Immobilized Microalgae for Nutrient Recovery from Source Separated Human Urine“

Total Page:16

File Type:pdf, Size:1020Kb

Immobilized Microalgae for Nutrient Recovery from Source Separated Human Urine“ Immobilized Microalgae for Nutrient Recovery from Source Separated Human Urine Inaugural – Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Bastian Piltz aus Engelskirchen Köln 2016 Immobilized Microalgae for Nutrient Recovery from Source Separated Human Urine Inaugural – Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Bastian Piltz aus Engelskirchen Köln 2016 Berichterstatter (Gutachter): Prof Dr. Michael Melkonian Prof. Dr. Stanislav Kopriva Tag der mündlichen Prüfung: 26.08.2016 Summary Shortages in supply of nutrients and freshwater for a growing human population are critical global issues. Traditional centralized sewage treatment can prevent eutrophication and provide sanitation, but is neither efficient nor sustainable in terms of water and resources. Source separation of household wastes, combined with decentralized resource recovery, presents a novel approach to solve these issues. Urine contains within 1 % of household waste water up to 80 % of the nitrogen (N) and 50 % of the phosphorus (P). Since microalgae are efficient at nutrient uptake, growing these organisms in urine might be a promising technology to concomitantly clean urine and produce valuable biomass containing the major plant nutrients. While state-of-the-art suspension systems for algal cultivation have mayor shortcomings in their application, immobilized cultivation on Porous Substrate Photobioreactors (PSBRs) might be a feasible alternative. The aim of this study was to develop a robust process for nutrient recovery from minimally diluted human urine using microalgae on PSBRs. The green alga Desmodesmus abundans strain CCAC 3496 was chosen for its good growth, after screening 96 algal strains derived from urine-specific isolations and culture collections. Treatment of urine, 1:1 diluted with tap water and without addition of nutrients, was performed at a light intensity of 600 µmol photons -2 -1 - -1 m s with 2.5 % CO2 and at pH 6.5. A growth rate of 7.2 g dry weight m ² day and removal efficiencies for N and P of 13.1 % and 94.1 %, respectively, were determined. Pre-treatment of urine with activated carbon was found to eliminate possible detrimental effects of pharmaceuticals. These results provide a basis for further development of the technology at pilot-scale. If found to be safe in terms human and environmental health, the biomass produced from three persons could provide the P for annual production of 31 kg wheat grain and 16 kg soybean, covering the caloric demand in food for almost one month of the year for such a household. In combination with other technologies, PSBRs could thus be applied in a decentralized resource recovery system, contributing to locally close the link between sanitation and food production. I Zusammenfassung Die Verknappung von Nährstoffen und Frischwasser für eine wachsende menschliche Bevölkerung sind globale Probleme von großer Tragweite. Traditionelle zentralisierte Abwasserreinigungssysteme können zwar Eutrophierung verhindern und Siedlungshygiene erreichen, sind aber in Bezug auf Wasserverbrauch und Ressourcen weder effizient noch nachhaltig. Die getrennte Sammlung von Haushaltsabwässern an ihrer Quelle, kombiniert mit dezentraler Rückgewinnung von Ressourcen, ist ein neuartiger Ansatz um diese Probleme zu lösen. Urin beinhaltet in 1 % des Gesamtabwassers eines Haushalts bis zu 80 % des Stickstoffs (N) und 50 % des Phosphors (P). Da Mikroalgen Nährstoffe effizient aufnehmen können, ermöglicht die Kultivierung dieser Organismen auf Urin dessen gleichzeitige Reinigung sowie Gewinnung von Biomasse, welche die hauptsächlichen Pflanzennährstoffe enthält. Während die Suspensionskultur von Mikroalgen nach dem Stand der Technik erhebliche Defizite in ihrer Anwendbarkeit hat, könnte die immobilisierte Kultur auf Porous Substrate Photobioreaktoren (PSBRs) eine mögliche Alternative sein. Ziel dieser Arbeit war die Entwicklung eines robusten Prozesses zur Nährstoffrückgewinnung aus minimal verdünntem Urin mit PSBR-immobilisierten Mikroalgen. Die Grünalge Desmodesmus abundans Stamm CCAC 3496 wurde unter 96 Stämmen, aus spezifischen Isolationen und Kultursammlungen, aufgrund seines guten Wachstums ausgewählt. Die Behandlung von Urin, 1:1 verdünnt mit Leitungswasser und ohne Zusatz -2 -1 von Nährstoffen, fand bei einer Lichtintensität von 600 µmol Photonen m s , bei 2.5 % CO2 und pH 6.5 statt. Eine Wachstumsrate von 7.2 g Trockenmasse m-² Tag-1 und Aufnahmen von 13.1 % und 94.1 % von N und P wurden erreicht. Die Behandlung von Urin mit Aktivkohle konnte mögliche hemmende Effekte von Pharmazeutika verhindern. Diese Ergebnisse bilden eine Basis für die weitere Entwicklung der Technologie im Pilot-Maßstab. Falls Risiken für die Gesundheit von Mensch und Umwelt ausgeschlossen werden können, könnte die Algenbiomasse eines 3-Personen-Haushalts genutzt werden, um jährlich 31 kg Weizen und 16 kg Soja zu produzieren, was den kalorischen Nahrungsbedarf für ca. einen Monat des Jahres decken würde. In Kombination mit anderen Technologien könnten PSBRs in einem dezentralen System zur Ressourcenrückgewinnung angewendet werden und dazu beitragen, die Verbindung zwischen den Nährstoffen in Abfall und der Lebensmittelproduktion lokal herzustellen. II Table of content Table of content Summary .................................................................................................................................................. I Zusammenfassung ................................................................................................................................... II Table of content ..................................................................................................................................... III 1 Introduction ..................................................................................................................................... 1 1.1. The global nutrient and water crises ........................................................................................ 1 1.2. Source separation and resource recovery ................................................................................ 4 1.3. Microalgae for nutrient recovery ............................................................................................. 6 1.4. Outline of this study .............................................................................................................. 11 2 Materials and Methods .................................................................................................................. 12 2.1. Human urine .......................................................................................................................... 12 2.2. Nutrient determination .......................................................................................................... 13 2.2.1. Urea ............................................................................................................................... 13 2.2.2. Ammonia / Ammonium ................................................................................................. 13 2.2.3. Nitrate / Nitrite .............................................................................................................. 14 2.2.4. Phosphate ....................................................................................................................... 14 2.2.5. Total nitrogen and phosphorus ...................................................................................... 14 2.2.6. Identification of precipitates .......................................................................................... 14 2.3. Algal strains ........................................................................................................................... 15 2.3.1. Isolation ......................................................................................................................... 15 2.3.2. Identification of isolates ................................................................................................ 16 2.3.3. Stock cultures ................................................................................................................ 17 III Table of content 2.4. Experimental cultivation ....................................................................................................... 20 2.4.1. Screening ....................................................................................................................... 20 2.4.2. Nitrogen metabolism ..................................................................................................... 21 2.4.3. Cultivation on Twin Layer-PSBR ................................................................................. 22 2.5. Statistics................................................................................................................................. 25 3 Results ........................................................................................................................................... 26 3.1. Analysis of urine batches....................................................................................................... 26 3.2. Diversity of isolates ............................................................................................................... 27 3.3. Screening for growth on human urine ..................................................................................
Recommended publications
  • A Phylodiverse Genome Sequencing Plan Shifeng Cheng1,2,†, Michael Melkonian3, Stephen A
    GigaScience, 7, 2018, 1–9 doi: 10.1093/gigascience/giy013 Advance Access Publication Date: 20 February 2018 Commentary COMMENTARY 10KP: A phylodiverse genome sequencing plan Shifeng Cheng1,2,†, Michael Melkonian3, Stephen A. Smith 4, Samuel Brockington5, John M. Archibald6, Pierre-Marc Delaux7, Fay-Wei Li 8, Barbara Melkonian3, Evgeny V. Mavrodiev9, Wenjing Sun1,2, Yuan Fu1,2, Huanming Yang1,10, Douglas E. Soltis9,11, Sean W. Graham12, Pamela S. Soltis9,11,XinLiu1,2,†,XunXu1,2,∗ and Gane Ka-Shu Wong 1,13,14,∗ 1BGI-Shenzhen, Shenzhen 518083, China, 2China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China, 3Botanical Institute, Universitat¨ zu Koln,¨ Cologne D-50674, Germany, 4Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA, 5Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK, 6Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax NS, B3H 4R2 Canada, 7Laboratoire de Recherche en Sciences Veg´ etales,´ Universite´ de Toulouse, UPS/CNRS, 24 chemin de Borde Rouge, Auzeville B.P. 42617, 31326 Castanet-Tolosan, France, 8Boyce Thompson Institute, Ithaca, NY 14850, USA and Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA, 9Florida Museum of Natural History, University of Florida, PO Box 117800, Gainesville, FL 32611, USA, 10James D. Watson Institute of Genome Sciences, Hangzhou 310058, China, 11Department of Biology, University of Florida, Gainesville, FL 32611, USA, 12Department of Botany, University of British Columbia, Vancouver BC, V6T 1Z4 Canada, 13Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9 Canada and 14Department of Medicine, University of Alberta, Edmonton AB, T6G 2E1 Canada ∗Correspondence address.
    [Show full text]
  • Andrey A. Gontcharov 2 and Michael Melkonian
    American Journal of Botany 95(9): 1079–1095. 2008. I N SEARCH OF MONOPHYLETIC TAXA IN THE FAMILY DESMIDIACEAE (ZYGNEMATOPHYCEAE, VIRIDIPLANTAE): THE GENUS COSMARIUM 1 Andrey A. Gontcharov 2 and Michael Melkonian Botanisches Institut, Lehrstuhl I, Universit ä t zu K ö ln, Gyrhofstr. 15, D-50931 K ö ln, Germany Nuclear-encoded small subunit (SSU) rDNA, 1506 group I introns, and chloroplast rbcL genes were sequenced from 97 strains representing the largest desmid genus Cosmarium (45 spp.), its putative relatives Actinotaenium (5 spp.), Xanthidium (4 spp.), Euastrum (9 spp.), Staurodesmus (13 spp.), and other Desmidiaceae (Zygnematophyceae, Streptophyta) and used to assess phylo- genetic relationships in the family. Analyses of single genes and of a concatenated data set (3260 nt) established 10 well-supported clades in the family with Cosmarium species distributed in six clades and one nonsupported assemblage. Most of the clades con- tained representatives of at least two genera highlighting the polyphyletic nature of the genera Cosmarium , Euastrum , Staurodes- mus , and Actinotaenium . To enhance resolution between clades, we extended the data set by sequencing the slowly evolving chloroplast-encoded large subunit (LSU) rRNA gene from 40 taxa. Phylogenetic analyses of a concatenated data set (5509 nt) suggested a sister relationship between two clades that consisted mainly of Cosmarium species and included C. undulatum , the type species of the genus. We describe molecular signatures in the SSU rRNA for two clades and conclude that more studies in- volving new isolates, additional molecular markers, and reanalyses of morphological traits are necessary before the taxonomic revision of the genus Cosmarium can be attempted.
    [Show full text]
  • Program 12 List of Posters 23 Abstracts – Symposia 27 Abstracts – Parallel Sessions 31 Abstracts – Posters 54 Social Program 74 List of Participants 77
    1 2 Conference venues Protist2012 will take place in three different buildings. The main location is Vilhelm Bjerknes (building 13 on the map). This is the Life Science library at the campus and is where registration will take place at July 29. This is also the location for the posters and where lunches will be served. In the library there is access to computers and internet for all conferences participants. The presentations will be held in Georg Sverdrups (building 27) and Helga Engs (building 20) Helga Engs Georg Sverdrups Vilhelm Bjerknes Map and all photos: UiO 3 4 Index: General information 9 Program 12 List of posters 23 Abstracts – Symposia 27 Abstracts – Parallel sessions 31 Abstracts – Posters 54 Social program 74 List of participants 77 5 ISOP – International Society of Protistologists The Society is an international association of scientists devoted to research on single-celled eukaryotes, or protists. The ISOP promotes the presentation and discussion of new or important facts and problems in protistology, and works to provide resources for the promotion and advancement of this science. We are scientists from all over the world who perform research on protists, single- celled eukaryotic organisms. Individual areas of research involving protists encompass ecology, parasitology, biochemistry, physiology, genetics, evolution and many others. Our Society thus helps bring together researchers with different research foci and training. This multidisciplinary attitude is rather unique among scientific societies, and it results in an unparalleled forum for sharing and integrating a wide spectrum of scientific information on these fascinating and important organisms. ISOP executive meeting Sunday, July 29, 13:00 – 17:00 ISOP business meeting Tuesday, July 31, 17:30 Both meeting will be held in Vilhelm Bjerknes (building 13) room 209.
    [Show full text]
  • Molecular Phylogeny and Classification of The
    ARTICLE IN PRESS Protist, Vol. ], ]]]–]]], ]] ]]]] http://www.elsevier.de/protis Published online date 10 December 2009 ORIGINAL PAPER Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons Birger Marin1, and Michael Melkonian Biowissenschaftliches Zentrum, Botanisches Institut, Lehrstuhl I, Universitat¨ zu Koln,¨ Otto-Fischer-Str. 6, 50674 Koln,¨ Germany Submitted August 10, 2009; Accepted October 19, 2009 Monitoring Editor: David Moreira Molecular phylogenetic analyses of the Mamiellophyceae classis nova, a ubiquitous group of largely picoplanktonic green algae comprising scaly and non-scaly prasinophyte unicells, were performed using single and concatenated gene sequence comparisons of the nuclear- and plastid-encoded rRNA operons. The study resolved all major clades within the class, identified molecular signature sequences for most clades through an exhaustive search for non-homoplasious synapomorphies [Marin et al. (2003): Protist 154: 99-145] and incorporated these signatures into the diagnoses of two novel orders, Monomastigales ord nov., Dolichomastigales ord. nov., and four novel families, Monomastigaceae fam. nov., Dolichomastigaceae fam. nov., Crustomastigaceae fam. nov., and Bathycoccaceae fam. nov., within a revised classification of the class. A database search for the presence of environmental rDNA sequences in the Monomastigales and Dolichomastigales identified an unexpectedly large genetic diversity of Monomastigales
    [Show full text]
  • EVOLUTIONARY PROTISTOLOGY the Organism As Cell
    EVOLUTIONARY PROTISTOLOGY The Organism as Cell Proceedings of the 5th Meeting of the International Society for Evolutionary Protistology, Banyuls-sur-Mer, France, June 1983 Edited by LYNN MARC ULIS Boston University MARIE-ODILE SOYER-COBILLARD Laboratoire Arago JOHN CORLISS University of Maryland Reprinted from Origins ofLife , Volume 13, Nos. 3-4 D. Reidel Publishing Company Dordrecht I Boston ISBN- I 3 978-94-009-6400-6 c-ISBN- I 3 978-94-009-6398-6 DOl 10 1007/978-94-009-6398-6 All Righ ts Reserved © 1984 by D. Reidel Publishing Company, Dordrecht, Holland Softcover reprint of the hardcover 15t edition 1984 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS List of Participants vii Foreword ix M. LITTLE, R. F. LUDUENA, L. C. MOREJOHN, C. ASNES, and E. HOFFMAN I The Tubulins of Animals, Plants, Fungi and Protists - Implications for Metazoan Evolu­ tion 169 A. ADOUTTE, M. CLAISSE, and J. CANCE I Tubulin Evolution: An Electrophoretic and Immunological Analysis 177 U.-P. ROOS I From Proto-Mitosis to Mitosis - An Alternative Hypothesis on the Origin and Evolution of the Mitotic Spindle 183 C. GALLERON I The Fifth Base: A Natural Feature of Dinoflagellate DNA 195 M. HERZOG, S. VON BOLETZKY, and M.-O. SOYER I Ultrastructural and Biochemical Nuclear Aspects of Eukaryote Classification: Independent Evolution of the Dino- flagellates as a Sister Group of the Actual Eukaryotes? 205 E.
    [Show full text]
  • Nucleomorph Karyotype Diversity in the Freshwater
    J. Phycol. 44, 11–14 (2008) Ó 2008 Phycological Society of America DOI: 10.1111/j.1529-8817.2007.00434.x NUCLEOMORPH KARYOTYPE DIVERSITY IN THE FRESHWATER CRYPTOPHYTE GENUS CRYPTOMONAS1 Kyle D. Phipps, Natalie A. Donaher, Christopher E. Lane, and John M. Archibald2 Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada Cryptophytes are unicellular, biflagellate algae et al. 2004). This primary endosymbiotic event pro- with plastids (chloroplasts) derived from the uptake duced the first primary plastid-containing algae, of a red algal endosymbiont. These organisms are which ultimately gave rise, through vertical evolu- unusual in that the nucleus of the engulfed red alga tion, to the red, green, and glaucophyte algae persists in a highly reduced form called a nucleo- (Archibald and Keeling 2002, 2005, Palmer 2003, morph. Nucleomorph genomes are remarkable in Keeling 2004). More recently, plastids have moved their small size (<1,000 kilobase pairs [kbp]) and horizontally across the eukaryotic tree by the pro- high degree of compaction ( 1 kbp per gene). cess of secondary endosymbiosis, in which a primary Here, we investigated the molecular and karyotypic plastid-containing eukaryote is taken up by a non- diversity of nucleomorph genomes in members of the photosynthetic eukaryotic host cell (Archibald and genus Cryptomonas. 18S rDNA genes were amplified, Keeling 2002, Palmer 2003, Keeling 2004). The sequenced, and analyzed from C. tetrapyrenoidosa exact number of secondary endosymbioses that have Skuja CCAP979 ⁄ 63, C. erosa Ehrenb. emmend.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes Burkhard Becker*†, Kerstin Hoef-Emden† and Michael Melkonian* Address: Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany Email: Burkhard Becker* - [email protected]; Kerstin Hoef-Emden - [email protected]; Michael Melkonian* - [email protected] * Corresponding authors †Equal contributors Published: 15 July 2008 Received: 22 April 2008 Accepted: 15 July 2008 BMC Evolutionary Biology 2008, 8:203 doi:10.1186/1471-2148-8-203 This article is available from: http://www.biomedcentral.com/1471-2148/8/203 © 2008 Becker et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes). Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses. Results: A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses.
    [Show full text]
  • Genomes of Early-Diverging Streptophyte Algae Shed Light on Plant Terrestrialization
    ARTICLES https://doi.org/10.1038/s41477-019-0560-3 Genomes of early-diverging streptophyte algae shed light on plant terrestrialization Sibo Wang1,2,3,12, Linzhou Li1,4,5,12, Haoyuan Li1,2, Sunil Kumar Sahu 1,4, Hongli Wang1,2, Yan Xu1,6, Wenfei Xian1,2, Bo Song1,2, Hongping Liang1,6, Shifeng Cheng1,2, Yue Chang 1,2, Yue Song1,2, Zehra Çebi7, Sebastian Wittek7, Tanja Reder7, Morten Peterson3, Huanming Yang1,2, Jian Wang1,2, Barbara Melkonian7,11, Yves Van de Peer8,9, Xun Xu1,2, Gane Ka-Shu Wong 1,10*, Michael Melkonian7,11*, Huan Liu 1,3,4* and Xin Liu 1,2,4* Mounting evidence suggests that terrestrialization of plants started in streptophyte green algae, favoured by their dual exis- tence in freshwater and subaerial/terrestrial environments. Here, we present the genomes of Mesostigma viride and Chlorokybus atmophyticus, two sister taxa in the earliest-diverging clade of streptophyte algae dwelling in freshwater and subaerial/terres- trial environments, respectively. We provide evidence that the common ancestor of M. viride and C. atmophyticus (and thus of streptophytes) had already developed traits associated with a subaerial/terrestrial environment, such as embryophyte-type photorespiration, canonical plant phytochrome, several phytohormones and transcription factors involved in responses to envi- ronmental stresses, and evolution of cellulose synthase and cellulose synthase-like genes characteristic of embryophytes. Both genomes differed markedly in genome size and structure, and in gene family composition, revealing their dynamic nature, pre- sumably in response to adaptations to their contrasting environments. The ancestor of M. viride possibly lost several genomic traits associated with a subaerial/terrestrial environment following transition to a freshwater habitat.
    [Show full text]
  • Phylogenomics Provides New Insights Into Gains and Losses of Selenoproteins Among Archaeplastida
    International Journal of Molecular Sciences Article Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida 1,2,3, 2,3,4, 1,2,3, 2,3,5 2,3,4 Hongping Liang y , Tong Wei y, Yan Xu y, Linzhou Li , Sunil Kumar Sahu , Hongli Wang 1,2,3, Haoyuan Li 1,2, Xian Fu 2,3, Gengyun Zhang 2,4, Michael Melkonian 6, Xin Liu 2,3,4, Sibo Wang 2,4,7,* and Huan Liu 2,4,7,* 1 Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] (H.L.); [email protected] (Y.X.); [email protected] (H.W.); [email protected] (H.L.) 2 Beijing Genomics Institute (BGI) Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China; [email protected] (T.W.); [email protected] (L.L.); [email protected] (S.K.S.); [email protected] (X.F.); [email protected] (G.Z.); [email protected] (X.L.) 3 China National Gene Bank, Institute of New Agricultural Resources, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China 4 State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute (BGI) Shenzhen, Shenzhen 518083, China 5 School of Biology and Biological Engineering, South China University of Technology,Guangzhou 510006, China 6 Botanical Institute, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany; [email protected] 7 Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark * Correspondence: [email protected] (S.W.); [email protected] (H.L.) These authors contributed equally to this work. y Received: 5 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life.
    [Show full text]
  • 363F19f02db4e2fabe1601e0850
    A Novel 95-kD Protein Is Located in a Linker between Cytoplasmic Microtubules and Basal Bodies in a Green Flagellate and Forms Striated Filaments In Vitro Stefan Geimer, Judith Clees, Michael Melkonian, and Karl-Ferdinand Lechtreck Botanisches Institut, Universität zu Köln, D-50931 Köln, Germany Abstract. The flagellar basal apparatus comprises the 95-kD protein exclusively decorated the striated, basal bodies and the attached fibrous structures, which wedge-shaped fibers, termed sinister fibers (sf-fibers), together form the organizing center for the cytoskele- attached to the basal bodies of S. similis. Striated fibers ton in many flagellated cells. Basal apparatus were iso- with a periodicity of 98 nm were assembled in vitro lated from the naked green flagellate Spermatozopsis from the purified protein expressed from the cloned Downloaded from similis and shown to be composed of several dozens of cDNA indicating that the 95-kD protein could be a ma- different polypeptides including a protein band of 95 kD. jor component of the sf-fibers. This structure intercon- Screening of a cDNA library of S. similis with a poly- nects specific triplets of the basal bodies with the micro- clonal antibody raised against the 95-kD band resulted tubular bundles that emerge from the basal apparatus. in a full-length clone coding for a novel protein of 834 The sf-fibers and similar structures, e.g., basal feet or amino acids (90.3 kD). Sequence analysis identified satellites, described in various eukaryotes including jcb.rupress.org nonhelical NH2- and COOH-terminal domains flanking vertebrates, may be representative for cytoskeletal el- a central domain of z650 residues, which was predicted ements involved in positioning of basal bodies/centri- to form a series of coiled-coils interrupted by short oles with respect to cytoskeletal microtubules and spacer segments.
    [Show full text]