Ahmed Koriesh Neurologyresidents.Net

Total Page:16

File Type:pdf, Size:1020Kb

Ahmed Koriesh Neurologyresidents.Net Ahmed Koriesh NeurologyResidents.Net Syndrome Classification Clinical picture (AE) EEG Treatment Prognosis Neonatal/Infantile period Benign familial Partial/ Onset: First week after birth. focal or multifocal No treatment Usually stop by 6 wks. neonatal seizures Generalized CP: Clonic or myoclonic seizures needed 16% risk of developing (BFNS) fifth day fits (AD inheritance - KCNQ2 and KCNQ3 mutation) epilepsy. Benign familial Partial Focal clonic seizure, Eye deviation, cyanosis Occipital-parietal No treatment Excellent, usually infantile seizures Seizures often cluster spikes needed resolves in 1-2 years (BFIS) Benign Myoclonic Generalized Onset: 6m:3y Generalized spike/wave Valproate & Remission in most cases Epilepsy of Infancy Brief generalized myoclonic activity lasting 2-3 seconds Lamotrigine Early Myoclonic Generalized Onset: first month of life Burst-suppression that AED - Poor, 50% die in few wks encephalopathy Starts with erratic myoclonic jerks then simple focal sz then evolve to Intractable (EME) infantile spasms. hypsarrhythmia. Multiple metabolic causes identified. Early infantile Generalized Tonic spasms - Often hundreds daily Burst-suppression Surgical eval. Poor - Can evolve into Epileptic 75% have lesions in MRI West syndrome or encephalopathy (EIEE) (Often arising from cortical dysplasia Lennox-Gastaut Ohtahara syndrome or associated with STXBP1 “Syntaxin binding protein” gene syndrome mutation) Infantile spasms & Generalized Onset: Infancy Hypsarrhythmia (high- Corticotrophin Poor West Syndrome Infantile spasms: sudden jackknife-like movement, with amplitude, chaotic slow and vigabatrin. flexion of the neck, trunk, limbs, and waist, occur in clusters waves with multifocal West syndrome: Infantile spasms + developmental delay + spikes). Electrodecrement hypsarrhythmia (May be associated with cortical Dysplasia) during spasms Aicardi syndrome: infantile spasms + agenesis of the corpus callosum + retinal lacunae Severe myoclonic Focal or Onset: first year, peak 2-8 months Slow background, Valproate, Poor epilepsy in infancy Generalized Focal or GTC seizures. Starts initially in setting of fever or Multifocal or generalized clobazam, Dravet syndrome vaccination; later, myoclonic and absence seizures spike-and-wave ketogenic diet Developmental arrest with onset of seizures (SCN1A “Sodium channel 1A” mutation) Ahmed Koriesh NeurologyResidents.Net Childhood period: Benign epilepsy with Partial Onset: School age, 15:25% of epilepsy in children Centro-temporal spikes No treatment Resolves by puberty. centrotemporal spikes CP: Nocturnal SPS with clonic contractions of upper face and with normal background. needed. CBZ if 2/3 infrequent seizures Rolandic epilepsy UL, excessive salivation, gurgling or choking sounds. frequent Sz Childhood epilepsy Partial Onset: 1-14 average 5 years Interictal occipital spikes No treatment 20% develop ictal with occipital CP: Nocturnal autonomic seizures of prolonged duration. Child Increase in non-REM needed syncope w/wo paroxysms is conscious but complains about feeling sick, vomits, turns sleep convulsions Panayiotopoulos pale, dilated pupils ±visual seizures, thermoregulatory alterations. Later they develop partial or GTCs Idiopathic childhood Onset: 3-14 average 8 Interictal high-amplitude CBZ 50% with positive FH of occipital epilepsy of CP: episodic blindness or colored luminous discs, visual spike-and-wave epilepsy Gastaut hallucinations. lasting seconds or minutes; postictal migraine complexes occurring with in one-third the eyes closed. Acquired Epileptic Partial Onset: 3-8 years old Bilateral centrotemporal Valproate, Variable – many Aphasia focal seizure involving face or arm, usually diagnosed initially Spikes, increased during Lamotrigine & children become Landau-Kleffner as BECTS then child develop acquired motor & sensory sleep steroids. Avoid permanently aphasic Syndrome aphasia CBZ & PHT Continuous Spike- - Onset: around 5 years ESES appears 2-3 years Valproate, Wave Activity during Starts with partial or generalized seizures then develop after onset. Lamotrigine & Sleep (CSWS) epileptic encephalopathy. steroids Lennox-Gastaut Generalized Multiple seizure types (Tonic, atonic, absence) + Mental Interictal: slow spike-and- Valproate for Poor syndrome retardation + slow spike-wave (1.5 – 2.5 Hz) wave patterns, ≤2.5 Hz all seizure types. Lamotrigine & felbamate for drop attacks Myoclonic-astatic Generalized Onset: around 3 years Slow background, Valproate, Variable Epilepsy Myoclonic, atonic, tonic, and absence seizures generalized spike-and- Lamotrigine, 50% will attain seizure Doose Syndrome Sz may start in the setting of infection/fever wave pattern Levetiracetam, freedom and normal IQ Ketogenic diet Childhood absence Generalized Brief (few seconds) staring 3-Hz spike-and-wave Ethosuximide, Excellent epilepsy Episodes - Behavioral arrest pattern valproate, and Often remits by teenage May include automatisms Lamotrigine. yrs No postictal state - Provoked by hypoglycemia and Dc’d if seizure Should be distinguished Ahmed Koriesh NeurologyResidents.Net hyperventilation free for 1-2 ys from juvenile absence, atypical absence Generalized epilepsy Generalized Febrile seizures; myoclonic, astatic, tonic-clonic, and absence Normal, generalized or Variable presentation with febrile seizures seizures focal spike-and-wave within families from plus Strong FHx, variable penetrance benign to catastrophic GEFS+ (AD. SCN1A, SCN1B, SCN2A, and GABARG2 mutations) AD Nocturnal Partial Onset: variable, infants to elderly Frontal sharp waves Nicotine Can be misdiagnosed Frontal Lobe Epilepsy Brief hypermotor seizures (identical to those from SMA) that patch, as night terrors or (ADNFL) tend to cluster & occur mainly during sleep. Includes fist Carbamazepi somnambulism. clenching, arm throwing, leg cycling, yelling, moaning, sleep ne, walking. Clonazepam (CHRNA encoding for nicotinic Ach Rc) Progressive Generalized Cognitive decline + tonic-clonic, tonic, or myoclonic seizures. Valproate 1st Myoclonic Epilepsy Associated with: Lamotrigine Lafora body disease, Unverricht-Lundborg disease (Baltic & myoclonus), Neuronal ceroid-lipofuscinosis, MERRF Clonazepam 2nd line Eye lid myoclonia Onset: peak around 6 years Brief 3 to 6 Hz Valproate, with absences Triad of: eyelid myoclonia with and without absences; eye generalized poly-spike clonazepam (Jeavons Syndrome) closure-induced seizures and EEG paroxysms; and and wave discharge & photosensitivity (to flickering light). levetiracetam Eye lid myoclonia: jerking of the eyelids with jerky upward deviation of the eyeballs and the head for few seconds. Ahmed Koriesh NeurologyResidents.Net Adolescent/Adults: Juvenile Myoclonic Generalized Onset: usually teenage (8-24) Generalized 4- to 6-Hz Valproate, Good but requires Epilepsy Myoclonic seizures on awakening polyspike-and wave Lamotrigine. lifelong treatment GTC – absence seizure discharges in 75% of Levetiraceta Myoclonus can be triggered by reading, talking, photic patients m, stimulation topiramate, and zonisamide can be tried. Epilepsy With GTC Generalized Onset: 2nd decade Similar to Seizures on Awakening GTC on awakening. May have absence or myoclonic seizures. JME Idiopathic Reflex Onset: during puberty. Occipital or generalized Avoiding Photosensitive epilepsy Occipital lobe seizures provoked by visual stimuli (TV, video spike-and-wave triggers ± Occipital games) mimic visual aura in migraine discharges enhanced with Valproate Lobe Epilepsy eye closure. Rasmussen Partial Intractable and progressive focal seizures, hemiparesis, and Encephalitis cognitive regression. Slowly progressive cortical atrophy in MRI (Antibodies to glutamate receptor 3) Autosomal dominant Partial Hyperkinetic seizures at sleep-wake Normal or frontal Carbamazepi Usually good response frontal lobe epilepsy Transition. May have aura of fear. spikes ne to treatment (CHRNA4 and CHRNB2 mutations) Familial temporal Partial Lateral and mesial Temporal spike or Carbamazepi Usually good response lobe epilepsy temporal forms sharp waves ne to treatment Seizures that usually start in the setting of viral illness or fever: Febrile – GEF+ - Dravet – Doose Seizures associated with spasms: Ohtahara – West – AICARDI Causes of myoclonic seizures in children: Early myoclonic encephalopathies (EME, EIEE), Part of other generalized epileptic syndrome (Doose, Dravet, LGX), Non-progressive myoclonic epilepsies (as benign neonatal myoclonic epilepsy, familial myoclonic epilepsy) Progressive myoclonic epilepsies (8 types mentioned below). Ahmed Koriesh NeurologyResidents.Net Progressive Myoclonic Epilepsy Syndromes Myoclonic Syndrome Etiology Onset Features Diagnosis Treatment Baltic Myoclonus AR - EPM1 mutation Adolescence (6-16) Considered as least severe type of PME Genetics testing (Unverricht-Lundborg In Baltic countries Seizures: Myoclonic jerks, GTCs a, often misdiagnosed disease) (Estonia, Latvia and as JME in early stages Lithuania) Others: Cognitive decline is usually mild Lafora body disease AR - EPM2A – EPM2B Adolescence (6-19) Considered a neurodegenerative disease Axillary skin Valproate – Glycogen storage disease, In Middle east Seizures: GTCs that responds to treatment while biopsy – Zonisamide accumulation of Lafora countries myoclonic jerks resistant to treatment. Genetic testing bodies (polyglucosan) Others: Severe dementia and ataxia Neuronal Ceroid AR – CLN mutation Starts with loss of vision and seizure (myoclonic & GTC) Skin biopsy – Cystagon – Lipofuscinosis (NCL) Lysosomal storage disease, then severe developmental
Recommended publications
  • EPILEPSY and OTHER SEIZURE DISORDERS 273 Base of Rh
    45077 Ropper: Adams and Victor’s Principles of Neurology, 8/E McGraw-Hill BATCH RIGHT top of rh CHAPTER 16 base of rh EPILEPSY AND OTHER cap height base of text SEIZURE DISORDERS In contemporary society, the frequency and importance of epilepsy logic disease that demands the employment of special diagnostic can hardly be overstated. From the epidemiologic studies of Hauser and therapeutic measures, as in the case of a brain tumor. and colleagues, one may extrapolate an incidence of approximately A more common and less grave circumstance is for a seizure 2 million individuals in the United States who are subject to epi- to be but one in an extensive series recurring over a long period of lepsy (i.e., chronically recurrent cerebral cortical seizures) and pre- time, with most of the attacks being more or less similar in type. dict about 44 new cases per 100,000 population occur each year. In this instance they may be the result of a burned-out lesion that These figures are exclusive of patients in whom convulsions com- originated in the past and remains as a scar. The original disease plicate febrile and other intercurrent illnesses or injuries. It has also may have passed unnoticed, or perhaps had occurred in utero, at been estimated that slightly less than 1 percent of persons in the birth, or in infancy, in parts of the brain inaccessible for exami- United States will have epilepsy by the age of 20 years (Hauser nation or too immature to manifest signs. It may have affected a and Annegers).
    [Show full text]
  • Clinicians Using the Classification Will Identify a Seizure As Focal Or Generalized Onset If There Is About an 80% Confidence Level About the Type of Onset
    GENERALIZED ONSET SEIZURES Generalized onset seizures are not characterized by level of awareness, because awareness is almost always impaired. Generalized tonic-clonic: Immediate loss of Generalized epileptic spasms: Brief seizures with awareness, with stiffening of all limbs (tonic phase), flexion at the trunk and flexion or extension of the followed by sustained rhythmic jerking of limbs and limbs. Video-EEG recording may be required to face (clonic phase). Duration is typically 1 to 3 minutes. determine focal versus generalized onset. The seizure may produce a cry at the start, falling, tongue biting, and incontinence. Generalized typical absence: Sudden onset when activity stops with a brief pause and staring, Generalized clonic: Rhythmical sustained jerking of sometimes with eye fluttering and head nodding or limbs and/or head with no tonic stiffening phase. other automatic behaviors. If it lasts for more than These seizures most often occur in young children. several seconds, awareness and memory are impaired. Recovery is immediate. The EEG during these seizures Generalized tonic: Stiffening of all limbs, without always shows generalized spike-waves. clonic jerking. Generalized atypical absence: Like typical absence Generalized myoclonic: Irregular, unsustained jerking seizures, but may have slower onset and recovery and of limbs, face, eyes, or eyelids. The jerking of more pronounced changes in tone. Atypical absence generalized myoclonus may not always be left-right seizures can be difficult to distinguish from focal synchronous, but it occurs on both sides. impaired awareness seizures, but absence seizures usually recover more quickly and the EEG patterns are Generalized myoclonic-tonic-clonic: This seizure is like different.
    [Show full text]
  • Handbook of EEG INTERPRETATION This Page Intentionally Left Blank Handbook of EEG INTERPRETATION
    Handbook of EEG INTERPRETATION This page intentionally left blank Handbook of EEG INTERPRETATION William O. Tatum, IV, DO Section Chief, Department of Neurology, Tampa General Hospital Clinical Professor, Department of Neurology, University of South Florida Tampa, Florida Aatif M. Husain, MD Associate Professor, Department of Medicine (Neurology), Duke University Medical Center Director, Neurodiagnostic Center, Veterans Affairs Medical Center Durham, North Carolina Selim R. Benbadis, MD Director, Comprehensive Epilepsy Program, Tampa General Hospital Professor, Departments of Neurology and Neurosurgery, University of South Florida Tampa, Florida Peter W. Kaplan, MB, FRCP Director, Epilepsy and EEG, Johns Hopkins Bayview Medical Center Professor, Department of Neurology, Johns Hopkins University School of Medicine Baltimore, Maryland Acquisitions Editor: R. Craig Percy Developmental Editor: Richard Johnson Cover Designer: Steve Pisano Indexer: Joann Woy Compositor: Patricia Wallenburg Printer: Victor Graphics Visit our website at www.demosmedpub.com © 2008 Demos Medical Publishing, LLC. All rights reserved. This book is pro- tected by copyright. No part of it may be reproduced, stored in a retrieval sys- tem, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Library of Congress Cataloging-in-Publication Data Handbook of EEG interpretation / William O. Tatum IV ... [et al.]. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-1-933864-11-2 (pbk. : alk. paper) ISBN-10: 1-933864-11-7 (pbk. : alk. paper) 1. Electroencephalography—Handbooks, manuals, etc. I. Tatum, William O. [DNLM: 1. Electroencephalography—methods—Handbooks. WL 39 H23657 2007] RC386.6.E43H36 2007 616.8'047547—dc22 2007022376 Medicine is an ever-changing science undergoing continual development.
    [Show full text]
  • Mesial Frontal Epilepsy
    Epikpsia, 39(Suppl. 4):S49-S61. 1998 Lippincon-Raven Publishers, Philadelphia 0 International League Against Epilepsy Mesial Frontal Epilepsy Norman K. So Oregon Comprehensive Epilepsy Program, Legacy Portland Hospitals, Portland, Oregon, U.S.A. Summary: The mesiofrontal cortex comprises a number of occur. The task of localization of the epileptogenic zone can be distinct anatomic and functional areas. Structural lesions and challenging, whether EEG or imaging methods are used. Suc- cortical dysgenesis are recognized causes of mesial frontal epi- cessful localization can lead to a rewarding outcome after epi- lepsy, but a specific gene defect may also be important, as seen lepsy surgery, particularly in those with an imaged lesion. in some forms of familial frontal lobe epilepsy. The predomi- Key Words: Mesial frontal epilepsy-cingulate gyrus- nant seizure manifestations, which are not necessarily strictly Supplementary motor area-Absence seizure-Hypermotor correlated with a specific ictal onset zone, are absence, hyper- seizure-Postural tonic seizure-Epilepsy surgery. motor, and postural tonic seizures. Other seizure types also FUNCTIONAL ANATOMY convolution. Traditional cytoarchitectonics have further subdivided this anterior frontal region. The frontal pole The frontal lobe is the largest lobe in the brain, ac- refers to the anterior most portion of the frontal lobe, but counting for one-third to one-half of total brain volume there is little consensus on how far back this extends. and weight. On the medial surface, the most important One or more curved.sulci are seen anterior and inferior to landmark is the cingulate sulcus (Fig. 1). This runs as an the cingulate sulcus, called the superior and inferior ros- inverted “C” following the contour of the corpus callo- tral sulci.
    [Show full text]
  • Epilepsy and Psychosis
    Central Journal of Neurological Disorders & Stroke Review Article Special Issue on Epilepsy and Psychosis Epilepsy and Seizures *Corresponding author Daniel S Weisholtz* and Barbara A Dworetzky Destînâ Yalcin A, Department of Neurology, Ümraniye Department of Neurology, Brigham and Women’s Hospital, Harvard University, Boston Research and Training Hospital, Istanbul, Turkey, Massachusetts, USA Email: Submitted: 11 March 2014 Abstract Accepted: 08 April 2014 Psychosis is a significant comorbidity for a subset of patients with epilepsy, and Published: 14 April 2014 may appear in various contexts. Psychosis may be chronic or episodic. Chronic Interictal Copyright Psychosis (CIP) occurs in 2-10% of patients with epilepsy. CIP has been associated © 2014 Yalcin et al. most strongly with temporal lobe epilepsy. Episodic psychoses in epilepsy may be classified by their temporal relationship to seizures. Ictal psychosis refers to psychosis OPEN ACCESS that occurs as a symptom of seizure activity, and can be seen in some cases of non- convulsive status epilepticus. The nature of the psychotic symptoms generally depends Keywords on the localization of the seizure activity. Postictal Psychosis (PIP) may occur after • Epilepsy a cluster of complex partial or generalized seizures, and typically appears after • Psychosis a lucid interval of up to 72 hours following the immediate postictal state. Interictal • Hallucinations psychotic episodes (in which there is no definite temporal relationship with seizures) • Non-convulsive status epilepticus may be precipitated by the use of certain anticonvulsant drugs, particularly vigabatrin, • Forced normalization zonisamide, topiramate, and levetiracetam, and is linked in some cases to “forced normalization” of the EEG or cessation of seizures, a phenomenon known as alternate psychosis.
    [Show full text]
  • The Double Generalization Phenomenon in Juvenile Absence Epilepsy
    Epilepsy & Behavior 21 (2011) 318–320 Contents lists available at ScienceDirect Epilepsy & Behavior journal homepage: www.elsevier.com/locate/yebeh Case Report The double generalization phenomenon in juvenile absence epilepsy Daniel San-Juan a,b,⁎, Adriana Patricia M. Mayorga a, David J. Anschel c, Alvaro Moreno Avellán a, Maricarmen F. González-Aragón a, Andrew J. Cole d a Clinical Neurophysiology Department, National Institute of Neurology, Mexico City, Mexico b Centro Neurológico, Hospital ABC Santa Fe, Mexico City, Mexico c Clinical Neurophysiology Department, Saint Charles Hospital, Port Jefferson, NY, USA d Epilepsy Service, Massachusetts General Hospital, Boston, MA, USA article info abstract Article history: The characterization of a seizure as generalized or focal onset depends on a basic knowledge of the underlying Received 12 March 2011 pathophysiology. Recently, an uncommon phenomenon in generalized epilepsy—evolution of seizures Revised 7 April 2011 from generalized to focal followed by secondary generalization—was reported for the first time. We describe a Accepted 8 April 2011 15-year-old boy, initially classified as having partial epilepsy, who had a typical absence seizure that became Available online 14 May 2011 focal with second secondary generalization (double generalization). On the basis of these findings his epilepsy fi Keywords: was classi ed as juvenile absence epilepsy and his treatment was changed, resulting in seizure freedom. This fi Juvenile absence epilepsy is the rst report of this unusual electroclinical evolution in a patient with juvenile absence epilepsy. The Generalized epilepsy recognition of this particular pattern allows correct classification and impacts both treatment and prognosis. Focal findings © 2011 Elsevier Inc.
    [Show full text]
  • Epilepsy E1 (1)
    EPILEPSY E1 (1) Epilepsy Last updated: September 9, 2021 CLASSIFICATION ............................................................................................................................................ 3 FOUR‐DIMENSIONAL EPILEPSY CLASSIFICATION (LÜDERS 2019).................................................................. 3 Semiology ............................................................................................................................................... 3 Epileptogenic zone ................................................................................................................................. 4 Etiology .................................................................................................................................................. 5 ILAE (2017) ................................................................................................................................................ 5 SEMIOLOGY (CLINICAL MANIFESTATIONS) - DEFINITIONS ......................................................................... 5 SEIZURE TRIGGERING FACTORS .................................................................................................................... 5 MOTOR ........................................................................................................................................................ 6 Elementary Motor .................................................................................................................................. 6 Automatism ...........................................................................................................................................
    [Show full text]
  • Managing Children with Epilepsy School Nurse Guide
    MANAGING CHILDREN WITH EPILEPSY SCHOOL NURSE GUIDE ACKNOWLEDGEMENTS TO THOSE WHO HAVE CONTRIBUTED TO THE NOTEBOOK Children’s Hospital of Orange County Melodie Balsbaugh, RN Sue Nagel, RN Giana Nguyen, CHOC Institutes Fullerton School District Jane Bockhacker, RN Orange Unified School District Andrea Bautista, RN Martha Boughen, RN Karen Hanson, RN TABLE OF CONTENTS I. EPILEPSY What is epilepsy? Facts about epilepsy Basic neuroanatomy overview Classification of epileptic seizures Diagnostic Tests II. TREATMENT Medications Vagus Nerve Stimulation Ketogenic Diet Surgery III. SAFETY First Aid IV. SPECIAL CONCERNS MedicAlert Helmets Driving Employment and the law V. EPILEPSY AT SCHOOL School epilepsy assessment tool Seizure record Teaching children about epilepsy lesson plan Creating your own individualized health care plan VI. RESOURCES/SUPPORT GROUPS VII. ACCESS TO HEALTHCARE CHOC Epilepsy Center After-Hours Care After Hours Health Care Advice Healthy Families California Kids MediCal CHOC Clinics Healthy Tomorrows VIII. REFERENCES EPILEPSY WHAT IS EPILEPSY? Epilepsy is a neurological disorder. The brain contains millions of nerve cells called neurons that send electrical charges to each other. A seizure occurs when there is a sudden and brief excess surge of electrical activity in the brain between nerve cells. This results in an alteration in sensation, behavior, and consciousness. Seizures may be caused by developmental problems before birth, trauma at birth, head injury, tumor, structural problems, vascular problems (i.e. stroke, abnormal blood vessels), metabolic conditions (i.e. low blood sugar, low calcium), infections (i.e. meningitis, encephalitis) and idiopathic causes. Children who have idiopathic seizures are most likely to respond to medications and outgrow seizures.
    [Show full text]
  • Typical Absence Seizures and Their Treatment
    Arch Dis Child 1999;81:351–355 351 Arch Dis Child: first published as 10.1136/adc.81.4.351 on 1 October 1999. Downloaded from CURRENT TOPIC Typical absence seizures and their treatment C P Panayiotopoulos Typical absences (previously known as petit there are inappropriate generalisations regard- mal) are generalised seizures that are distinc- ing their use in the treatment of other tively diVerent from any other type of epileptic epilepsies. fit.1 They are pharmacologically unique2–5 and demand special attention in their treatment.6 The prevalence of typical absences among Typical absence seizures children with epilepsies is about 10%, probably Typical absence seizures are defined according with a female preponderance.6 Typical ab- to clinical and electroencephalogram (EEG) 16 sences are easy to diagnose and treat. There- ictal and interictal expression. Clinically, the fore, it is alarming that 40% of children with hallmark of the absence is abrupt and brief typical absences were inappropriately treated impairment of consciousness, with interrup- with contraindicated drugs, such as car- tion of the ongoing activity, and usually unresponsiveness. The seizure lasts for a few to Department of Clinical bamazepine and vigabatrin, according to a 7 20 seconds and ends suddenly with resumption Neurophysiology and recent report from London, UK. Epilepsies, St Thomas’ The purpose of this paper is to oVer some of the pre-absence activity, as if had not been Hospital, London guidance to paediatricians regarding diagnosis interrupted. Although some absence seizures SE1 7EH, UK and management of typical absence seizures. can manifest with impairment of consciousness C P Panayiotopoulos This is also important because of the introduc- only, this is often combined with the following: tion of new antiepileptic drugs.
    [Show full text]
  • EEG in Childhood Epileptic Syndromes
    03/09/53 EEG in Childhood Epileptic Syndromes Anannit Visudtibhan, MD. Division of Neurology, Department of Pediatrics Faculty of Medicine, Ramathibodi Hospital Awareness of Revision of Terminology & Classification Communication Article reviews Further studies 1 03/09/53 Interim Organization (“Classification) of Epilepsies 2 03/09/53 Interictal EEG & Clinical seizures Interictal epileptiform pattern Clinical seizure type 3 Hz spike-and-waves or polyspike-and-waves Absences Polyspike-and-waves, spike-and-waves, mono-and polyphasic sharp waves Myoclonic seizures Hypsarrhythmia & variants Infantile spasms Spike-and-waves or polyspike-and- waves Clonic seizures Slow spike-and-waves and other patterns Tonic seizures Spike-and-waves or polyspike-and- waves Tonic-clonic seizures Polyspike-and-waves or spike-and-waves Atonic seizures Polyspike-and-waves, spike-and-waves Long atonic seizures Polyspike-and-waves Akinetic seizures Primary Epilepsy Syndrome “Primarily generalized seizure” Absence epilepsy Juvenile myoclonic epilepsy 3 03/09/53 Absence Epilepsy Absence seizure: a generalized, non- convulsive epileptic seizure predominantly disturbance of consciousness with relatively little or no motor activity with 3-Hz spike-wave bursts EEG Findings in Absence Epilepsy Normal background Abrupt onset of synchronous spike-wave complex Frequency of complex: 3 Hz Induced by hyperventilation Associated clinical manifestation vary with duration of complex 4 03/09/53 Duration of Ictal Spike-wave CAE: • duration range 4 – 20 seconds < 4 or > 30: less likely to be CAE • Mean duration • 8 +/- 0.2 s (Hirsch et al) • 12 +/- 2.1 s (Panayiotopoulos et al 1989) JAE : • duration 16.3 +/- 7.1 s) Interictal EEG Normal background, some may be slightly slow Paroxysmal of rhythmic slow wave activity 2.5 – 3.5 Hz in background or occipital region Synchronous burst of spike-and-wave complexes varies between beginning & later 5 03/09/53 Observation in Absence Epilepsy 1.
    [Show full text]
  • Thalamic Stimulation Improves Postictal Cortical Arousal and Behavior
    Research Articles: Behavioral/Cognitive Thalamic stimulation improves postictal cortical arousal and behavior https://doi.org/10.1523/JNEUROSCI.1370-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1370-20.2020 Received: 31 May 2020 Revised: 9 August 2020 Accepted: 10 August 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Thalamic stimulation improves postictal cortical arousal and behavior 2 Abbreviated title: Thalamic stimulation improves postictal arousal 3 Jingwen Xu1,6, Maria Milagros Galardi1, Brian Pok1, Kishan K. Patel1, Charlie W. Zhao1, John P. 4 Andrews1, Shobhit Singla1, Cian P. McCafferty1, Li Feng1, Eric. T. Musonza1, Adam. J. 5 Kundishora1,3, Abhijeet Gummadavelli1,3, Jason L. Gerrard3, Mark Laubach4, Nicholas D. 6 Schiff5, Hal Blumenfeld1,2,3 7 8 Departments of 1Neurology, 2Neuroscience, 3Neurosurgery, Yale University School of Medicine, 9 New Haven, CT, USA 10 4 Department of Biology, American University, Washington, DC, USA 11 5Department of Neurology, Weill-Cornell Medical College, New York, NY, USA 12 6Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 13 Jinan, Shandong, 250012, China 14 15 Correspondence to: Hal Blumenfeld, MD, PhD 16 Yale Depts. Neurology, Neuroscience, Neurosurgery 17 333 Cedar Street, New Haven, CT 06520-8018 18 Tel: 203 785-3865 Fax: 203 737-2538 19 Email: [email protected] 20 21 Key words: epilepsy, thalamus, deep brain stimulation (DBS), consciousness, generalized tonic- 22 clonic seizures, sleep 23 24 Number of pages: 39 25 Number of figures: 6, color figures: 2, tables: 0.
    [Show full text]
  • Tiagabine-Induced Absence Status in Idiopathic Generalized Epilepsy
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Seizure 1999; 8: 314–317 Article No. seiz.1999.0303, available online at http://www.idealibrary.com on CASE REPORT Tiagabine-induced absence status in idiopathic generalized epilepsy S. KNAKE, H. M. HAMER, U. SCHOMBURG, W. H. OERTEL & F. ROSENOW Philipps-University, Neurologische Klinik, Marburg, Germany Correspondence to: Dr S. Knake, Neurologische Klinik, Philipps-University, Marburg, Rudolf-Bultmann-Straße 8, 35039 Marburg, Germany Several medications such as baclofen, amitriptyline and even antiepileptic drugs such as carbamazepine or vigabatrin are known to induce absence status epilepticus in patients with generalized epilepsies. Tiagabine (TGB) is effective in patients with focal epilepsies. However, TGB has also been reported to induce non-convulsive status epilepticus in several patients with focal epilepsies and in one patient with juvenile myoclonic epilepsy. In animal models of generalized epilepsy, TGB induces absence status with 3–5 Hz spike-wave complexes. We describe a 32-year-old patient with absence epilepsy and primary generalized tonic–clonic seizures since 11 years of age, who developed her first absence status epilepticus while treated with 45 mg of TGB daily. Administration of lorazepam and immediate reduction in TGB dosage was followed by complete clinical and electroencephalographic remission. This case demonstrates that TGB can induce typical absence status epilepticus in a patient with primary generalized epilepsy. Key words: absence status; status epilepticus; generalized epilepsy; seizure induction; tiagabine. INTRODUCTION wave discharges increased in rats when treated with TGB12–14. Absence status epilepticus is defined as a generalized In addition, TGB was also reported to induce non- absence seizure lasting for more than half an hour in convulsive status epilepticus in several patients with the context of a primary generalized epilepsy1.
    [Show full text]