthecategorywidthofmatrices.Forallreconstructed matrices,wekeptthefirstfourcategories(basedonseedlingheight)thesame.The othercategories(category5andlarger)ofeachmatrixwereconstructedusingone category width (cm DBH); matrices with different sizes were created by using differentcategorywidths.Wereconstructed6typesofmatrixmodelswithcategory widthof1.25,1.5,2.5,3,5and10cm.Second,wevariedthesizeofmatricesby changing γ,theprobabilitythatasurvivingindividualincategoryimovestocategory i+1.γwasvariedfrom0.030.28andthecategorywidthwascalculatedasc i=g i/γi. Lowvalueof γwouldleadtosmallmatricesandlargevalueof γtolargematrices. We estimated tree ages for categories of matrices using algorithms for determiningagesinstagebasedmatrixmodels(Cochran&Ellner1992,Barotetal. 2002):

112 What matrix dimension to use

s1 1 E(τ1,s )=1+∑ 1p i=1 i

WhereE(τ1,s)isthetimeforindividualstofirstreachthestagesfromthefirststage (1cmDBHinourstudy),p iisthestasiselementinstagei. We then compared tree ages estimated from different matrices with those obtainedfromannualringdata.

Estimationofλandelasticity Asymptoticgrowthrates(λ)ofallmatrixmodelswerecalculatedusingthemethodof Caswell(2001).Theelasticityofλtochangesinvitalrates,orinmatrixelementsis theproportionalchangeinλduetoaproportional changeinvitalratesormatrix elements(deKroonetal.2000,Caswell2001).Wecalculatedtheelasticityofλto vitalratesandmatrixelementsusingtheapproachofCaswell(2001),andZuidema& Franco(2001) 140 210 Anna Calo 120 180 Ring Ring 100 10 cm 150 10 cm 5 cm 5 cm 80 2.5 cm 120 2.5 cm 60 1.25 cm 90 1.5 cm 1.25 cm 40 60 20 30

0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60

210 150 Dacry Pinus 180 Ages since 1 cm DBH (y) DBH cm 1 since Ages Ring 120 Ring 10 cm 150 10 cm 5 cm 5 cm 90 120 3 cm 2.5 cm 2.5 cm 1.5 cm 90 60 1.25 cm 1.25 cm 60 30 30 0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 DBH (cm) Figure 1. TreeagesobtainedfromannualringsandfrommatrixmodelsinrelationtoDBH. Shownaretreeagesobtainedfromannualrings(ring,mean±1.96SE)andagesobtained from matrices constructed using different category widths:from1.25–10cmDBH.All symbols (but not filled dots) denote significant difference between ages obtained from matricesandfromannualrings(ttest).

113 Chapter 5

Results

Resultsoftreeringanalysis Ringsofthefourstudyspecieswerefoundtobesufficientlyclearformarkingand counting.Ringwidthofallspeciessignificantlycorrelatedwithtotalannualrainfallin theyearduringwhichthatringwasformed(Pearson,n=34,p<0.01forAnnamocarya and Pinus ;n=34,p<0.05for Calocedrus ;n=28,p<0.05for Dacrydium ).Clarityof ringsproducedandthestrongcorrelationofringwidthwithannualrainfallindicated thattheringsformedbythefourspeciesindeedwereannualrings. Tree ages obtained from annual rings greatly differed within and between the species. The mean ages (± standard error) at 50 cm DBH (estimated from 1 cm DBH)ofAnnamocarya , Calocedrus , Dacrydium and Pinus were96.8(±4.4),153(±5.3), 139.4(±4.9)and137(±4.7)y,respectively(Fig.1). Matrixdimensionandageestimates Matrixbasedageestimatesstronglyincreasedwithincreasedmatrixsize.Whenwe increasedmatrixsizebydecreasingcategorywidthfrom10to1.25cm/category,age estimatessignificantlyincreased(Fig.1&Fig.2).Forinstance,wefoundonly83y for Annamocarya at60cmDBHwhenweappliedasmallmatrix10cmcategories,15 categories, while this increased to 135 y for a large matrix 1.25cm categories, 90 categories.Similarly,ageestimatesalsostronglyincreasedifweincreasedmatrixsize bychanging γ(Fig.2).Forinstance,whenweincreasedmatrixsizeof Annamocarya by increasing γfrom0.05(correspondingto22categories)to0.10(correspondingto38 categories),ageestimatesat60cmDBHwere101and128y,respectively(Fig.2).As all values of vital rates used in the matrices were based on regression data, the increase in age estimates therefore is not the result of sample size problems (cf. Vandermeer1978,Moloney1986). Theagesoftreesobtainedfromringseriesweresimilartothoseestimatedfrom largematrixsize.For Annamocarya ,ringagewasnotsignificantlydifferentfromthat estimatedfrom2.5cmcategorymatrix(correspondingwith48categories)(Fig.1& Fig.2).Similarly,for Calocedrus , Dacrydium and Pinus ,matricesconstructedfrom1.5, 1.5and3cmcategorywidths,respectively,werebestforestimatingtreeages,asthey werenotsignificantlydifferentfromthoseestimatedfromringseries(Fig.1&Fig. 2).

114 What matrix dimension to use

150 Anna 150 Anna

120 120 0.1 10 cm 90 90 0.07 5 cm 60 2.5 cm 60 0.05 30 1.25 cm 30 0 0 0 30 60 90 120 150 0 30 60 90 120 150

Calo Calo 200 200 10 cm 0.22

150 5 cm 150 0.11 2.5 cm 100 100 1.5 cm 0.05 1.25 cm 50 50 0 0 0 50 100 150 200 0 50 100 150 200

150 Dacry 150 Dacry

120 10 cm 120 0.28 5 cm 90 90 0.14 2.5 cm

Matrix age since 1 cm DBH (y) 0.1 60 1.5 cm 60 1.25 0.05 30 30 0 0 0 30 60 90 120 150 0 30 60 90 120 150

Pinus Pinus 200 200 10 cm 0.1 5 cm 150 150 0.05 3 cm 100 100 0.03 2.5 cm 50 1.25 50 0 0 0 50 100 150 200 0 50 100 150 200

Ring age since 1 cm DBH (y)

Figure 2. Treeagesestimatedfromdifferentmatrixdimensioninrelationtoagesobtained from annual rings. The left panels present tree ages estimated from matrices of varying category widths: 1.2510 cm DBH. The right panels present tree ages estimated from matrices constructed by varying the growth probability ( γ) between 0.03 and 0.28. All symbols (but not filled dots) denote significant difference between ages obtained from matricesandfromannualrings(pairedttest).

115 Chapter 5

Table 2. An example of age estimates obtained from different matrix sizes (using basis matricesconstructedfor Annamocarya ).Weestimatedagessince1cmDBHof60cmDBH trees.Weassumedthatthesurvivalratewasunchanged(0.982),andthegrowthratewas constant(0.5cm/y)forallcategoriesinthematrices. Categorywidth(cm)

0.5 0.7 1 2 3 4 5 10 20 30 NumberofCategories 120 86 60 30 20 15 12 6 3 2 Estimatedageoftrees 121 120 118 115 111 107 104 90 72 59 of60cmDBH(y) Inordertocheckwhethertheeffectofmatrixsizeonageestimateissensitive,we reconstructedmatricesforanimaginarytreespecies,andappliedthesetoestimatethe agesof60cmDBHtree(Table2).Westartedtocalculateagesfortreeslargerthan1 cmDBH.Tokeepthingssimple,weassumedthatthesurvivalrateswereequal(σ= 0.982)forallcategories,andthegrowthratewasalsoconstant(g=0.5cm/y).We constructedarangeofmatrices:fromthesmallestmatrix(withonlytwocategories above1cmDBH)tothelargestmatrix(120categoriescategorywidthof0.5cm) (Table2).UsingtheapproachofCochran&Ellner(1992)andBarotetal.(2002)to estimate tree ages, we found that the age estimates increased from 59 y for the smallest matrix to 121 y for the largest matrix (Table 2). Clearly, age estimates stronglyincreasedwiththeexpansionofmatrices,andthisincreaseinthissimplified modelcouldnotbeattributedtosizedependentpatternsofgrowthandsurvival.

Variationinlambda (λ) andelasticity Table 3. Comparison of population growth rates (λ) obtained for matrix models for different size for four tree species. Shown are differences in λ estimated from different matrixdimensions:10cmcategorywidthmatrices,5cmcategorywidthmatrices,2.5cm categorywidthmatrices,and1.25cmcategorywidthmatrices.

Matriceswithcategorywidth 10cm 5cm 2.5cm 5cm 0.004 ns 2.5cm 0.007 * 0.003ns 1.25cm 0.009* 0.005* 0.002ns Note:*p<0.05,ns:p>0.05(ANOVA)

116 What matrix dimension to use

1 10 cm Figure 3. Population 5 cm growth rate (λ) of four 0.99 2.5 cm 1.25 cm species estimated from different matrix 0.98 dimensions: 10 cm category width matrix, 0.97 5 cm category width matrix,2.5cmcategory 0.96 width matrix, and 1.25 cm category width 0.95 matrix. Annamocarya Calocedrus Dacrydium Pinus Table 4. Comparisonofelasticitiesofλtomatrixelementsestimatedfromdifferentmatrix dimensionforfourstudyspecies.Shownarecomparisonamongelasticitiesofλestimated from10cmcategorywidthmatrices,5cmcategorywidthmatrices,2.5cmcategorywidth matrices,and1.25cmcategorywidthmatrices. Matriceswithcategorywidth 10cm 5cm 2.5cm Progression elasticity 5cm 0.0182ns

2.5cm 0.0627* 0.0445ns 1.25cm 0.1463* 0.1281* 0.0835* Stasis elasticity 5cm 0.0165ns 2.5cm 0.0604* 0.0438ns 1.25cm 0.1429* 0.1264* 0.0826* Fecundity elasticity 5cm 0.0015ns 2.5cm 0.0023* 0.0007ns 1.25cm 0.0032* 0.0017* 0.0009ns Note:*p<0.05,nsp>0.05(ANOVA)

117 Chapter 5

The population growth rate (λ) gradually decreased with increased matrix size (Fig.3).Thechangeinλwaslargeifwesubstantiallychangedthematrixsize(Table 3).Forinstance,thegrowthratesobtainedfromthesmallestmatrix(constructedby largest category width – 10 cm/category), were 0.982, 0.972, 0.995 and 0.982 for Annamocarya , Calocedrus , Dacrydium and Pinus ,respectively.Thesenumbers,however, decreased to 0.970, 0.963, 0.991 and 0.971, if we applied the largest matrices (constructedbysmallestcategorywidth–1.25cm/category).

Progression d 0.35 0.05 0.3 0.04 0.25 0.2 0.03 0.15 0.02 0.1 0.01 0.05 0 0 Stasis e 1 1 0.95 0.8 0.9 0.6 0.85 0.4 0.8 0.75 0.2 0.7 0 Fecundity f 0.01 0.01

0.008 0.008

0.006 0.006

0.004 0.004

0.002 0.002 0 0 Anna Calo Dacr Pinu Anna Calo Dacr Pinu Figure 4. Elasticitiesofλtochangesinmatrixelements(leftpanels)andtovitalrates(right panels) calculated for matrices of different sizes. Shown are elasticities estimated from matricesconstructedwith10cmDBH(filledbars),5cmDBH(openbars),2.5cmDBH (verticallinebars),and1.25cmDBH(horizonlinebars). Matrixsizealsoaffectedthe elasticities ofλ.When we expanded matrices, the elasticity of λ to progression significantly increased(Table4,Fig.4).Withasmall matrix(10cm/category),theelasticitiesofλtoprogressionwere0.06,0.07,0.06and 0.05for Annamocarya , Calocedrus , Dacrydium and Pinus ,respectively.Whenweexpanded

118 What matrix dimension to use matricesbyreducingthecategorywidthto1.25cm/category,theelasticitiesofλto progressionstronglyincreasedto0.29,0.18,0.19and0.16for Annamocarya , Calocedrus , Dacrydium and Pinus ,respectively(Fig.4).Incontrast,astheelasticitiesofλtomatrix elementsarescaledtosumto1,theelasticitiesofλtostasiswerestronglydecreased withexpandedmatrices(Table4,Fig.4).Theelasticitiesofλtostasisof Annamocarya , Calocedrus , Dacrydium and Pinus were0.93,0.92,0.92and0.95,whenweappliedsmall matrix (10 cm/category), but these numbers were 0.71, 0.82, 0.80 and 0.84 if we appliedlargermatrix(1.25cm/category).Theelasticitiesoffecundityalsodecreased with increasing matrix dimension, but these absolute changes were very small in comparisonwiththoseofstasisandprogression(Fig.4). Matrix size did not affect much the elasticity of λ to vital rates. When we expandedmatrixsize,theelasticitiesofλtogrowth(vitalrate)increasedwhereasthe elasticityofλtoreproductiondecreased.However,wedidnotfindsubstantialchange inelasticityofλtogrowthwithexpandedmatrices(Fig.4).Wealsofoundthatthese changeswereverysmallincomparisonwiththoseobtained from matrix elements (progression and stasis) (Fig. 4). We found some changes in elasticity of λ to reproductionduetoachangeinmatrixdimension(Fig.4),buttheseabsolutechanges wereevensmallerthanthoseofgrowthrate(Fig.4).Ontheotherhand,wefound thattheelasticityvaluesforsurvivalalwaysequaled1despitechangesinmatrixsize (Fig. 4).This is because λ is a homogeneous functionofdegree1 ofsurvival(σ) (Franco&Silvertown2004).Theresultsrevealthatmatrixdimensionwasimportant fortheestimatesofelasticitiesofλtochangesinmatrixelements,butnotinvital rates.

Discussion Causesofvariationinageestimates Wefoundthatageestimateswerestronglyincreasedwhenexpandingthenumberof categoriesintransitionmatrices.Thiswasconsistentlyfoundforallfourspecies(Fig. 1&Fig.2).SimilarresultsonestimatingagesofBertholletia excelsa and Chlorocardium rodiei bymatrixmodelscanbefoundinZuidema(2000).Theimpactofmatrixsizeon ageestimatescanbeexplainedbyseveralreasons.Firstly,lowageestimatesforsmall matrices with wide categories can probably be explained as ages are strongly determinedbyindividualsthatbychancepassrapidlythroughthewholelifecycle. Forinstance,ifcategorieshaveawidthof10cmDBH,anindividualinthecategory 110cmDBH,couldbychancereachthecategory6070cmDBHwithin5years. Withwidecategories,manytreeswillstaylonginasizeclass,buttheseindividuals will experience a higher accumulative probability of death before reaching 60 cm DBH.Withnarrowcategories,moreslowgrowingindividualspassfromonecategory

119 Chapter 5 tothenext,whichmayhelptoincreasetheaverageageineachcategory,leadingtoan increaseinthetotallifespan.Secondly,theincreaseinageestimatesduetonarrow categoriesmaypartlybeaffectedbythedivergenceoftreeagesatacertainsizeclass, causedbystochasticeffects.Intheactualpopulation,thereisasimilarpotentialof divergenceinage,producedbydifferencesamongindividualsinannualgrowthrates andtheautocorrelationingrowth.Withthesmalleffectofstochasticityonnarrow categories,thevariationongrowthratewillthereforedecrease,leadingtoanincrease inageestimates. Consequencesofmatrixdimensionforλandelasticity Althoughthepopulationgrowthrates(λ)tendedtodecreasewiththeexpansionof matrices(Fig.3),thechangeswerenotsubstantialwithsmalltomediumchangesin matrixdimension,evenwhenwedoubledthematrixsizes(Table3).Ourresultsare consistentwithfindingsofsomepreviousstudies.Zuidema(2000)foundthatλfor Bertholletia excelsa and Chlorocardium rodiei wasnotstronglyaffectedbychangingmatrix size.Ramula&Lehtilä(2005)alsoindicatedthatλforwoodyspeciesdidnotchange muchwithadoublingofthematrixsize,from3x3to6x6. However,wealsofoundthat thechangeinλwaslarge when we substantially changedthematrixsize(Table3).Forinstance,ifweincreasedmatrixsizesbyfour times(bydecreasingtheinitialcategorywidthbyfourtimes–from10to2.5cm),λ was substantiallychanged(Table3).AccordingtoRamula&Lehtilä(2005),ifthe observed stage frequencies of populations are very close to the stable stage distribution(therighteigenvectorofthematrix,W),λdoesnotstronglychangedue to the changing in matrix size. In our case, however, the observed population structures of the study species were a bit far from the stable stage structures (PS indexfrom8595,Chapter3),whichmayleadtoachangeinλduetoachangein matrixsize.Inaddition,thechanginginmatrixsizemayalsocauseachangeinvital rates, leading to a difference in λ (Ramula & Lehtilä 2005). This is particularly sensitive for fast growing tree species with high value of reproduction because in largestagematrices,theytendtoreproducesoonerwithhighlyreproductivevalues comparedwiththatfromthenarrowstagematrices. Whenmatrixsizeincreased,theelasticityofλtostasisandfecunditydecreased, whereastheelasticityofλtoprogressionincreased(Table4,Fig.4).Similarresults canbefoundinaseriesofstudiesontheimpactofmatrixsizeonelasticitiesofλ (Enrightetal.1995,Ramula&Lehtilä2005).Thechangeinelasticitycorresponding withthechangeinmatrixdimensioncanbeexplainedby thefact thatduring the sameperiodoftime,moreindividualsfromonecategorymovingtothenextinlarge matrices than in small matrices. This may lead to an increase in elasticity of λ to progression in large matrices. At the same time stasis values in large matrices are smallandthustheirelasticitiesdecrease.

120 What matrix dimension to use

Incontrasttoelasticitiesofelements,thoseforvitalrates(growthandsurvival) didnotgreatlydependonmatrixdimension(Fig.4).Ontheotherhand,theelasticity of λ to reproduction decreased with increased matrix dimension (Fig. 4). Nevertheless, these changes were very small, so that they did not substantially contribute to the value of elasticity. Our results confirm the findings of Zuidema (2000)indicatingthattheelasticityofλtovitalratesisnotgreatlyaffectedbymatrix dimension.

Recommendationsforchoosingmatrixdimension Wefoundthatageestimatesweresensitivetomatrixsizes,andlargematricesyielded highages,whereassmallageswereobtainedfromsmallmatrices.Wealsofoundthat very large or very small matrices were not suitable for estimating tree ages as the estimatedagessignificantlydifferedfromthoseobtainedfromringseries(Fig1,Fig. 2).Fromourresults,matriceswithcategorywidthof1.54cmDBHyieldedbestage estimates(Fig1,Fig.2).Becausewedidnotusestandarderrorsforagesestimated from matrices when comparing those with ring ages, the suitable category width thereforecouldprobablybelargerabitthanthosewefound.Inshort,wesuggest thatverylargeorverysmallmatricesshouldnotbeusedforestimatingtreeages. Thepopulationgrowthratedidnotchangemuchifwedoubledmatrixsize.We alsofoundthatthematrixsize(categorywidthequals58timesofjuvenilegrowth rates) were suitable for age estimates, therefore we could then double the size of these matrices without substantial changes in λ. These matrices therefore are suggestedtobeappliedforestimatingλ.Fortheestimateofelasticity,ontheother hand,wearguethatweshouldusevitalratesinsteadofmatrixelements,astheseare lessaffectedbymatrixdimension. Acknowledgements WewouldliketothankRoelBrienenandMariaSchipperforhelpfuldiscussionon data analyses. Marinus Werger, Heinjo During and Feike Schieving are kindly acknowledged for valuable discussion and comments on a version draft of this Chapter.ThestudywasinpartfundedbyTropenbosInternationalVietnam,Utrecht UniversityandtheForestScienceInstituteofVietnam.

121 Chapter 5

References Barot,S.,J.Gignoux,andS.Legendre.2002.Stageclassifiedmatrixmodelsandage estimates.OIKOS 96 :5661. Benton,T.G.,andA.Grant.1999.Elasticityanalysisasanimportanttoolin evolutionaryandpopulationecology.TrendsinEcologyEvolution 14 :467471. Boucher,D.H.1997.Generalpatternsofagebystagedistributions.JournalofEcology 85 :235240. Brienen,R.2005.Treeringsinthetropics:astudyongrowthandagesofBolivianrain foresttrees.UtrechtUniversity,PROMABscientificseries10. Caswell,H.2001.MatrixPopulationModels.2 nd edition.SinauerAssociates,Sunderland, Massachusetts. Cochran,E.M.,andS.Ellner.1992.Simplemethodsforcalculatingagebasedlife historyparametersforstagestructuredpopulations.EcologicalMonographs 62: 345364. Contreras,C.,andT.Valverde.2002.Evaluationoftheconservationstatusofarare cactus( Mammillaria crucigera )throughtheanalysisofitspopulationdynamics. Journalofaridenvironments 51 :89102. Cook,E.R.,andR.L.Holmes.1985.UsersmanualforprogramARSTAN.Palisades, NY,LamontDohertyEarthObservatory. Enright,N.J.,M.Franco,NaJ.Silvertown.1995.Comparingplantlifehistories usingelasticityanalysis:theimportanceoflifespanandthenumberoflifecycle stages.Oecologia 104 :7984. Franco,M.,andJ.Silvertown.2004.Comparativedemographyofplantsbasedupon elasticitiesofvitalrates.Ecology 85: 531538. GrissinoMayer,H.R.2001.Evaluatingcrossdatingaccuracy:Amanualandtutorial forthecomputerprogramcofecha.Treeringbulletin57:205221. Heppell,S.S.,H.Caswell,andL.B.Crowder.2000.Lifehistoriesandelasticitypatterns: perturbationanalysisforspecieswithminimaldemographicdata.Ecology 81 : 654665. Kwit,C.,C.C.Horvitz,andW.J.Platt.2004.Conservingslowgrowing,longlived treespecies:InputfromthedemographyofarareunderstoryConifer, Taxus floridana .ConservationBiology 18: 432443. MartinezRamosM,ER.AlvarezBuylla.1998.Howoldaretropicalrainforesttrees? TrendsinPlantScience3:400405 Moloney,K.A.1986.Ageneralizedalgorithmfordeterminingcategorysize.Oecologia 69 :176180. Nghia,N.H.2000.SomethreatenedtreespeciesofVietnam.AgriculturalPublishing House,HaNoi. Ramula,S.,andK.Lehtilä.2005.Matrixdimensionalityindemographicanalysesof plants:whentousesmallermatrices?OIKOS 111 :563573. Ratsirarson,J.,J.A.SilanderJR,andA.F.Richard.1996.Conservationandmanagement ofathreatenedMadagascarpalmspecies, Neodypsis decaryi ,Jumelle.Conservation

122 What matrix dimension to use

Biology 10 :4052 Saether,B.E.,andO.Bakke.2000.Avianlifehistoryvariationandcontributionof demographictraitstothepopulationgrowthrate.Ecology 81 :642653. Silvertown,J.,M.Franco,I.Pisanty,andA.Mendoza.1993.Comparativeplant demography:relativeimportanceoflifecyclecomponentstothefiniterateof increaseinwoodyandherbaceousperennials.JournalofEcology 81 :465476. Thu,N.B.,andV.V.Can.1999.ChoDaitree( Annamocarya sinensis ).Agricultural PublishingHouse,HaNoi. Vandermeer,J.1978.Choosingcategorysizeinastageprojectionmatrix.Oecologia 32 :7984. Yearsley,J.M.,andD.Fletcher.2002.Ivalencerelationshipsbetweenstagestructured populationmodels.MathematicalBioscience 179 :131143. Zagt,R.J.1997.TreedemographyinthetropicalrainforestofGuyana.Utrecht University,Utrecht. Zeide,B.1993.AnalysisofGrowthEquation.ForestScience 39: 594616. Zuidema,P.A.2000.DemographyofexploitedtreespeciesintheBolivianAmazon. UtrechtUniversity,PROMABscientificseries2. Zuidema,P.A.,andM.Franco.2001.Integratingvitalratevariabilityintoperturbation analysis:anevaluationformatrixpopulationmodelsofsixplantspecies.Journal ofEcology 89: 9951005. Zuidema,P.A.,andR.G.A.Boot.2002.DemographyoftheBrazilnuttree( Bertholletia excelsa )intheBolivianAmazon:impactofseedextractiononrecruitmentand populationdynamics.JournalofTropicalEcology 18: 131.

123

124 Chapter 6

General discussion and summary

Forests and threatened tree species in Vietnam Affectedbyatropicalclimateandacomplexterrain,foresttypesofVietnamarevery diverse, ranging from tropical rainforest, mangrove forest and limestone forest to coniferandsubtropicalforests(Chapter2).Vietnamisalsoavenueofplantspecies thatmigratedfromthreedifferentflorasnearby,whichmakesthefloraofVietnam verydiverseinspecies(includingmorethan12000plantspecies)(Thin1997,Trung 1998). TheforestsofVietnamhaveseverelydeclinedinbothquantityandqualityover the last decades for many reasons, such as long wars, shifting cultivation, transformationofforestsandforestlandtoagriculturalfields,andoverexploitation (Chapter2).Thecoverofnaturalforestsforthewholecountrywasestimatedat43% in1945,butitwasreducedtoaround27%in1980(Hung2004).Recently,aftera great effort from the Government, the forest cover increased to 36 % in 2003, includingaround30%ofnaturalforestsand6%ofplantations(ForestDepartment 2004).However,thequalityofthenaturalforestsisgenerallylow,asaresultofalong periodofdegradation.Thequalityofplantationforestsisalsopoor,anditneedsto be improved both in species and silvicultural measures (Chapter 2). Clearly, great effortisrequiredinordertoimproveboththequantityandqualityofforests. SouthEastAsiaisfacingthehighestrateofdeforestation,which,ifnotstopped orsloweddown,wouldleadtothelossofthreequartersofforestcoverin100y,and up to 42% of its biodiversity (Sodhi et al. 2004). Being a country in the region, Vietnamalsohasalargenumberofspeciessufferingextinctionriskduetoasevere loss of forests over last decades. According to the World Conservation Union ‘IUCN’(2006),Vietnamcurrentlyhas261endangeredtreespecies,ofwhich148are critically endangered and vulnerable. Populations of threatened tree species have severelydeclinedinbothdensitiesandhabitats,andmanyofthemmainlydependon protectedareas(Bawa&Ashton1991).Furthermore,populationsofthesespeciesare oftensmalland/orisolated,andarelikelytobevulnerabletolocalextinctiondueto demographic and environmental stochasticity or lack of genetic variation (Menges 1992,Lande1993,Oostermeijeretal.2003). Chapter 6 11 65 y(%) riskin300 Extinction (y) 202 126 DBH 60cm Ageat 46 Ageat ction(y) reprodu 3300 Total 12750 45 186 0 remaining population 0.290.36 4450 41 0.47 37000.31 1400 38 56 122 182 0 93 0.46 (cm/y) DBH growth 0.53 2500 32 118 51 1 2 2 2 2 2 150 >100 Max (cm) 5070 5070 DBH >100 5060 1 2 2 2 2 35 2 (m) Max height as (m) 1520 1525 2530 1520 2025 1520 1520 2530 60 1520 1520 height Canopy :fromNghia2000. 2 Location (Coordinates) BaVi (21ºN105ºE) CucPhuong (21ºN105ºE) BachMa (16ºN107ºE) HangKia–Pa Co (20ºN104ºE) CucPhuong (21ºN105ºE) BaVi (21ºN105ºE)

Chun Kurz Wang (Roxb)

Species (family) Characteristicsofthestudyspeciesandstudyare :fromThuandCan(1999), 1

Podocarpaceae) Calocedrus macrolepis Calocedrus (Cupressaceae) (Dode)Leroy (Juglandaceae) Dacrydium elatum elatum Dacrydium ( exTsiang (Pinaceae) Pinus kwangtungensis Pinus Parashorea chinensis Hsie (Dipterocarpaceae) (Hemsl.)Oliv. (Magnoliaceae) Annamocarya sinensis Annamocarya WallexHook Manglietia fordiana Manglietia Note: Table 1.

126 General discussion and summary

Regarding the importance of forests and biodiversity for the human beings, Vietnam has early developed a system of protected areas throughout the country. Currently,Vietnamhas126protectedareas,coveringaround8%oftheareaofthe country (Forest Department 2004). In addition, forests covering important watershedsarealsoundertheprotectionregime.Thisincreasesthechancetoreserve threatenedtreespecies,aswellasthevegetationcoverintheseareas. However, in order to protect and effectively conserve threatened species, the protectedareasofVietnamstillneedtobeimprovedbothinquantityandquality. Theproportionofprotectedareasinthecountryareaisstilllowerthantheminimum raterecommendedbyIUCN(1997).Furthermore,theareaofseveralprotectedareas issmall(Chapter2),whichisnoteffectiveforconservationofthreatenedspecies.It is therefore important for Vietnam not only to increase the number of protected areas,butalsotoexpandtheirsizes. Inaddition,inmostprotectedareas,basicstudiesontaxonomy,biodiversityand demographyofendangeredspeciesarestillfew.Clearly,greateffortshouldbepaidto gather information that assists in effectively protecting and conserving threatened species.Thisdissertationwasthereforecarriedoutwiththegoalofcontributingto theinformationbasisforconservationofthreatenedtreespecies. Demography of six threatened tree species In order to conserve threatened tree species, we need to understand the natural dynamics of their populations. Is there natural recruitment in populations? If yes, whether that recruitment is sufficient for replacing adult trees? Are populations growingordeclining?Whatisthemostimportantlife stageforthe persistenceof populations? To answer these questions, we carried out a twoyear field study to collect demographicdataforsixthreatenedtreespeciesinfourprotectedareas(Table1).We quantifiedthevitalrates(survival,growthandfecundity)forthesixspecies,andused thesetoestimatematrixelements(stasis,growthandfecundity),whichwereusedto construct (deterministic) matrix models (Chapter 3). We used the output of the matrix models that indicates the population growth rate (λ) to project the future prospectsofthespecies.Whenλismorethan1,thepopulationisgrowing,butifλis lessthan1,itisdeclining.Ontheotherhand,themodeloutputalsoindicatesthe importanceoflifestagestothepopulationgrowthrate(elasticityanalysis),whichis usedtosuggesteffectivestrategiesforconservation(Benton&Grant1999,Contreras &Valverde2002,Zuidema&Boot2002,Kwitetal.2003). Weusedtwowaystoprojectthefutureprospectsforour species (Chapter3). First,weusedtheasymptoticpopulationgrowthrate(λ).Forfourspecies: Dacrydium , Manglietia , Parashorea and Pinus , we found no evidence of increasing or declining population. The populations of these species are therefore expected to be stable

127 Chapter 6 overtime. Nevertheless, our models projected the populations of Annamocarya and Calocedrus weredecliningovertime.Second,wecombinedinformationonrecruitment andagestocheckwhetherthespeciescanproducesufficientseedlingsinorderto replace adult trees. For example for Manglietia , we found that only 0.1% of new seedlings would survive to reproductive size. That means an adult tree should produce1000seedlingsinitsentirereproductivelifetoreplaceitself.Ifanadulttree produceslessthanoneseedlingperyear,asweobserved,ittakesover1000y.This reproductivetimeismuchmorethanthemaximumageestimatedforthespecies.In a similar way, we calculated the ability to produce sufficient seedlings for other species. We found that only Calocedrus , Dacrydium and Parashorea could sufficiently produceseedlings.Incontrast,theotherspecies(Annamocarya , Manglietia and Pinus ) didnotproduceeffectiverecruitmentforthereplacementofadulttrees. Theoutputofthematrixmodelsalsoindicatedthatamongvitalrates,survivalof individuals, particularly for juvenile and adult trees, was most important for the population growth rate. Growth and fecundity, on the other hand, were less importantforthepersistenceofthespecies(Chapter3). In short, by applying population matrix models in our demographic study, we projectedthatthepopulationsof Annamocaryaand Calocedrus weredeclining,butnot fortheotherspecies.Wealsofoundthat Annamocarya , Manglietia and Pinus couldnot produceenoughseedlingstoreplaceadulttrees.Inaddition,thesurvivalwasfound tobemostimportantforthepersistenceofpopulations.Theseresultsimportantly contributetothebasisinformationformakinganeffectiveconservationstrategyfor thethreatenedtreespecies.

Using stochastic matrix models to analyse the demography of threatened tree species Populationgrowthratesobtainedfromstandardmatrixmodelsareinterpretedwith theassumptionthatvitalratesdonotchangeovertime.Clearly,thisisnotrealisticas populationsareaffectedwithtimebyunpredictablefactorssuchasdemographicand environmental stochasticity (Menges & QuintanaAscencio 2003, Munzbergova 2006).Demographicstochasticityisthevariationinpopulationdynamicscausedby independent stochastic contribution from each individual of the population to the nextgeneration(Engenetal.1998,Menges2000).Environmentalstochasticity,on the other hand, is related to variation in demographic parameters (e.g. survival, growth and reproduction) due to variation in the environment (Menges 2000). Demographic and environmental stochasticity can severely change the population growthrate,leadingtochangesintheextinctionriskofpopulations,particularlyin thecaseof threatenedspecies(Menges1998).Furthermore, stochastic phenomena such as drought, flood, hurricane or wildfire could destroy populations, even of redundantspecies(Menges2000).Itisthereforenotpossibletoreliablyprojectthe

128 General discussion and summary longfutureprospectsforpopulationsandthetimeforwhichtheygoextinct,ifusing only matrix models. However, we can deal with this problem by using stochastic matrixmodelsasthoseallowtoprojectpopulationgrowthratesundertheinfluence ofstochasticity. We applied stochastic matrix models to investigate the impact of stochastic factors on population development and extinction risk for the six threatened tree species. We included both environmental and demographic stochasticity in the stochastic matrix models. For the variation affected by the environment, we estimated variation in vital rates (survival, growth, reproduction, and fecundity), whichweobtainedandquantifiedfromthetwoyearfieldstudy.Thisvariationmay reflectsmallscalespatialvariation(e.g.inlightandsoilconditions),sizedifferences and uncertainty in parameter estimation (Chapter 4). We also included temporal variationingrowthbasedonringindicesoftrees(Chapter5). Our models showed that the environmental stochasticity decreases population sizesandincreasesextinctionrisksforallstudyspecies.Comparedwiththetemporal variation,thevariationamongindividuals(orspatialvariation)wasmoreimportant forthepopulationdevelopment,andfortheriskofextinction.Ontheotherhand, demographicstochasticity,ingeneral,decreasedthetimetoextinctionforthespecies, butbychancemightalsodecreasetheextinctionriskforsomepopulations(Chapter 4). In addition, we also found that the risk of extinction was more sensitive to changesinthemeanofvitalrates,particularlythesurvival,thantochangesintheir variation (Chapter 4). This suggests that more attention should be paid to the estimateofthisvitalrateinordertogetmorereliableresultsfrompopulationviability analysis. Fromtheresultsobtainedfromthestochasticmatrixmodels,weprojectedthat Dacrydium and Parashoea did not face extinction within 300 y, even though the populationof Parashorea mightdropbelow100individualsafter150y.However,the populationsoftheotherspecies( Annamocarya , Calocedrus , Manglietia and Pinus ) were projectedtodropbelow100individualsafter8090y.Moreover,theextinctionrisk forAnnamocarya , Calocedrus , Manglietia and Pinus wasprojectedtobe65%,11%,51% and93%,respectively,within300y(Table1,Chapter4). Populationviabilityanalysis(PVA)iswidelyusedtoestimatepopulationdynamics andtheextinctionriskforthreatenedspecies,andalsosuggesteffectiveconservation actions(Boyce1992,Kaye&Pyke2003,Boyceetal.2006).Bytakingintoaccount thecombinedimpactsofunpredictablefactorssuchasdemographic,environmental and genetic stochasticity and deterministic elements such as habitat loss, overexploitation and fragmentation, PVA provides a stochastic projection of population dynamics over time (Chapman et al. 2001, Beissinger & McCullough 2002).Inourstudy,theresultsobtainedfromthestochasticmodelsarealsomore reliable than those obtained from the deterministic models. That is because the

129 Chapter 6 population is analyzed under the influence of environmental and demographic stochasticity. The population growth rate is therefore not stable, but fluctuates followingthemagnitudeofvariation.Asaresult,fromstochasticmatrixmodels,but not from deterministic matrix models, we can reliably predict population size and extinctionriskforthestudyspeciesoveralongperiodoftime(e.g.over300y). However, using stochastic matrix models also means that we need more data fromdemographicandenvironmentalstochasticity,whichisoftentimeconsuming and expensive. Furthermore, parameterization is more complex than that in deterministic models, and constructing stochastic matrix models also is more complicatedthandoingsowithdeterministicmatrixmodels.Therefore,basedonthe purposesofthestudy,onecouldchoosethemostsuitableapproachtogeteffective results. Future prospects and conservation measures for threatened tree species CombiningtheresultsobtainedfromChapter3&4,wecandistinguishthreegroups ofspecieswithdifferentfutureprospects.First,thefutureprospectsof Dacrydium and Parashorea lookgood.Thepopulationgrowthratesuggestsstablepopulationsizeover time(Chapter3).Inaddition,therecruitmentofthetwospecieswassufficientforthe replacementoflargetrees(Chapter3).Furthermore,remainingpopulationsofthese two species are not expected go extinct within a long period of time (in 300 y, Chapter 4). Second, for Manglietia and Pinus , our models did not find significant declinesintheirpopulationsizesovertime,butseedlingrecruitmentappearstobe insufficienttoreplaceadulttrees(Chapter3).Thefutureprospectsofthesespecies thereforemaynotbegoodduetolackingrecruitment.Thisisconsistentwiththe outputofthepopulationviabilityanalysis(PVA,Chapter4)thatpopulationsofthese twospecieshaveahighchance(5193%)todisappearwithin300y.Third,thefuture prospects of Calocedrus and Annamocarya areworrisomeastheprojectedpopulation growthratesindicatesthepopulationdeclines(Chapter3).Inaddition,wefoundthat thepopulationsizesofthetwospeciescoulddropbelow100individualsinjust80 110y,andthespeciescouldfaceextinctionwithin125y(Chapter4).Inshort,by combiningtheresultsobtainedfromdeterministicandstochasticmatrixmodels,we projectthatfutureprospectsof Dacrydium and Parashorea aregood,whilethatforthe otherspeciesarenot. Our results suggest that successful protection and conservation of the six threatenedtreespeciesrequirevariousconservationmeasures.First,forallspecies, strict protection of populations, particularly for juvenile and adult trees should be implemented, as these stages are most important for the maintenance of their populations(Chapter3).Anyhumandisturbanceandloggingwithinandifpossible neartheprotectedareasshouldbeforbidden.Ontheotherhand,greateffortshould

130 General discussion and summary bepaidtoreversepopulationdeclineintopopulationincrementforthefourspecies, whichareprojectedtofaceextinction( Annamocarya , Calocedrus , Manglietia and Pinus , Chapter4).Wearguethatgrowthofseedlingsandjuvenilesmaybeimprovedusing silvicultural measures such as controlled liberation, which in turn can probably increasethegrowthrateofthepopulations.Thoughresultsfromelasticityanalyses suggestthattheeffectofsuchmeasuresislimitedincomparisontomaximizingtree survival, growth of seedlings and trees can probably be altered more than tree survival,andwithlessdifficulty(Batistaetal.1998,Zuidema&Boot2002,Kwitetal. 2004, Chapter 3). Another important conservation measure is enrichment of populations with seedlings produced under controlled conditions. If germination success under controlled conditions is higher than that under natural conditions, seedscanbecollectedfromthesamenaturalpopulationswhicharethenenriched withseedlings.Thisenrichmentisparticularlyimportantforthespecies( Annamocarya , Manglietia and Pinus ),whichwerefoundtoproduceinsufficientnumbersofseedlings for the maintenance of their populations (Chapter 3). Compared to survival rate, recruitmentcontributeslesstothepopulationgrowthrate(elasticityanalysis,Chapter 3),butimprovedrecruitmentcanprobablybeimplementedwithmuchlessdifficulty. Finally,forspecieswithsmallpopulationssuchas Calocedrus and Pinus (Chapter3& 4), the expansion of their habitat area through nature restoration would be an effectiveconservationmeasure. Towhatextentaretheresultsof the studyforthe six species relevant to the hundredsofotherthreatenedtreespeciesinVietnam?Withsomecaution,ourresults canbeappliedtootherthreatenedtreespecieswithsimilarlifehistoryandsimilar status of the remaining populations. As population dynamics of longlived tree species are to large extent governed in a similar way (see comparison of elasticity patterns in Chapter 3), some general guidelines for conservation threatened tree species can be formulated. First, because small and fragmented habitats increase extinctionrisksforplantspecies,itisnecessarytoincreasethesizeofprotectedareas, and to stop activities causing fragmentation within these areas. Second, strict protection, particularly for juvenile and adult trees, should be implemented in protectedareas,meaningthatanyhumandisturbanceandloggingshouldbestrictly forbidden. Third, the improvement of seedling and juvenile growth (e.g. by controlled libration) can also help to improve population growth rates. Fourth, enrichmentisalsoagoodconservationmeasureincasegerminationofseedsunder controlledconditionsisbetterthanundernaturalconditions.Fifth,forthethreatened treespeciesthatpresentlyremaininsmalland/orisolatedpopulations,expansionof their habitat area through natural restoration would be a crucial conservation measure. Declinesinpopulationsizesofthreatenedtreespeciesmaybeslowastheyare longlived. Consequently, there appears to be more time for taking conservation

131 Chapter 6 measuresforthesespecies,butslowdynamicsalso implythatittakeslongbefore suchmeasuresresultinpopulationincrease.Wetherefore argue that taking action before populations have declined to critical levels is important, as well as close monitoringofpopulationsizeandseedlingrecruitment. Acknowledgements IwouldliketothankMarinusWerger,PieterZuidemaandNguyenHoangNghiafor theirhelpfulcommentsonthechapter.

References Bawa,K.S.,andP.S.Ashton.1991.Conservationofraretreesintropicalrainforests:a geneticperspective.Pages6271inD.A.FalkandK.E.Holsinger,editors. Geneticsandconservationofrareplants.OxfordUniversityPress,Oxford. Batista,W.B.,W.J.Platt,andR.E.Macchiavelli.1998.Demographyofashadetolerant tree( Fagus grandifolia )inahurricanedisturbedforest.Ecology 79: 3853. Benton,T.G.,andA.Grant.1999.Elasticityanalysisasanimportanttoolinevolutionary andpopulationecology.TrendsinEcologyandEvolution 14 :467471. Beissinger,S.R.,andD.R.McCullough.2002.PopulationViabilityAnalysis.University ofChicagoPress,Chicago,USA. Boyce,M.S.1992.Populationviabilityanalysis.AnnualReviewofEcologyand Systematics 23 :481506. Boyce,M.S.,C.V.Haridas,C.T.Lee,andtheNCEASStochasticDemography WorkingGroup.2006.Demographyinanincreasinglyvariableworld.Trends inEcologyandEvolution 21 :141148. Caswell,H.2001.MatrixPopulationModels.2 nd edition.SinauerAssociates,Sunderland, Massachusetts. *Chan,L.T.,T.Ty,N.H.Tu,H.Nhung,D.T.Phuong,andT.T.Van.1999.Some basischaractersofVietnamflora.ScienceandTechnicsPublishingHouse.Ha Noi. Chapman,A.P.,B.W.Brook,T.H.CluttonBrock,B.T.Grenfell,andR.Frankham. 2001.Populationviabilityanalysesonacyclingpopulation:acautionarytale. BiologicalConservation 97 :6169. Contreras,C.,andT.Valverde.2002.Evaluationoftheconservationstatusofarare cactus( Mammillaria crucigera )throughtheanalysisofitspopulationdynamics. JournalofAridEnvironments 51 (1):89101. Engen,S.,Ø.Bakke,andA.Islam.1998.Demographicandenvironmentalstochasticity –conceptsanddefinitions.Biometrics 54 :840846. *ForestDepartment.2004.Developmentofforestryintheperiodof20062010.Journal ofAgricultureandRuralDevelopment 12 :1317.

132 General discussion and summary

*Hung,T.V.2004.Forestryresearchforthecomingtime.JournalofAgricultureand RuralDevelopment 12: 2629. Kaye,T.N.,andD.A.Pyke.2003.Theeffectofstochastictechniqueonestimatesof populationviabilityfromtransitionmatrixmodels.Ecology 84 :14641476. Kwit,C.,C.C.Horvitz,andW.J.Platt.2004.Conservingslowgrowing,longlivedtree species:InputfromthedemographyofarareunderstoryConifer, Taxus floridana . ConservationBiology 18: 432443. Lande,R.1993.Risksofpopulationextinctionfromdemographicandenvironmental stochasticityandrandomcatastrophes.TheAmericanNaturalist 142: 911927. *Lap,V.T.1999.NaturalGeographyofVietnam.EducationPublishingHouse.HaNoi. Menges,E.S.1992.Stochasticmodelingofextinctioninplantpopulation.Pages253 276inP.L.FiedlerandS.K.Jain,editors.ConservationBiology:theTheoryand PracticeofNatureConservation,PresentationandManagement.Chapmanand Hall,NewYork. Menges,E.S.1998.Evaluatingextinctionrisksinplantpopulations.Pages5965inP.L. FiedlerandP.M.Kareiva,editors.Conservationbiologyforthecomingdecade. ChapmanandHall,NewYork,USA. Menges,E.S.2000.Populationviabilityanalysesinplants:challengesandopportunities. TrendsinEcology&Evolution 15: 5156. Menges,E.S.,andP.F.QuintanaAscencio.2003.Modelingtheeffectsofdisturbance, spatialvariationandenvironmentalheterogeneityonpopulationviabilityof plants.Pages288311inC.A.BrighamandM.W.Schwartz,editors.Population viabilityinplants.SpringerVerlag,Heidelberg,Germany. *MinistryofScience,TechnologyandEnvironment(MSTE).1996.RedDataBookof Vietnam.Volume2–Plant.ScienceandTechnicsPublishingHouse,HaNoi. Munzbergova,Z.2006.Effectofpopulationsizeontheprospectofspeciessurvival. FoliaGeobotanica 41 :137150. Nghia,N.H.2000.SomethreatenedtreespeciesofVietnam.AgriculturalPublishing House,HaNoi. Oostermeijer,J.G.B.,S.H.Luijten,andJ.C.M.DenNijs.2003.Intergrating demographicandgeneticapproachesinplantconservation.Biological Conservation 113: 389398. Sodhi,N.S.,L.P.Koh.,B.W.Brook,andP.K.L.Ng.2004.SoutheastAsian biodiversity:animpendingdisaster.TrendsinEcologyandEvolution 19: 654 660. *Thin,N.N.1997.Manualforbiodiversityresearch.AgriculturalPublishingHouse.Ha Noi. *Thu,N.B.,andV.V.Can.1999.ChoDaitree( Annamocarya sinensis ).Agricultural PublishingHouse,HaNoi. *Trung,T.V.1998.EcosystemsoftropicalforestsinVietnam.ScienceandTechnics PublishingHouse.HaNoi. WorldConservationUnion(IUCN).1997.TheIUCNRedListofThreatenedPlants. Gland,Switzerland.

133 Chapter 6

WorldConservationUnion(IUCN).2006.TheIUCNRedListofThreatenedSpecies. vailablefrom http://www.redlist.org/info/tables/table6a (accessAugust2006). Zuidema,P.A.,andR.G.A.Boot.2002.DemographyoftheBrazilnuttree( Bertholletia xcelsa )intheBolivianAmazon:impactofseedextractiononrecruitmentand opulationdynamics.JournalofTropicalEcology 18: 131.

Note: *InitialtitlesinVietnameseweretranslatedintoEnglish.

134

135

136 Samenvatting Bossen en bedreigde boomsoorten in Vietnam ErzijnveelverschillendebostypeninVietnam,omdathetlandeentropischklimaatheeft en topografisch zeer gevariëerd is. Er zijn tropische regenbossen, mangrovebossen, bossen op kalksteen, naaldbossen en subtropische bossen (Hoofdstuk 2). Vietnam ligt ookopeenkruispuntvanmigratiewegenvandrieverschillendeflora’sendatdraagter toebijdatdefloravanVietnamheelrijkis(meerdan12000soorten). DeafgelopendecenniazijndebosseninVietnamdoorallerleioorzakensterkinomvang enkwaliteitverminderd(Hoofdstuk2).In1945werdgeschatdat45%vanhetlandmet natuurlijkebossenbedektwas,maarin1980wasdatnogmaar27%.Sindsdienheeftde regeringveelinherbebossingsactiviteitengeïnvesteerdenin2003wasdebosbedekking weertot36%toegenomen,waarvan6%plantagebossen.Dekwaliteitvanaldezebossen is echter nogal laag en behoeft verbetering in termen van soortensamenstelling en bosbeheer(Hoofdstuk2). De snelheid van ontbossing is wereldwijd het hoogst in ZuidOost Azië: het huidige tempo zou er toe leiden dat over 100 jaar driekwart van het bosareaal is verdwenen tezamenmet42%vandehuidigebiodiversiteit(Sodhietal.2004).InVietnamlopen ookveelboomsoortenhetrisicouittestervenalsgevolgvandebosvernietiging.Volgens delijstvandeInternationalUnionfortheConservationofNature(2006)teltVietnamop het ogenblik 261 bedreigde boomsoorten, waarvan er 148 sterk bedreigd zijn. De populatiesvandezesoortenzijnsterkachteruitgegaan,geschiktegroeiplaatsenvoorveel soortenzijnvrijwelalleennoginbeschermdegebiedentevindenen,omdatdepopulaties kleinengeïsoleerdzijnkunnenzelokaal,alsgevolgvandemografischetoevalsprocesses ofmilieufluctuaties,ofdoorgebrekaangenetischevariatie,gemakkelijkuitsterven. Vietnamheefteennetwerkvan126beschermdegebieden,verspreidoverhetheleland. Tezamen beslaan ze 8% van het land, maar dat is volgens IUCNnormen te weinig. Daarenboven zijn bossen in belangrijke afwateringsgebieden ook beschermd. Maar de oppervlaktevanveelbeschermdegebiedenisklein,zodathetbelangrijkisominVietnam niet alleen het beschermde areaal uit te breiden, maar ook de gebieden zelf groter te maken.Erisnogweinigonderzoekgedaannaardebiodiversiteitinbeschermdegebieden en naar de demografie van bedreigde soorten. Deze informatie is echter nodig om een effectieve bescherming mogelijk te maken. Het onderzoek dat in deze dissertatie beschrevenwordt,wileendergelijkebijdrageleveren.

Samenvatting

Demografie van zes bedreigde boomsoorten Om bedreigde boomsoorten te kunnen beschermen moeten we allereerst verschillende aspectenvandepopultiedynamicavandiesoortenkennen,bijvoorbeeldofernatuurlijke verjongingoptreedtenofdievoldoendeisomdevolwassenbomentevervangen,ofde populatiesgroeienofafnemen,enwatdemeestkritischelevensstadiaindelevenscyclus zijn. Om dit soort vragen te beantwoorden heb ik gedurende twee jaren van veldwerk demografische data van zes bedreigde boomsoorten in vier beschermde gebieden verzameld. Ik heb de ‘vital rates’ (overleving, groei en vruchtbaarheid) voor de populatiesvandezessoortenberekendendiegebruiktomdeelementen(stasis,groeien vruchtbaarheid) van de matrixmodellen te kwantificeren (Hoofdstuk 3). De matrixmodellenleverdenmedegeschattegroeisnelheden(λ)vandepopulatiesendieheb ikgebruiktomdetoekomstigeontwikkelingenvandepopulatiestetaxeren.Alsλgroter isdan1groeitdepopulatie,maaralsλkleinerisdan1neemtdepopulatieaf.Uitde modelberekeningen blijkt ook in welke mate de verschillende levensstadia de groeisnelheidvandepopulatiebeïnvloeden(‘elasticiteitsanalyse’).Opgronddaarvanis hetmogelijkomeffectievestrategieënvoordebeschermingvandesoortenteformuleren. Ikhebtweemethodesgebruiktomdetoekomstigeontwikkelingvandezessoorteninte schatten(Hoofdstuk3).Eersthebikgroeisnelheidvandepopulatieberekendvoorde populatiesvanallezessoorten.Bijviersoorten,Dacrydium , Manglietia , Parashorea en Pinus , vond ik geen aanwijzingen voor een af of toenemende populatiegrootte. De populaties van deze soorten lijken dus stabiel. Maar de populatiegrootte van Annamocarya en Calocedrus lijkenaftenemen.Vervolgensgebruikteikdegegevens over verjonging en leeftijden om na te gaan of de soorten voldoende jonge planten producerenomdeoudetevervangen.Bij Manglietia vondikbijvoorbeeld,datdekans dat een kiemplant overleeft tot reproducerende boom slechts 0,1 % bedraagt. Dat betekent dat een volwassen boom tijdens zijn gehele reproductieve levensstadium dus 1000kiemplantenzoumoetproducerenomzichzelftevervangen.Maaralszo’nboom, zoalsikwaarnam,nogminderdan1kiemplantperjaarlevert,danheefthijgemiddeld dus1000jaarnodigomzichzelftevervangen.Ditisveellangerdandemaximumleeftijd van zo’n boom. Ik vond dat alleen Calocedrus , Dacrydium en Parashorea voldoende kiemplantenproduceerden.Deanderedriesoortenproduceerden er niet genoeg om de volwassenbomentevervangen. Opgrondvandematrixmodellenkonikookconcluderendatdegroeivanpopulatieshet sterkstwordtbepaalddoordeoverlevingvanjongeenvolwassenbomen.Andere'vital

138 Samenvatting rates' (boomgroei en vruchtbaarheid) waren minder kritiek voor het voortbestaan van populatiesvandezesoorten(Hoofdstuk3). Dus uit de matrixmodellen bleek dat de populaties van Annamocarya en Calocedrus afnamen, en dat Annamocarya , Manglietia en Pinus niet genoeg kiemplanten produceerdenomdeoudebomentevervangen.Eenadequatebeschermingsstrategievoor desoortenmoetmetdezekennisrekeninghouden. Het gebruik van stochastische matrixmodellen voor de analyse van de demografie van bedreigde boomsoorten De groeisnelheden van populaties zijn over lange tijdsintervallen niet noodzakelijk constant. Op onvoorspelbare wijze kunnen ze door demografische of milieugebeurtenissen stochastisch beïnvloed worden. Demografische stochasticiteit betreft de variatie in populatiedynamiek, die door de onafhankelijke bijdrage van elk individuindepopulatieveroorzaaktwordt.Milieustochasticiteitbetreftonvoorspelbare variatieindepopulatiedynamicaalsgevolgvanfluctuaties in het milieu, bijvoorbeeld door stormen, brand of droge jaren. Deze twee stochastische invloeden kunnen in belangrijkematedegroeisnelhedenvanpopulatiesbeïnvloedenenbijbedreigdesoorten het risico van uitsterven veranderen. Daarom kan men op grond van deterministische matrixmodelberekeningen(diegeenrekeninghoudenmetstochasticiteit)delangetermijn toekomst van een soort eigenlijk niet op een betrouwbare manier taxeren. Maar het gebruikvanstochastischematrixmodellenbiedthieruitkomst. Ikgebruiktedezemethodeomhetrisicovanuitstervenvoordezesonderzochtesoorten te berekenen, waarbij ik zowel demografische als milieustochasticiteit in aanmerking nam.Alseenmaatvoordevariatieinhetmilieugebruikteikdevariatieinde‘vitalrates’ (overleving,groei,reproductieenvruchtbaarheid)dieikopgrondvandegegevensvan twee jaar veldwerk had verkregen. Deze variatie tussen bomen weerspiegelt de klienschalige ruimtelijke variatie in milieuomstandigheden, grootteverschillen, en schattingsonnauwkeurighedenHoofdstuk4).Ikhebooknogdeboomgroeivariatieinde tijdmeegenomen,zoalsdieblijktuitjaarringonderzoek. Mijn modelberekeningen lieten zien dat milieustochasticiteit leidt tot een afname van berekende populatiegrootte en een hogere uitsterfrisico. Dit was het geval voor alle soorten. Individuele variatie (ofwel ruimtelijke variatie) was in grotere mate verantwoordelijkvoorditeffectdanvariatieindetijd. Demografischestochasticiteitverkorttede gemiddeldetijdtotdatpopulatiesuitstierven, maarleiddeaandeanderekantooktoteenverlaagdekansopuitsterven(Hoofdstuk4).Ik

139 Samenvatting vond ook dat het uitsterfrisico gevoeliger was voor veranderingen in de gemiddelde waardenvande‘vitalrates’danvoorveranderingenindevariatievandie'vitalrates'.Dit was vooral het geval voor de factor overleving. Hieruit blijkt dat men die factor zo nauwkeurig mogelijk moet bepalen om betrouwbare schattingen van de levensvatbaarheidvanpopulatiesteverkrijgen. Mijnresultatenuitdestochastischemodellenlietenzien,dat Dacrydium en Parashorea nietbinnen300jaarzoudenuitsterven,zelfsalzoudepopulatiegroottevanParashorea binnen 150 jaar tot minder 100 individuen afnemen. Naar verwachting zullen de populaties van de andere soorten echter in 8090 jaar tot minder dan 100 individuen teruglopen.Deuitsterfrisico’svan Annamocarya , Calocedrus , Manglietia en Pinus zijn respectievelijk65,11,51en93%(Hoofdstuk4). Stochastische modelberekeningen, die overigens algemeen gebruikt worden in zogenaamde ‘population viability analyses’, geven ook in mijn geval veel betrouwbaarder resulaten dan deterministische modelberekeningen, juist omdat de verschillendevormenvanstochasticiteitindeberekeningenmeegenomenworden.Maar gebruikvandezemethodebetekentookdatmenmeergegevensoverdemografischeen milieustochasticiteit moet verzamelen en dat is tijdrovend en duur. Ook zijn deze modellencomplexerdandeterministischemodellen. Vooruitzichten en beschermingsmaatregelen voor de bedreigde soorten Op grond van de resultaten in de Hoofdstukken 3 en 4 kunnen we 3 soortengroepen onderscheiden wat betreft hun vooruitzichten. De vooruitzichten voor Dacrydium en Parashorea zijn goed. De groeisnelheden van hun populaties zijn stabiel en de verjongingisvoldoendeomoudebomentevervangen.Ookzullennaarverwachtingde bestaandepopulatiesvandezetweesoortenbinnendekomende300jaarnietuitsterven. Voor Manglietia en Pinus heb ik geen afnemende populatiegroeisnelheden gevonden, maarhunverjonginglijktonvoldoende.Door gebrek aan verjonging lijkt de toekomst vandepopulatiesvandezetweesoortennietgoed.endepopulatieshebben51–93% kans om binnen de komende 300 jaar uit te sterven. De toekomst van Calocedrus en Annamocarya is ronduit zorgelijk, want hun populatiegroeisnelheden nemen af, hun populatieskunnenbinnen80–110jaartotminderdan100individuengekrompenzijnen zekunnennaarverwachtingbeidebinnen125jaaruitgestorvenzijn.Degecombineerde resultaten van de deterministische en de stochastische modelberekeningen voorspellen dusgeengoedsvoordezetweesoorten. Mijnresultatensuggererendaterverschillendebeschermingsmaatregelennodigzijnvoor dezezessoorten.Opdeeersteplaatsmoetenpopulatiesstriktbeschermdworden,met

140 Samenvatting name de jonge en volwassen bomen (zie Hoofdstuk 3). Verstoring door menselijk gebruik en houtkap in, en indien mogelijk, ook nabij deze populaties moet worden verboden.Ookmoetmenbijdeviersoortendiemetuitstervenbedreigdwordenproberen deafnamevandepopulatiegroottenomtezettenineentoename.Ikdenkdatdegroeivan kiemplanten en jonge boompjes door silviculturele maatregelen, zoals ‘vrijstelling’, bevorderd kan worden en daardoor kan de groeisnelheid van de populatie toenemen. Hoewel mijn elasticiteitsanalysen suggereren dat het effect van zulke maatregelen beperkterisdandatvanhetmaximaliserenvandeoverlevingvanbomen,komthetmij voordatmendegroeivankiemplantenenbomengemakkelijkerkandoentoenemendan deoverlevingvanbomen. Nogeenbelangrijkebeschermingsmaatregelishetverrijkenvandebestaandepopulaties metkiemplantendieondergecontroleerdeomstandighedenzijngeproduceerd.Alsmen beterekiemingkrijgtondergecontroleerdedan ondernatuurlijkeomstandighedenmoet menindenatuurlijkepopulatieszadenverzamelen,kiemplantenproducerenendieinde populatiesinbrengen.Ditisvooralbelangrijkvoor Annamocarya , Manglietia en Pinus , die immers te weinig kiemplanten blijken te produceren (Hoofdstuk 3). Hoewel verjonging minder aan de groeisnelheid van de populatie bleek bij te dragen dan een hogere overlevingskans, is het waarschijnlijk veel gemakkelijker om de verjonging te laten toenemen. Tenslotte zouden het groeiareaal van de kleine populaties van Calocedrus en Pinus vergrootmoetenwordendoornatuurherstel. Inhoeverrezijnderesultatenvoordezezessoortenvanbelangvoordehonderdenandere bedreigde boomsoorten van Vietnam? Met de nodige voorzichtigheid kunnen mijn resultatenvooranderesoortenmeteenovereenkomstigelevenswijzeenovereenkomstige populatiedynamica gebruikt worden. Omdat de populatiedynamica van langlevende boomsoorten toch grotendeels door dezelfde factoren wordt aangestuurd, kan ik een aantal algemene richtlijnen formuleren. Ten eerste, omdat kleine en gefragmenteerde standplaatsenhetrisicoopuitstervendoentoenemen,ishetnodigdatdeoppervlaktevan beschermde gebieden wordt vergroot en dat activiteiten die fragmentatie veroorzaken worden tegengegaan. Ten tweede, in beschermde gebieden zullen populaties van bedreigde soorten strikt moeten worden beschermd, met name de jonge en volwassen bomen.Dithoudtindatverstoringdoorhoutkapenanderemenselijkeactiviteitenstrikt moet worden tegengegaan. Ten derde, door 'vrijstelling' van kiemplanten en jonge boompjes kan hun groei worden verhoogd, hetgeen bijdraagt aan een hogere groeisnelheid van populaties. Ten vierde, ‘verrijking’ is een goede beschermingsmaatregelalskiemingondergecontroleerdeomstandighedensuccesrijkeris danondernatuurlijkeomstandigheden.Tenvijfde,dehabitatsvandebedreigdesoorten metkleineengeïsoleerdepopulatiesmoetendoornatuurbouwgrotergemaaktworden.

141 Samenvatting

Deafnamevanpopulatiegroottenvanbedreigdeboomsoortenis,omdatbomendoorgaans nogal lang leven, een langzaam proces. Daarom lijkt het alsof er genoeg tijd is om beschermende maatregelen te nemen. Maar zulke maatregelen hebben ook pas op de langeduureffect.Daarompleitikervoormaatregelentenemenvoordatdepopulatiestot kritischlageaantallenindividuenzijngekrompen.Enikadviseerookpopulatiegrootten enverjongingnauwkeurigtemonitoren.

142

143

144 Tómttcácktqunghiêncuchính Lunvănphântíchñngtháiqunthcasáuloàicâybñedotrênbavưnqucgia vàmtkhubotnthiênnhiêncaVitNam,vicácmctiêunghiêncu: 1. Phântíchñngtháiqunthcasáuloàicâybñedo; 2. Dñoántrinvngcasáuloàicâydatrênhintrngvàñngtháiqunthca loài; 3. Khuynnghcácbinphápbotnchocácloài; 4. ðánhgiánhhưngcakíchthưcmatrnqunthticácktquthuñưct môhình. Lunvănñưctrìnhbàytrongsáuchương.Chương1làphngiithiuchung.Chương2 trìnhbàymtsñcñimvrngVitNam,ñadngsinhhcvàcácloàicâybñedo tuytchng.Chương3trìnhbàyktqunghiêncuvñngtháiqunthcasáuloài cây.Chương4phântíchkhnăngtntivàpháttrincaqunthsáuloài.Chương5 xemxétnhhưngcakíchthưcmatrnqunthticácktquthuñưctmôhình. Chương6trìnhbàytómlưccácktqunghiêncuvàtholunchung.Cácktqu nghiêncuchínhcaLunvănñưctómttnhưsau: RngVitNamvàcácloàicâybñedo Donhhưngbichñkhíhunhitñigiómùavàmtñahìnhphctp,VitNam cócácloihìnhrngphongphú,trngmưanhitñi,rngngpmn,rngnúiñávôi tirngcnnhitñivàcâylákim(Chương2).VitNamcũngshumththcvt rtñadngvloài,ưctínhtrên12000loài(Thìn1997,Trng1998).ðólàdoVitNam nmmtvtríñalýñcbit,lànơitptrungcacácloàithcvtbnñavàcácloài dicưtbahthcvtxungquanh:hthcvtHimalayaYunnamGuizhouphíatây bc,hthcvtIndiaMyanmarphíatây,vàhthcvtMalaysiaIndonesianphía namvàñôngnam(Chương2). RngVitNamñãbsuygimnghiêmtrngcvslưngvàchtlưngtrongvàithp kvaqua.ðchephcarngtnhiêntrêncnưcbgimt43%năm1945xung cònkhong27%vàonăm1980(Hùng2004).Nguyênnhânchínhcavicsuythoáivà mtrnglàdochintranh,dovicchuynhoárngvàñtrngsangsnxutnông nghip,dokhaitháclmdngvàducanh(Chương2).Nhngnămgnñây,saunhng cgngrtlncaChínhphtrongcácchươngtrìnhtrng,phchivàbovrng,ñ chephcarngVitNamñãtănglên36%vàonăm2003,baogmkhong30%rng Tómttcácktqunghiêncu tnhiênvà6%rngtrng(CcLâmNghip2004).Tuynhiên,dobnhhưngbiquá trìnhsuythoáidài,chtlưngrngtnhiêncaVitNamnhìnchunglàthp.Dintích rngtrngñãtănglênñángktrongnhngnămqua,nhưngchtlưngcũngvncòn thp,cnñưcbsungthêmvthànhphnloàicũngnhưcntiptcpháttrinvàhoàn thincácbinphápkthutlâmsinhvàcácloihìnhrngtrng(Chương2). ðôngNamÁñangphiñimtvitlmtrngcaonhtthgii.Nunnphárng khôngñưcngănchn,khuvccóthsmtñibaphntưdintíchrngcùngvi khong40%sloàihincótrongvòng100nămti(Sodhietal.2004).Làmtnưc nmtrongkhuvc,VitNamcũngcónhiuloàicâybdedotuytchngdobnh hưngcaquátrìnhsuythoáivàmtrngtrongnhngnămqua.TheoHiphibotn thgii(IUCN2006),VitNamhincókhong260loàicâybñedotrongñó150loài ñanghocsbnguycptuytchng.Qunthcacácloàicâybñedobsuygim mnhcvmtñvàkhuphânb.Stnticacácloàinàyphthucrtnhiuvào cáckhurngñưcbov(Bawa&Ashton1991).Mtkhác,doqunthcácloàibñe dothưngnhvàbchiactnênrtdbtnthươngvàcũngdbñimtvihim hotuytchngdosthayñibtthưngcamôitrưngvàssuythoáitchínhqun th(Menges1992,Lande1993,Oostermeijeretal.2003). Nhnbitrõtmquantrngcarngvàñadngsinhhcñiviñisngconnguivà spháttrincañtnưc,VitNamñãsmxâydngmththngcáckhurngñc dngvàbotntrênkhpcnưc.Hinti,VitNamcó126khurngñcdngvàbo tn,chimkhong8%dintíchcnưc(CcPháttrinLâmnghip2004).Thêmvào ñó,rngvàthmthcvtmtslưuvcsôngquantrngcũngñưcbovvàphát trin.ðiunàygópphntăngcơhibotnchocácloàicâybñedocũngnhưñadng sinhhckhuvc. Tuynhiên,ñbotnmtcáchhiuqucácloàicâybñedo,cáckhurngñcdngvà botncnñưccithinhơnvcslưngvàchtlưng.Tldintíchcáckhurng nàysovitngdintíchlãnhthcònthphơnsovimcchungdoIUCN(1997)quy ñnh.Mtkhác,dintíchmtskhubotncònkhánh(Chương2)nêncóthlàm gimtínhnăngbotncakhu.Dovy,trongnhngnămti,ñtnưckhôngnhngcn xâydngthêmcáckhubotnmimàvicmrngcáckhubotnnhcũnglàmt nhimvquantrng. Trongrtnhiucáckhurngñcdngvàbotn,cácnghiêncucơbnvphânloi thcvt,ñadngsinhhcvàñngtháiqunthcácloàibñedocònkháhnch.Do vy,mtcôngvicrtcnthitlàtinhànhcácnghiênculàmcơschovicxâydng cáckhochbotn.NghiêncuñưctrìnhbàytrongLunvănnàythchinmtphn

146 Tómttcácktqunghiêncu mctiêutrên,nhmcungcpthôngtingópphnxâydngchinlưcbotnhiuqu cácloàicâybñedo. ðngtháiqunthcacácloàicâybñedo Munxâydngmtkhochbotnhiuquchocácloàicâybñedo,chúngtacn hiurõñngtháiqunthcachúng.Cácqunthcókhnăngtáisinhtnhiênkhông, vànucóthìslưngcâyconsinhracóñápngñưcchostntivàpháttrinca qunthkhông?Qunthcaloàiñangpháttrinhayñangsuythoái?Giaiñonnào trongquátrìnhsinhtrưngvàpháttrincacáccáthlàquantrngnhtchostnti vàpháttrincaqunth? ðlàmsángtcáccâuhitrên,chúngtôitinhànhcácnghiêncuvñngtháiqunth casáuloàicâybñedotrênbavưnqucgiavàmtkhubotnthiênnhiênVit Nam:ChòñãivàChòchVưnqucgiaCúcPhương,BáchxanhvàMBaVìVưn qucgiaBaVì,TùngBchMãVưnqucgiaBchMã,vàThôngPàCòKhubo tnHangKia–PàCò.Ticácôñnhvñưcthitlptrênkhuphânbcacácloàicây nghiêncu,cácchtiêuvsinhtrưng,tlsng,khnăngtáisinhcaloàiñưcthu thp.Cácsliusauñóñưcxlý,tínhtoánvàsdngñxâydngcácmôhìnhma trnqunth(môhìnhkhôngbinñi)chocácloàicâynghiêncu(Chương3).Mtkt ququantrngthuñưctmôhìnhlàtcñtăngtrưngcaqunth(λ),ñưcsdng ñdñoántươnglaichoqunth.Nuλlnhơn1,qunthñangsinhtrưngvàphát trintt.Ngưcli,nuλnhhơn1,qunthñangbsuythoáivàcóthdnñnb tuytchng.Mtktqucóýnghĩakháccamôhìnhlàchochúngtabittmquan trngcacácgiaiñontrongchukỳsngcacáccáthñivistntivàpháttrin caqunth.Davàocácktquthuñưctmôhình,cácchinlưcbotnhiuqu ñưcxâydng(Benton&Grant1999,Contreras&Valverde2002, Zuidema & Boot 2002,Kwitetal.2003). Chúng tôi kt hp hai phương pháp ñ d ñoán trin vng cho các loài nghiên cu (Chương3).Thnht,chúngtôixemxéttcñtăngtrưngcaqunth(λ)thuñưct môhìnhmatrnxâydngchocácloài.ðivibnloàiTùngBchMã,MBaVì,Chò chvàThôngPàCò,chúngtôikhôngtìmthyduhiuchngtrngqunthcacác loàiñangbsuygimrõrt.Ngưcli,ktqutmôhìnhchothyrngqunthca ChòñãivàBáchxanhñangbsuygim.SlưngcáthtrongqunthcaChòñãivà Báchxanhñangbgimdntheothigian.Thhai,chúngtôixemxétkhnăngtáisinh caqunthvàtuisinhsncacáccáthñtínhtoánxemslưngcâyconsinhracó ñápngñưcchostntivàpháttrincaqunthhaykhông.Víd,ñiviloàiM BaVì,chcókhong0.1%cáccâyconsinhrañưcưctínhcóthtntitilúctrưng thành.ðiunàycónghĩalàmtcâytlúctrưngthànhtikhichtcnphisinhra1000 câyconñcóthtthaythbnthânnó.Numtcâytrưngthànhchsinhñưctrung

147 Tómttcácktqunghiêncu bình1câycontrong1nămthìphicnti1000nămmicóñscâyconñthayth. ðiunàylàkhôngthvìtuicaMBaVìcaonhtmàchúngtôitínhtoánñưclà khong200tui(Chương5).Bngcáchtươngt,chúngtôitínhtoánkhnăngtáisinh cacaqunthchocácloàicònli.ChúngtôithyrngchcóTùngBchMã,Bách xanhvàChòchlàcóthñápngñưcyêucunày.Tuynhiên,baloàicâycònli(Chò ñãi,MBaVìvàThôngPàCò)scâyconsinhrakhôngññthaythcáccâytrưng thànhcaqunth. Ktquthuñưctmôhìnhcũngchrarngtlsngcacáccáth,ñcbitlàñivi câynhvàcâytrưngthành,làquantrngnhtchostntivàpháttrincaqunth. Tuynhiên,cácñctínhkháccathlàtcñsinhtrưngvàtáisinhcacáccáthcócó tácñngíthơntiquátrìnhsinhtrưngvàpháttrincaqunth(Chương3). Tómli,bngvicngdngmôhìnhmatrntrongnghiêncuñngtháiqunthca cácloàicâybñedo,chúngtôidñoánrngqunthcaChòñãivàBáchxanhñang bsuygim.Vicácloàicònli,chúngtôikhôngtìmthyduhiurõrtvssuygim cacácqunth.Tuynhiên,khixétvkhnăngtáisinhcacácloài,chúngtôithyrng slưngcâyconsinhracaChòñãi,MBaVìvàThôngPàCòkhôngñápngñưc chostntivàpháttrincaqunth.Ktquthuñưctmôhìnhcũngchothyrng tlsngcacáccáthmàñcbitlàñivicâynhvàcâytrưngthànhlàquantrng nhtñivistntivàpháttrincaqunth.Nhngktqunàylàmcơschovic xâydngcácphươngánbotnchocácloàicâybñedo. Sdngmôhìnhmatrnbinñitrongphântíchñngtháiqunthcác loàicâybñedo Môhìnhmatrnqunthtrìnhbàytrênñưcngdngcùngvigithitlàtcñsinh trưng,tlsngvàkhnăngtáisinhcacáccáthtrongqunthkhôngthayñitheo thigian.Hinnhiên,githitnàyskhônghplýchonhngdñoánvmttươnglai dàicaqunth,vìqunthluônbnhhưngbinhngbinñngkhôngthñoán trưc ca môi trưng t nhiên và ca chính qun th (Menges & QuintanaAscencio 2003,Munzbergova2006).Binñng(khôngthñoántrưc)caqunthlànhngbin ñivñngtháicaqunthgâyrabinhngbinñiñclpcatngcáthlàmnh hưngtikíchthưcqunthtươnglai(Engenetal.1998,Menges2000).Bêncnhñó, binñng(khôngthñoántrưc)camôitrưngcũngsgâyranhngbinñi(không thñoántrưc)vtlsng,tcñsinhtrưngvàkhnăngtáisinhcacáccáth,và doñónhhưngtiquátrìnhsinhtrưngvàtnticaqunth(Menges2000).Nhng binñngcaqunthvàmôitrưngcóthlàmnhhưngmãnhlittitcñtăng trưngcaqunthvànguycơtuytchngcacácloài,ñcbitlàcácloàibñedo (Menges1998).Hơnthna,cácbinñngmãnhlitcatnhiênnhưhnhán,lũlt, giôngbãohaylarngcóthlàmtnhinghiêmtrnghoclàmtiêuhutoànbqun

148 Tómttcácktqunghiêncu thcaloài,kcñivicácloàigiucáth(Menges2000).Dovy,skhóñưarad ñoánchínhxácchotươnglaicaloàinuchsdngmôhìnhmatrnqunthkhông binñi.Tuynhiên,chúngtascócâutrlichínhxáchơnnungdngmôhìnhma trnqunththayñi,vìcácmôhìnhnàychophépxácñnhtcñtăngtrưngcaqun thdưitácñngcasbinñicamôitrưngvàcachínhqunth. Chúngtôingdngmôhìnhmatrnqunthbinñiñxemxétnhhưngcacác binñngcamôitrưngvàcaqunthtistntivàpháttrincasáuloàicây nghiêncu.Vinhngbinñicaqunthdotácñngcamôitrưng,chúngtôiưc lưngsbinñngvtlsng,sinhtrưngvàtáisinhcaqunthtcácsliuthu thpngoàithcña.Nhngbinñngnàyphnánhnhngtácñngkhácnhaugâyrabi vtríkhônggiankhácnhau(vídkhácnhauvñiukinánhsáng,ñiukinñtñt) giacáccáth(Chương4).Chúngtôicũngxemxétnhhưngcathigianticácbin ñngcaqunththôngquansbinñngvsinhtrưngñưngkínhthuñưctcác vòngnămcacây(Chương5)vàsbinñngvslưngcâycontáisinhgiacácnăm (Chương3). Ktquthuñưctmôhìnhchrarngnhngbinñngcamôitrưnglàmgims lưngcáthcaqunth,doñólàmtăngnguycơtuytchngcaqunth.Sosánhvi binñngdothigiangâyra,binñngvkhônggian(binñnggiacáccáth)có nhhưnglntissuythoáicaqunth.Binñngcachínhqunthcũnggâynh hưngtistntivàpháttrincaqunth.Tuyrngbinñngnàykhôngnhhưng nhiuticácqunthln,nhưngnólàmgimthigiandntituytchngñivicác qunthnh.Tuynhiên,loibinñngnàycũngcóthlàmgimnguycơtuytchng chomtsqunth(maymn)docơhiñưctăngscáthtrongqunth(Chương4). Chúngtôicũngthyrngnguycơtuytchngcaqunthbnhhưngrtlnbicác thams:tlsng(ñcbitlàñivicáccâynhvàcâytrưngthành),tcñsinh trưngvàtáisinhcacáccáth.Tuynhiên,sbinñngcacácthamsnàynhhưng íthơntinguycơtuytchngcaloài(Chương4).ðiunàychothychúngtacnquan tâmhơntivicthuthpvàtínhtoáncácthams,ñcbitlàtlsngcacáccáthñ cóththuñưcnhngktquchínhxáchơntmôhìnhmatrnqunthbinñi. TktquthuñưcchúngtôidñoánrngTùngBchMãvàChòchkhôngbñimt vinguycơtuytchngtrongvòng300nămti,tuyrngqunthChòchcóthb gimxungdưi100cáthtrongvòngkhong150nămti.Tuynhiên,tươnglaicacác loàicònlikhôngcónhiuhahn,vìcácqunthñưcdñoánsgimxungdưi 100cáthtrongkhong100nămti.ðcbit,mcñtuytchngñiviChòñãi, Báchxanh,MBaVìvàThôngPàCòñưcdñoánlnlưtlà65%,11%,51%và93% trongkhongthigian300nămti(Chương4).

149 Tómttcácktqunghiêncu

Phântíchkhnăngtntivàpháttrincaqunth(PVA)ñưcsdngrngrãitrên thgiiññánhgiáñngtháiqunthvàhimhotuytchngcacácloàibñedo,và cũnglàcơsñxâydngnhngkhochbotnhiuqu(Boyce1992,Kaye&Pyke 2003,Boyceetal.2006).Bngcáchxemxétnhhưngtnghpcacácbinñng (khôngñoánñưc)camôitrưngvàqunthvàcácyutxácñnhnhưmtnơicưtrú, chiactnơicưtrúhocbkhaitháclmdng,PVAcungcpnhngthôngtincóñtin cycaovtươnglaicaloài(Chapmanetal.2001,Beissinger &McCullough2002). Trongnghiêncucachúngtôi,ktquthuñưctmôhìnhmatrnbinñicóñtin cycaohơnsoviktquthuñưctmôhìnhmatrnbìnhthưng(khôngbinñi). ðólàvìñngtháicaqunthñưcphântíchdưistácñngcanhngbinñngca môitrưngvàqunth.Tcñtăngtrưngcaqunthdoñókhôngbtbintheothi gianmàthayñituỳtheomcñtácñngtcácyutmôitrưngvàqunth.Doñó, tmôhìnhmatrnqunthbinñichúngtacóthdñoánkíchthưccaqunthvà himhotuytchngñiviloàichomttươnglaidài(vídchothigian300năm ti). Tuynhiên,nusdngmôhìnhmatrnqunthbinñng,chúngtacnphicósliu vnhhưngcasbinñicamôitrưngvàcachínhqunthtiñngtháiqun th.Victhuthpcácloisliunàythưngtnnhiuthigianvàcôngsc.Hơnth na,victínhtoáncácthamsñxâydngmôhìnhqunbinñicũngphctphơn nhiusovikhixâydngmôhìnhbìnhthưng(btbin).Dovy,tuỳvàomctiêuñt rachonghiêncumàchnloimôhìnhhplý. Tươnglaicacácloàicâybñedovàcácbinphápbotn Davàoktquthuñưc,chúngtôicóthphâncácloàinghiêncuthànhbanhómvi trinvngkhácnhau.Thnht,vihailoàiTùngBchMãvàChòch,ktqutmô hìnhchothytươnglaicahailoàikháttdotcñtăngtrưngqunthkhánñnhvà khnăngtáisinhcahailoàicóthñápngñưcchostntivàpháttrincaqun th(Chương3).Thêmvàoñó,hailoàiñưcdñoánkhôngbñedobinguycơtuyt chngtrongtươnglai300nămti(Chương4).Thhai,vihailoàiMBaVìvàThông PàCò,tuychúngtôikhôngthyduhiuvssuygimrõrtcaqunthhailoài nhưngchaiñukhôngñmbokhnăngtáisinhñthaythchocâytrưngthành.Do vy, trin vng ca hai loài cây này không ñưc ttnhưTùngBchMãvàChòch (Chương3).ðiunàycũngphùhpviktquthuñưctChương4chothylàhai loàicóthphiñimtvikhnăngtuytchngrtcao(5193%)trongvòng300năm ti.Thba,trinvngcahailoàiChòñãivàBáchxanhkhôngttvìqunthhailoài ñưcdñoánñangbsuygim(Chương3).Bêncnhñó,qunthcahailoàiñưcd ñoánsgimxungdưi100cáthtrongkhongthigiant80110nămti,vàhailoài cóthñimtvinguycơtuytchngchtrongvòng125nămti(Chương4).Tómli, cácktquthuñưctcácmôhìnhqunchothyrngtrinvngcaTùngBchMãvà

150 Tómttcácktqunghiêncu

Chòchlàkhátt.Ngưcli,tươnglaicacácloàikháckhôngñưcttvìqunthca cácloàinàyñangbsuygimvàcóthñimtvinguycơtuytchngtrongtươnglai. Tktqunghiêncutrênchothycncóbinpháptnghpñbotnhiuqucác loàicâybñedo.Thnht,vittccácloàicnphibovnghiêmngtcáccáth caqunth,ñcbitlàñivinhngcâynhvàcâytrưngthànhvìchúngñóngvaitrò rtquantrngñivistntivàpháttrincaqunth(Chương3).Dovy,cn nghiêmcmtritñhotñngkhaitháchoccáchotñnggâyratácñngtiêuccti qunthcaloài.Vibnloài(Chòñãi,Báchxanh,MBaVìvàThôngPàCò)bd ñoánlàñimtvinguycơtuytchng(Chương4),cnápdngthêmcácbinpháp huhiuñlàmtăngtcñtăngtrưngcaqunth.Chúngtôithyrngviccithin tcñsinhtrưngcacâyconvàcâynhbngcácgiipháplâmsinhnhưgiiphóng khônggiansinhdưngsgópphnlàmtăngtcñtăngtrưngcaqunth.Mcdù nhhưngcasinhtrưngcáthtistnticaqunthlànhhơnsovivictăng tlsngcacáth,nhưngcóththchindhơnrtnhiusovivictăngtlsng chocáth(Batistaetal.1998,Zuidema&Boot2002,Kwitetal.2004,Chapter3).Mt binphápbotnquantrngnalàviclàmgiàuqunthbngcâyconñưcgieoto tivưnươm.Nuquátrìnhhìnhthànhcâyconthtñttlthpdưitánrng,ngun htnàycóthñưcthuthpvàdùngñgieotocâyconvưnươm,vàsauñónhng câyconnàyñưcñưatrlilàmgiàuqunthcaloài.Phươngphápnàyrtquantrng ñiviChòñãi,MBaVìvàThôngPàCò,nhngloàimàkhnăngtáisinhkhôngñ ñápngñthaythchocáccâytrưngthành(Chương3).Sovivictăngtlsngca cáth,viclàmgiàurngcótácdngíthơntitcñtăngtrưngcaqunthnhưng viclàmnàycũngdthchinhơnnhiusoviviclàmtăngtlsngcacáccáth. Cuicùng,vicácloàicóqunthnhnhưBáchxanhvàThôngPàCò(Chương3&4), vicmrngkhuphânbcaloàithôngquacácbinphápphchitnhiênslàmt binphápbotnhiuqu. Vimtslưuý,cácktqunghiêncuchosáuloàicóthápdngchocácloàicâyb ñedokhácvilchspháttrinqunthtươngñngvàcósgingnhauvhintrng cácqunthhincó.Vìñngtháiqunthcacácloàicâycóvòngñidàicónhiuñc ñimgingnhau(Chương3),chúngtôikhuynnghmtsgiiphápbotnchungcho cácloàicâybñedo.Thnht,vìcáckhubotnnh,bchiactstăngnguycơtuyt chngchocácloài,dovycnphimrngcáckhunàycũngnhưnghiêmcmcáchot ñnggâychiactkhu.Thhai,cnbovnghiêmngtcáccáthcaqunth,ñcbit lànhngcâynhvàcâytrưngthành.Doñó,nhnghotñngkhaitháccũngnhưcác hotñngmàcónhhưngtiêucctispháttrincaqunthphiñưcnghiêmcm tritñ.Thba,cithinkhnăngsinhtrưngcacâyconvàcâynhcaqunth(ví dbng cách m rng không gian sinh dưng) cũng góp phn làm tăng tc ñ tăng trưngcaqunth.Thtư,làmgiàurngcũnglàmtgiiphápbotnhuhiutrong

151 Tómttcácktqunghiêncu trưnghpmàquátrìnhhìnhthànhcâyconvistrgiúpcaconngưitthơnnhiu sovitnhiên.Thnăm,vicácloàicâycóqunthnhvà/hocbchiact,vicm rngkhuphânbloàithôngquavicphchitnhiênlàmtphươngánbotnhiu qu. Donhngloàicâybñedocóvòngñidài,ssuygimcaqunthvàthigiandn tituytchngcachúngcóthkéodài.ðiunàydntivicchúngtacónhiuthi gianñtinhànhcácgiiphápbotnchocácloài,nhưngnócũngcónghĩalàcncó thigianñcácgiiphápbotnpháthuytácdng.Dovy,chúngtôikhuynnghcn thchincácgiiphápbotnhiuqutrưckhiqunthsuygimtimcbáoñng, vàcũngrtquantrngtrongvicgiámsátsbinñngvkíchthưccũngnhưkhnăng táisinhcaqunth.

Tàiliuthamkho (ReferencesinChapter6)

152

153

154 Acknowledgements

The study in this thesis is a part of a joint research project among Tropenbos International, Utrecht University and the Forest Science Institute of Vietnam. During my study, many people have generously supported me in many different ways. I would like to mention some people here in a limited space, but I sincerely thank all of them.

In Vietnam, firstly, I like to thank my promotor Nguyen Hoang Nghia for giving me the opportunity to be involved in this research project. To you, also many thanks for providing me useful discussion and comments on both my field work and my manuscript. I also want to thank Le Van Binh, Vu Van Can, Tran Quang Chuc, Le Phuong Trieu, Dinh Duc Huu, Nguyen Van The, Le Van Thu, Nguyen Cong Vinh, Le Van Duong, Nguyen Van Ban, Pham Quang Vinh and others for their indispensable assistance for the field work and helpful information and discussion. I am grateful to the managers and the staff of the four protected areas for permission and help during my study.

In the Netherlands, at first, I want to thank my promotor Marinus Werger and my co-promotor Pieter Zuidema. I greatly appreciate your effort to get me admitted as a PhD student at the Plant Ecology and Biodiversity Group, Utrecht University and under your supervision. Your valuable advice and guidance, helpful discussion and correction on my manuscript have helped me not only to complete my thesis, but also to improve my academic knowledge in general and particularly that on demography. Thank you very much for your great help and all things you have done for me. I am also grateful to Heinjo During, Feike Schieving, Niels Anten and Maria Schipper for the fruitful discussion and advice, to Sander for computer software assistance, and to Marjolein for preparing maps and the thesis cover. During my stay at Utrecht University for more than one year, I have learnt a lot of scientific and daily life knowledge and received a lot of enthusiastic help and encouragement from many people from the Plant Ecology and Biodiversity Group. I want to thank all of you, Peter, Yusuke, Galia, Yun, Roel, Maria, Onno, Hans, Olaf, Roy, Paddy, Marijke, Sylvia, Danae, Binh, Juliana, Toshihiro, Sonja, Henri and Betty. Many thanks also to Petra, Helen, Piet, Bertus, Henny, Anita and many other people for their help in many administrative affairs.

Finally, I am grateful to my family for the support and the interest in my study. I am also much indebted with Cao Anh Lieu, who is at home to look after our children, and to encourage me during my study and for all my life.

155

156 Curriculum vitae

P.D. Chien was born in 1967 in Thai Binh, Vietnam. In 1989, he attended the Forestry University of Vietnam in Xuan Mai, Ha Tay. During this study he specialized in ecology and silviculture. In 1994, he graduated from the university with a Bachelor degree of Science. In the same year, he started working for the Forest Science Institute of Vietnam as a forestry researcher. He carried out several research projects related to ecology and silviculture in Vinh Phuc province and some other areas of the country. In1999, he continued his study at the University of Queensland, where he specially focused on ecology. He obtained his Master degree of Natural Resource Studies at the University of Queensland in 2000. From 2001 onwards, he continued working at the Forest Science Institute of Vietnam and participated in several research projects. One of these was his PhD research project that formed part of the Tropenbos International – Vietnam Programme in cooperation with Utrecht University and the Forest Science Institute of Vietnam. In 2003 he was admitted as a PhD student at the Plant Ecology and Biodiversity Group, Faculty of Science, Utrecht University. He investigated the demography of threatened tree species in Vietnam.

157