Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches molecules Review Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches Aswir Abd Rashed 1,* , Devi-Nair Gunasegavan Rathi 1 , Nor Atikah Husna Ahmad Nasir 2 and Ahmad Zuhairi Abd Rahman 3,* 1 Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia; [email protected] 2 Department of Biology, Faculty of Applied Science, Universiti Teknologi MARA (Perlis Branch), Arau 02600, Malaysia; [email protected] 3 Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia * Correspondence: [email protected] (A.A.R.); [email protected] (A.Z.A.R.) Abstract: Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs Citation: Abd Rashed, A.; and their compounds for application as antifungal agents for the treatment of skin diseases via Rathi, D.-N.G.; Ahmad Nasir, N.A.H.; conventional and nonconventional approaches. A search was conducted using three databases Abd Rahman, A.Z. Antifungal Properties of Essential Oils and Their (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010–2020 Compounds for Application in Skin that are freely available in English were extracted. In our findings, EOs with a high percentage of Fungal Infections: Conventional and monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus Nonconventional Approaches. sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal Molecules 2021, 26, 1093. properties against various skin diseases. Some researchers developed advanced formulations such as https://doi.org/10.3390/ gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. molecules26041093 To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research. Academic Editors: Vivian Tullio, Alessandra Guerrini and Keywords: skin fungus; essential oils; in vitro; in vivo; intervention Domenico Cautela Received: 30 December 2020 Accepted: 31 January 2021 1. Introduction Published: 19 February 2021 Fungi are ubiquitous environmental microorganisms that may be categorized, accord- Publisher’s Note: MDPI stays neutral ing to their dimorphic morphology, as unicellular (yeast) or filamentous (molds). Almost with regard to jurisdictional claims in one million mycotic species have been reported to exist in nature, with approximately published maps and institutional affil- 200 species identified as human pathogenic [1]. It has been found in recent years that iations. fungal infections have contributed to increased mortality rates [2]. This phenomenon has been linked to certain age groups, especially premature neonates, infants and elderly people who are susceptible to underdeveloped or poor immune systems [3–5]. The most common species associated with deadly invasive and superficial infections are Candida sp., Copyright: © 2021 by the authors. Aspergillus sp., and Cryptococcus sp. [6]. In addition, Fusarium sp. has been shown to cause Licensee MDPI, Basel, Switzerland. opportunistic invasive fungal infections [5,7]. This article is an open access article Aspergillus spp. is a filamentous and ubiquitous fungi with A. fumigatus as the major distributed under the terms and species associated with human disease, followed by A. flavus, A. niger and A. terreus [3,8,9]. conditions of the Creative Commons In addition to the most common species, several other emerging species exist, including A. Attribution (CC BY) license (https:// clavatus, A. nidulans, A. glaucus and A. ustus [6,9]. Fusarium spp. are other fungi that can creativecommons.org/licenses/by/ cause human infections, and are the primary cause of fungal keratitis. This fungus is the 4.0/). Molecules 2021, 26, 1093. https://doi.org/10.3390/molecules26041093 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 42 Molecules 2021, 26, 1093 2 of 44 cause human infections, and are the primary cause of fungal keratitis. This fungus is the secondsecond most most common common to to infect infect severely severely immunocompromised immunocompromised patients and cause dissem dissemi-‐ inatednated infection [[10].10]. F. solani has been identified identified as the most frequent pathogen in fusarial fusarial keratitiskeratitis incidence, while F.F. oxysporum oxysporumleads leads to to major major incidences incidences of of onychomycosis onychomycosis [11 [11––13]. 13].Candida Candidaspp. spp. are tiny,are tiny, oval-shaped oval‐shaped fungi fungi with with a thin a cell thin wall cell thatwall are that capable are capable of budding of bud or‐ dingfission. or fission. Among Among the identified the identified species, species, five are five the are leading the leading cause of cause invasive of invasive infections infec (C.‐ tionsalbicans, (C. C.albicans, glabrata, C. C. glabrata, parapsilosis, C. parapsilosis, C. tropicals C.and, tropicalsC. krusei and,)[14 C.]. krusei Invasive) [14]. candidiasis Invasive oftencan‐ didiasisoccurs as often a form occurs of healthcare-associated as a form of healthcare infection,‐associated where infection, affected where patients affected are typicallypatients arereceiving typically broad-spectrum receiving broad antibiotic‐spectrum treatment, antibiotic immunosuppressants,treatment, immunosuppressants, or suffering or from suf‐ feringcancer from [15]. cancer Candidiasis [15]. Candidiasis infections typically infections exist typically on the exist epithelial on the surfaces epithelial of surfaces the mouth, of thegastrointestinal mouth, gastrointestinal tract, vagina tract, and skin vagina surfaces. and skinC. albicans surfaces.remains C. albicans the most remains common the causemost commonof skin, nail cause and of mucous skin, nail membrane and mucous infections membrane in healthy infections individuals, in healthy in whom individuals, it may also in whominduce it more may severealso induce infections more of severe the vital infections organs of [16 the,17 ].vital organs [16,17]. InIn general, general, fungal fungal diseases areare differentiateddifferentiated into into four four groups: groups: dermatophytosis, dermatophytosis, subcu- sub‐ cutaneoustaneous mycoses, mycoses, systemic systemic mycoses mycoses and and other other mycoses mycoses [4]. [4]. Dermatophytosis Dermatophytosis is causedis caused by bydermatophytes dermatophytes that that attack attack and and grow grow on dead on dead animal animal keratin. keratin.Epidermophyton, Epidermophyton, Microsporum Micro‐ sporumand Trichophyton and Trichophytonare the are three the main three genera main genera related related to dermatophytes. to dermatophytes. Dermatophytes Dermato‐ phytesare known are known as a species as a species of fungi of fungi that typically that typically infect infect and invade and invade a living a living host’s host’s skin, skin, hair hairand and nails. nails. Diseases Diseases caused caused by by dermatophytes dermatophytes are are typically typically classified classified accordingaccording to the infectioninfection site, site, but but are are broadly broadly referred referred to toas tinea. as tinea. Several Several forms forms of tinea of tinea are common are common such assuch Tinea as capitisTinea capitis (scalp(scalp and hair), and hair),Tinea corporisTinea corporis (nonhairy(nonhairy skin), Tinea skin), barbaeTinea barbae(beard),(beard), Tinea crurisTinea cruris(groin),(groin), Tinea manuumTinea manuum (hand),(hand), Tinea pedisTinea (feet) pedis and(feet) Tinea and unguiumTinea unguium (nails, (nails,also called also onchomyosis)called onchomyosis) [18]. According [18]. According to current to currentpractice, practice, five classes five of classes conventional of conventional antifungal an- treatmentstifungal treatments are commonly are commonly applied. applied.Figure 1 Figureshows1 each shows antifungal each antifungal agent and agent its mecha and its‐ nismmechanism of action. of action. Figure 1. Conventional antifungal agents and their mechanisms of action (Adapted from [19]). Figure 1. Conventional antifungal agents and their mechanisms of action (Adapted from [19]). However,However, the the treatment treatment of of fungal infections has has encountered serious serious difficulties difficulties in thethe form form of of increased increased resistance resistance due due to to the the extensive extensive use use of of antifungal antifungal agents. agents. This This situa sit-‐ tionuation has has led led to the to the insight insight that that alternative, alternative, nonconventional nonconventional approaches approaches are arerequired required for effectivefor effective antifungal antifungal treatment treatment strategies. strategies. One Oneof the of possible the possible directions directions proposed proposed is the is usethe of use essential of essential oils (EOs) oils (EOs) as potential as potential antifungal
Recommended publications
  • Tinea Infections: Athlete's Foot, Jock Itch and Ringworm
    Tinea Infections: Athlete’s Fo ot, Jock Itch and Ringworm What is tinea? Tinea is caused by a fungus that grows on your skin, hair or nails. As it grows, it spreads out in a circle, leaving normal-looking skin in the middle. This makes it look like a ring. At the edge of the ring, the skin is lifted up by the irritation and looks like a red and scaly rash. To some people, the infection looks like a worm is under the skin. Because of the way it looks, tinea infection is often called “ringworm.” However, there really is not a worm under the skin. How did I get a ringworm/tinea? You can get a fungal infection by contact with person or environment. Some fungi live on damp surfaces, like the floors of showers or locker rooms. You can even catch a fungal infection from your pets. Dogs and cats, as well as farm animals, can be infected with a fungus. Often this infection looks like a patch of skin where fur is missing (mange). What areas of the body are affected by tinea infections? Fungal infections are named for the part of the body they infect. Tinea corporis is a fungal infection of the skin on the body. If you have this infection, you may see small, red spots that grow into large rings almost anywhere on your arms, legs or chest. Tinea pedis is usually called “athlete’s foot.” The moist skin between your toes is a perfect place for a fungus to grow. The skin may become itchy and red, with a white, wet surface.
    [Show full text]
  • Candida Krusei: Biology, Epidemiology, Pathogenicity and Clinical Manifestations of an Emerging Pathogen
    J. Med. Microbiol. - Vol. 41 (1994), 295-310 0 1994 The Pathological Society of Great Britain and Ireland REVIEW ARTICLE: CLINICAL MYCOLOGY Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen YUTHIKA H. SAMARANAYAKE and L. P. SAMARANAYAKE” Department of Pathology (Oral), Faculty of Medicine and Ord diology Unit, Faculty of Dentistry, University of Hong Kong, 34 Hospital Road, Hong Kong Summary. Early reports of Candida krusei in man describe the organism as a transient, infrequent isolate of minor clinical significance inhabiting the mucosal surfaces. More recently it has emerged as a notable pathogen with a spectrum of clinical manifestations such as fungaemia, endophthalmitis, arthritis and endocarditis, most of which usually occur in compromised patient groups in a nosocomial setting. The advent of human immunodeficiency virus infection and the widespread use of the newer triazole fluconazole to suppress fungal infections in these patients have contributed to a significant increase in C. krusei infection, particularly because of the high incidence of resistance of the yeast to this drug. Experimental studies have generally shown C. krusei to be less virulent than C. albicans in terms of its adherence to both epithelial and prosthetic surfaces, proteolytic potential and production of phospholipases. Furthermore, it would seem that C. krusei is significantlydifferent from other medically important Candida spp. in its structural and metabolic features, and exhibits different behaviour patterns towards host defences, adding credence to the belief that it should be re-assigned taxonomically. An increased awareness of the pathogenic potential of this yeast coupled with the newer molecular biological approaches to its study may facilitate the continued exploration of the epidemiology and pathogenesis of C.
    [Show full text]
  • Microsporum Canis Genesig Standard
    Primerdesign TM Ltd Microsporum canis PQ-loop repeat protein gene genesig® Standard Kit 150 tests For general laboratory and research use only Quantification of Microsporum canis genomes. 1 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Introduction to Microsporum canis Microsporum canis is a zoophilic dermatophyte which is responsible for dermatophytosis in dogs and cats. They cause superficial infections of the scalp (tinea capitis) in humans and ringworm in cats and dogs. They belong to the family Arthrodermataceae and are most commonly found in humid and warm climates. They have numerous multi-celled macroconidia which are typically spindle-shaped with 5-15 cells, verrucose, thick-walled, often having a terminal knob and 35-110 by 12-25 µm. In addition, they produce septate hyphae and microconidia and the Microsporum canis genome is estimated at 23 Mb. The fungus is transmitted from animals to humans when handling infected animals or by contact with arthrospores contaminating the environment. Spores are very resistant and can live up to two years infecting animals and humans. They will attach to the skin and germinate producing hyphae, which will then grow in the dead, superficial layers of the skin, hair or nails. They secrete a 31.5 kDa keratinolytic subtilisin-like protease as well as three other subtilisin- like proteases (SUBs), SUB1, SUB2 and SUB3, which cause damage to the skin and hair follicle. Keratinolytic protease also provides the fungus nutrients by degrading keratin structures into easily absorbable metabolites. Infection leads to a hypersensitive reaction of the skin. The skin becomes inflamed causing the fungus to move away from the site to normal, uninfected skin.
    [Show full text]
  • Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: a Phylogenetic Approach
    Mycopathologia https://doi.org/10.1007/s11046-019-00338-7 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL ARTICLE Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: A Phylogenetic Approach F. Baert . D. Stubbe . E. D’hooge . A. Packeu . M. Hendrickx Received: 23 January 2019 / Accepted: 30 April 2019 Ó Springer Nature B.V. 2019 Abstract Recent taxonomical revisions based on floccosum as the only representative, fell within the multilocus gene sequencing have provided some Nannizzia clade, whereas the phylogenetic analysis, clarifications to dermatophyte (Arthrodermataceae) based on the ITS region alone, differentiates Epider- family tree. These changes promoted us to investigate mophyton from Nannizzia as a separate genus. Re- the impact of the changed nomenclature of the identification and reclassification of many strains in dermatophyte strains in the BCCM/IHEM fungal the collection have had a profound impact on the collection, which contains strains of all dermatophyte composition of the BCCM/IHEM dermatophyte col- genera except for Ctenomyces. For 688 strains from lection. The biggest change is the decline of preva- this collection, both internal transcribed spacer region lence of Arthroderma strains; starting with 103 strains, (ITS) and partial b-tubulin (BT) sequences were only 22 strains remain in the genus after reassessment. aligned and a multilocus phylogenetic tree was Most Arthroderma strains were reclassified into Tri- constructed. The ITS ? BT phylogentic tree was able chophyton, with A. benhamiae and A. van- to distinguish the genera Arthroderma, Lophophyton, breuseghemii leaving the genus. The amount of Microsporum, Paraphyton, Nannizzia and Trichophy- Microsporum strains also dropped significantly with ton with high certainty.
    [Show full text]
  • Cronicon OPEN ACCESS MICROBIOLOGY Editorial from Head to Toe: Mapping Fungi Across Human Skin
    Cronicon OPEN ACCESS MICROBIOLOGY Editorial From Head to Toe: Mapping Fungi across Human Skin Tim Sandle* Head of Microbiology, Bio Products Laboratory Limited, United Kingdom *Corresponding Author: Tim Sandle, Head of Microbiology, Bio Products Laboratory Limited, 68 Alexander Road, London Colony, St. Albans, Hertfordshire, United Kingdom. Received: July 09, 2015; Published: July 14, 2015 Introduction The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term mirobiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project [1]. This required sophisticated analysis and representative sampling, given thatThe a single collected square of centimeter data from theof human Human skin Microbiome can contain Project up to hasone enabledbillion microorganisms. microbiologists to develop an ecological map of the human relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our under body, both inside and outside. Many of the findings have extended, or even turned upside down, what was previously known about the - not correlate; some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer associa standing about fungal types, locations and numbers and how this affects health and disease [2]. With this fungal and bacteria diversity do tion with feet. This article reviews some of the more recent literature.
    [Show full text]
  • Candida Auris
    microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks.
    [Show full text]
  • Dermatophytosis Due to Microsporum Nanum Infection in a Canine
    DOI: 10.5433/1679-0359.2017v38n1p317 Dermatophytosis due to Microsporum nanum infection in a canine Dermatofitose por Microsporum nanum em um canino Marilia Avila Valandro1*; João Paulo da Exaltação Pascon2; Maria Lígia de Arruda Mistieri2; Irina Lubeck2 Abstract Miscrosporum nanum is a dermatophyte found in swine that causes non-pruritic lesions with desquamation, alopecia, and circular characteristics. M. nanum infection in dogs is rare and poorly understood in terms of its epidemiological and clinical features, and its therapeutic response. The present report describes a case of dermatophytosis due to M. nanum in a Dogo Argentino breed of dog that was used for wild boar hunting. The dermatophytosis presented with hypotrichosis, erythema, and non-pruritic desquamation in the back of the neck and chest area. The dermatophytosis was responsive to systemic treatment with itraconazole and topical (miconazole 2%) for 60 days. Thus, we conclude that the practice of hunting wild boar should be considered as a possible source of infection of M. nanum in the reported dog. The M. nanum infection showed clinical features that were similar to the lesions observed in swine, except for the absence of the circular pattern, and showed a good clinical response to the therapy. Finally, M. nanum should be considered as an etiologic agent of dermatophytosis in dogs that in some manner have had direct contact with domestic or wild swine. Key words: Dermatophytes. Dog. Therapy. Resumo O Miscrosporum nanum é um dermatófito encontrado em suídeos, promovendo lesões não pruriginosas, com características descamativas, alopécicas e circulares. A infecção de cães é rara e pouco compreendida em seus aspectos epidemiológicos, clínicos e terapêuticos.
    [Show full text]
  • Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut
    ■ CLINICAL REVIEW Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut Tinea versicolor (pityriasis versicolor) is a common imidazole, has been used for years both orally and top­ superficial fungal infection of the stratum corneum. ically with great success, although it has not been Caused by the fungus Malassezia furfur, this chronical­ approved by the Food and Drug Administration for the ly recurring disease is most prevalent in the tropics but indication of tinea versicolor. Newer derivatives, such is also common in temperate climates. Treatments are as fluconazole and itraconazole, have recently been available and cure rates are high, although recurrences introduced. Side effects associated with these triazoles are common. Traditional topical agents such as seleni­ tend to be minor and low in incidence. Except for keto­ um sulfide are effective, but recurrence following treat­ conazole, oral antifungals carry a low risk of hepato- ment with these agents is likely and often rapid. toxicity. Currently, therapeutic interest is focused on synthetic Key Words: Tinea versicolor; pityriasis versicolor; anti­ “-azole” antifungal drugs, which interfere with the sterol fungal agents. metabolism of the infectious agent. Ketoconazole, an (J Fam Pract 1996; 43:127-132) ormal skin flora includes two morpho­ than formerly thought. In one study, children under logically discrete lipophilic yeasts: a age 14 represented nearly 5% of confirmed cases spherical form, Pityrosporum orbicu- of the disease.3 In many of these cases, the face lare, and an ovoid form, Pityrosporum was involved, a rare manifestation of the disease in ovale. Whether these are separate enti­ adults.1 The condition is most prevalent in tropical tiesN or different morphologic forms in the cell and semitropical areas, where up to 40% of some cycle of the same organism remains unclear.: In the populations are affected.
    [Show full text]
  • Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
    REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy.
    [Show full text]
  • Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium Keratinophilum
    fmicb-08-00083 January 25, 2017 Time: 11:0 # 1 CASE REPORT published: 25 January 2017 doi: 10.3389/fmicb.2017.00083 Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium keratinophilum Juhaer Mijiti1†, Bo Pan2,3†, Sybren de Hoog4, Yoshikazu Horie5, Tetsuhiro Matsuzawa6, Yilixiati Yilifan1, Yong Liu1, Parida Abliz7, Weihua Pan2,3, Danqi Deng8, Yun Guo8, Peiliang Zhang8, Wanqing Liao2,3* and Shuwen Deng2,3,7* 1 Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China, 2 Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 3 Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 4 CBS-KNAW Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands, 5 Medical Mycology Research Center, Chiba University, Chiba, Japan, 6 Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan, 7 Department of Dermatology, First Hospital of Xinjiang Medical University, Urumqi, China, 8 Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China Chrysosporium species are saprophytic filamentous fungi commonly found in the Edited by: soil, dung, and animal fur. Subcutaneous infection caused by this organism is Leonard Peruski, rare in humans. We report a case of subcutaneous fungal infection caused by US Centers for Disease Control and Prevention, USA Chrysosporium keratinophilum in a 38-year-old woman. The patient presented with Reviewed by: severe chromoblastomycosis-like lesions on the left side of the jaw and neck for 6 years. Nasib Singh, She also got tinea corporis on her trunk since she was 10 years old.
    [Show full text]
  • Isolation and Characterization of Phanerochaete Chrysosporium Mutants Resistant to Antifungal Compounds Duy Vuong Nguyen
    Isolation and characterization of Phanerochaete chrysosporium mutants resistant to antifungal compounds Duy Vuong Nguyen To cite this version: Duy Vuong Nguyen. Isolation and characterization of Phanerochaete chrysosporium mutants resistant to antifungal compounds. Mycology. Université de Lorraine, 2020. English. NNT : 2020LORR0045. tel-02940144 HAL Id: tel-02940144 https://hal.univ-lorraine.fr/tel-02940144 Submitted on 16 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2-
    [Show full text]
  • Exd.13726 - Auteur(S)
    Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE In vitro models of dermatophyte infection to investigate epidermal barrier alterations Faway, Émilie; Lambert De Rouvroit, Catherine; Poumay, Yves Published in: Experimental dermatology DOI: Author(s)10.1111/exd.13726 - Auteur(s) : Publication date: 2018 Document Version PublicationPublisher's date PDF, - also Date known de aspublication Version of record : Link to publication Citation for pulished version (HARVARD): Faway, É, Lambert De Rouvroit, C & Poumay, Y 2018, 'In vitro models of dermatophyte infection to investigate Permanentepidermal link barrier - Permalien alterations', Experimental : dermatology, vol. 27, no. 8, pp. 915-922. https://doi.org/10.1111/exd.13726 Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document
    [Show full text]