Hypertransport System Architecture / Mindshare, Inc., Jay Trodden & Don Anderson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
System Buses EE2222 Computer Interfacing and Microprocessors
System Buses EE2222 Computer Interfacing and Microprocessors Partially based on Computer Organization and Architecture by William Stallings Computer Electronics by Thomas Blum 2020 EE2222 1 Connecting • All the units must be connected • Different type of connection for different type of unit • CPU • Memory • Input/Output 2020 EE2222 2 CPU Connection • Reads instruction and data • Writes out data (after processing) • Sends control signals to other units • Receives (& acts on) interrupts 2020 EE2222 3 Memory Connection • Receives and sends data • Receives addresses (of locations) • Receives control signals • Read • Write • Timing 2020 EE2222 4 Input/Output Connection(1) • Similar to memory from computer’s viewpoint • Output • Receive data from computer • Send data to peripheral • Input • Receive data from peripheral • Send data to computer 2020 EE2222 5 Input/Output Connection(2) • Receive control signals from computer • Send control signals to peripherals • e.g. spin disk • Receive addresses from computer • e.g. port number to identify peripheral • Send interrupt signals (control) 2020 EE2222 6 What is a Bus? • A communication pathway connecting two or more devices • Usually broadcast (all components see signal) • Often grouped • A number of channels in one bus • e.g. 32 bit data bus is 32 separate single bit channels • Power lines may not be shown 2020 EE2222 7 Bus Interconnection Scheme 2020 EE2222 8 Data bus • Carries data • Remember that there is no difference between “data” and “instruction” at this level • Width is a key determinant of performance • 8, 16, 32, 64 bit 2020 EE2222 9 Address bus • Identify the source or destination of data • e.g. CPU needs to read an instruction (data) from a given location in memory • Bus width determines maximum memory capacity of system • e.g. -
Getting Started with Your VXI-1394 Interface for Windows NT/98 And
VXI Getting Started with Your VXI-1394 Interface for Windows NT/98 VXI-1394 Interface for Windows NT/98 November 1999 Edition Part Number 322109D-01 Worldwide Technical Support and Product Information www.ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100 Worldwide Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545 For further support information, see the Technical Support Resources appendix. To comment on the documentation, send e-mail to [email protected] © Copyright 1998, 1999 National Instruments Corporation. All rights reserved. Important Information Warranty The National Instruments VXI-1394 board is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. -
ECESATUSB1 This Expresscard Power Esata Port Controller Card
1 Port ExpressCard Power eSATA Controller Adapter Card StarTech ID: ECESATUSB1 This ExpressCard Power eSATA port controller card can be installed in an available ExpressCard 34/54 mm slot to provide a powered eSATA connection, and also alternatively provide either external SATA (data only) or USB 2.0 connectivity from one uniquely designed port if using with standard eSATA or USB devices. An ideal solution for using an eSATA SSD Flash drive on your laptop, the power eSATA card delivers both a high speed eSATA connection and power from the combined USB port. A versatile connectivity solution, the card features built-in port multiplier support, allowing multi-drive eSATA storage enclosures to be connected to the host computer using a single eSATA cable. Taking advantage of the transfer speed of eSATA connection and the 5V power output of the USB 2.0 port, the ExpressCard Power eSATA adapter is the perfect answer for connecting compatible mobile drive enclosures, similar to the built-in power eSATA port provided by the following laptop computers: Toshiba: Satellite E105, A350, Satellite Pro P300; Qosmio G50, X305, Portege A600, M750, R500, R600; and Tecra M10, R10, A10. Dell: Studio 15, 17; Latitude E6400, E6500; Precision M2400, M4400, M6400, M6400 Covet. Applications Connects to eSATA SSD Flash drives, such as OCZ Throttle, Kangaru e-Flash drives and Ridata Racer series flash drives Provides connectivity between Notebooks and PCs with ExpressCard slots to external drive enclosures with Power eSATA (eSATA+USB) port, or with regular eSATA -
RS-485: Still the Most Robust Communication Table of Contents
TUTORIAL RS-485: Still the Most Robust Communication Table of Contents Abstract...........................................................................................................................1 RS-485 vs. RS-422..............................................................................................................................2 An In-Depth Look at RS-485...........................................................................................................3 Challenges of the Industrial Environment.....................................................................................5 Protecting Systems from Harsh Environments.........................................................................5 Conclusion......................................................................................................................10 References......................................................................................................................10 Abstract Despite the rise in popularity of wireless networks, wired serial networks continue to provide the most robust, reliable communication, especially in harsh environments. These well-engineered networks provide effective communication in industrial and building automation applications, which require immunity from noise, electrostatic discharge and voltage faults, all resulting in increased uptime. This tutorial reviews the RS-485 protocol and discusses why it is widely used in industrial applications and the common problems it solves. www.maximintegrated.com -
What Is It and How We Use It
Infiniband Overview What is it and how we use it What is Infiniband • Infiniband is a contraction of "Infinite Bandwidth" o can keep bundling links so there is no theoretical limit o Target design goal is to always be faster than the PCI bus. • Infiniband should not be the bottleneck. • Credit based flow control o data is never sent if receiver can not guarantee sufficient buffering What is Infiniband • Infiniband is a switched fabric network o low latency o high throughput o failover • Superset of VIA (Virtual Interface Architecture) o Infiniband o RoCE (RDMA over Converged Ethernet) o iWarp (Internet Wide Area RDMA Protocol) What is Infiniband • Serial traffic is split into incoming and outgoing relative to any port • Currently 5 data rates o Single Data Rate (SDR), 2.5Gbps o Double Data Rate (DDR), 5 Gbps o Quadruple Data Rate (QDR), 10 Gbps o Fourteen Data Rate (FDR), 14.0625 Gbps o Enhanced Data Rate (EDR) 25.78125 Gbps • Links can be bonded together, 1x, 4x, 8x and 12x HDR - High Data Rate NDR - Next Data Rate Infiniband Road Map (Infiniband Trade Association) What is Infiniband • SDR, DDR, and QDR use 8B/10B encoding o 10 bits carry 8 bits of data o data rate is 80% of signal rate • FDR and EDR use 64B/66B encoding o 66 bits carry 64 bits of data Signal Rate Latency SDR 200ns DDR 140ns QDR 100ns Hardware 2 Hardware vendors • Mellanox o bought Voltaire • Intel o bought Qlogic Infiniband business unit Need to standardize hardware. Mellanox and Qlogic cards work in different ways. -
Computer Bus Characteristics
Upendra Sharma (upsharma.in) Computer Bus A bus, in computing, is a set of physical connections (cables, printed circuits, etc.) which can be shared by multiple hardware components in order to communicate with one another. The purpose of buses is to reduce the number of "pathways" needed for communication between the components, by carrying out all communications over a single data channel. This is why the metaphor of a "data highway" is sometimes used. If only two hardware components communicate over the line, it is called a hardware port (such as a serial port or parallel port). Characteristics A bus is characterised by the amount of information that can be transmitted at once. This amount, expressed in bits, corresponds to the number of physical lines over which data is sent simultaneously. A 32-wire ribbon cable can transmit 32 bits in parallel. The term "width" is used to refer to the number of bits that a bus can transmit at once. Additionally, the bus speed is also defined by its frequency (expressed in Hertz), the number of data packets sent or received per second. Each time that data is sent or received is called a cycle. This way, it is possible to find the maximum transfer speed of the bus, the amount of data which it can transport per unit of time, by multiplying its width by its frequency. A bus with a width of 16 bits and a frequency of 133 MHz, therefore, has a transfer speed equal to: Upendra Sharma (upsharma.in) Types of Buses In reality, each bus is generally constituted of 50 to 100 distinct physical lines, divided into three subassemblies: The address bus (sometimes called the memory bus) transports memory addresses which the processor wants to access in order to read or write data. -
Fujitsu Plug-And-Play Controller (Ppc)
cO MB86701 FUJITSU PLUG-AND-PLAY CONTROLLER (PPC) ADVANCE INFORMATION JULY 1994 KEY FEATURES • Provides Plug-and-Play compatibility for ISA add-in • Read the card's resource requirements data cards • Identify the card and configure its resources • Conforms to Intel/Microsoft Plug-and-Play specifica • Locate a driver for the card tion vl.Oa (May 5, 1994) lbis process is done automatically at every hard reset of • Interface to serial resource EEPROM with read and write the system. Plug-and-Play ISA cards will interoperate capability for storage of data structures required by Plug and-Play and additional user defined data. with standard ISA cards in a fully compatible manner. Information that identifies the card and describes the sys • Provides five chip select outputs: tem resources which are requested by the card, such as - Two I/O chip selects, /CSO and /CSl, f{AO-AlS} memory and IJO space, DMA channel, and interrupt level - Two memory chip selects, JC,S2 and /CS3, f{AO-A23} supported is maintained in a standardized read-only for - JC,S4 is the OR of CSO and CS3 and is used as described mat below In a system that uses only Plug-and-Play ISA cards, it • Supports two DMA channels and two interrupts from the will be possible to achieve full auto-configuration. It is logical device recognized that the current generation of standard ISA - Interrupts directed to any of 11 interrupt channels on the cards will coexist with Plug-and-Play ISA cards in the ISA bus same system. In such systems, the configuration solution - DMA directed to any of 7 DMA channels on the ISA needs to be augmented in the BIOS and/or operating sys bus tem to manage and arbitrate the allocation of ISA bus re • Provides four quasi-bidirectional general purpose I/O sources. -
Control Bus System and Application of Building Electric Zhai Long1*, Tan Bin2, Ren Min3 1.Xi’An Changqing Technology Engineering Co., Ltd., Xi'an 710018 ,China 2
ORIGINAL ARTICLE Control Bus System And Application of Building Electric Zhai Long1*, Tan Bin2, Ren Min3 1.Xi’an Changqing Technology Engineering Co., Ltd., Xi'an 710018 ,China 2. Xi'an Changqing Technology Engineering Co., Ltd., Xi'an 710018,China 3.The Fifth Oil Production Plant of Changqing Oilfield Company, Xi'an 710018,China ABSTRACT As the most important part of Building construction, the KEYWORDS electric part 's intelligent control is particularly important. the most Building electric important sign of The intelligent intelligent control is the application of Control Bus System control bus system, only select the appropriate control bus system, and CAN protocol achieve intelligent applications in buildings, elevators, fire, visualization, etc., can meet the household needs. Firstly, the design principle of the electrical control system will be described, and then the CAN - based bus system control principle and application are discussed, only used for reference. 1.Design Principles of Electric Control System Introduction As a primary prerequisite for intelligent building, For construction, the electric bus control technology is a Design of electrical control system should meet the relatively new technology. under the trend of the following principles: development of intelligent building in the future, application (1) It is needed to ensure meeting the needs under of control bus system has become the most important normal production environment . the mainstay of component of intelligent building . In the construction of the electrical system is designed to meet the production machinery and production process requirements. (2) building, the control bus system can not only make The overall design concept should be clear. -
HD3SS214 8.1Gbps Displayport 1.4 2:1/1:2
Product Order Technical Tools & Support & Folder Now Documents Software Community HD3SS214 SLAS907B –DECEMBER 2015–REVISED JUNE 2017 HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch 1 Features 3 Description HD3SS214 is a high-speed passive switch capable of 1• Compatible with DisplayPort 1.4 Electrical Standard switching two full DisplayPort 4 lane ports from one of two sources to one target location in an application. It • 2:1 and 1:2 Switching Supporting Data Rates up will also switch one source to one of two sinks. For to 8.1 Gbps DisplayPort Applications, the HD3SS214 supports • Supports HPD, AUX and DDC Switching switching of the Auxiliary (AUX), Display Data • Wide Differential BW of 8 GHz Channel (DDC) and Hot Plug Detect (HPD) signals in the ZQE package. • Excellent Dynamic Electrical Characteristics • V Operating Range 3.3 V ±10% One typical application would be a mother board that DD includes two GPUs that need to drive one DisplayPort • Extended Industrial Temperature Range of sink. The GPU is selected by the Dx_SEL pin. -40°C to 105°C Another application is when one source needs to • 5 mm x 5 mm, 50-Ball ųBGA Package switch between one of two sinks, example would be a • Output Enable (OE) Pin Disables Switch to Save side connector and a docking station connector. The Power switching is controlled using the Dx_SEL and AUX_SEL pins. The HD3SS214 operates from a • Power Consumption single supply voltage of 3.3 V over extended – Active < 2 mW Typical industrial temperature range -40°C to 105°C. -
2 Port Flush Mount Expresscard 54Mm Superspeed USB 3.0 Card Adapter Startech ID: ECUSB3S254F
2 Port Flush Mount ExpressCard 54mm SuperSpeed USB 3.0 Card Adapter StarTech ID: ECUSB3S254F The ECUSB3S254F 2-Port Flush Mount USB 3.0 ExpressCard Adapter uses a unique form factor design that allows it to sit fully in a standard 54mm laptop ExpressCard slot without sticking out. When inserted, the USB 3.0 ports provided by the ExpressCard adapter sit flush with the sides of the laptop, creating a seamless add-on that can be left installed even while on the move, without having to worry about impact damage to either the card or the ExpressCard slot. The SuperSpeed USB 3.0 Card supports data transfer rates of up to 5Gbps, and is backward compatible with USB 2.0 (at up to 480Mbps), or USB 1.1/1.0 at up to 12/1.5 Mbps respectively - the perfect laptop accessory for users to connect USB devices, both new and old. Applications Users who need USB connectivity, but do not need to swap between other ExpressCard adapters, so will leave the card installed in the card slot Mobile users who want to leave ExpressCard adapters installed, without worry about damaging the card or slot while on the move Connect high performance USB 3.0 external storage devices to a laptop Upgrade an older laptop with USB 3.0 connectivity Expand on your laptop expansion capabilities with additional USB ports Features Unique flush-mount form factor design Two SuperSpeed USB 3.0 compliant ports with support for transfer rates up to 5 Gbps Backward compatible with USB 2.0/1.x devices Compliant with USB 3.0 base specification 1.0 and xHCI specification 0.95 Compliant with -
Designing PCI Cards and Drivers for Power Macintosh Computers
Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages. -
Direct Memory Access
International Journal of Research in Science And Technology http://www.ijrst.com (IJRST) 2014, Vol. No. 4, Issue No. III, Jul-Sep ISSN: 2249-0604 DIRECT MEMORY ACCESS LokeshMadan1, KislayAnand2and Bharat Bhushan3 1Department of Computer Science, Dronacharya College of Engineering, Gurgaon, India 2Department of Computer Science, Dronacharya College of Engineering, Gurgaon, India 3Department of Computer Science, Dronacharya College of Engineering, Gurgaon, India ABSTRACT Direct Memory Access (DMA) is a feature in all modern computers that allow devices to be able to move large blocks of data without any interaction with the processor. This can be useful, as you may have already seen from the floppy programming chapter. While the device transfers the block of data, the processor is free to continue running the software without worry about the data being transferred into memory, or to another device. The basic idea is that we can schedule the DMA device to perform the task on its own. Different buses and architecture designs have different methods of performing direct memory access. KEYWORDS: Processor register,cyclestealing,busmastering,countregisters,interleaved,c ache invalidation, schematics, gigabit Ethernet. INTRODUCTION A DMA controller can generate memory addresses and initiate memory read or write cycles. It contains several processor registers that can be written and read by the CPU. These include a memory address register, a byte count register, and one or more control registers. The control registers specify the I/O port to use, the direction of the transfer (reading from the I/O device or writing to the I/O device), the transfer unit (byte at a time or word at a time), and the number of bytes to transfer in one burst.