Report of Contributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
7 Upgrade to the Vulcan Laser System to Support the TAW Upgrade
LASER SCIENCE AND DEVELOPMENT I Vulcan 7 Upgrade to the Vulcan laser system to support the TAW upgrade Contact [email protected] B. T. Parry, T. B. Winstone, P. N. Anderson, A. J. Frackiewicz, M. Galimberti, S. Hancock, C. Hernandez-Gomez, A. K. Kidd, M. M. Notley, M. Read and C. Wise Central Laser Facility, STFC, Rutherford Appleton Laboratory, HSIC, Didcot, Oxon OX11 0QX, UK Introduction chains. One of the rod amplifier beam lines is split The Vulcan laser facility has recently been upgraded to into two to form beams 7 and 8, the other is split into deliver an additional short pulse beam to Target Area beams 1-6. Beams 7 and 8 are normally used as short West (TAW) [1]. This new beamline is capable of pulse (CPA) beamlines. operating in the same mode as the previously existing Modelling showed that the extra amplification needed one, at energies up to 100 J in 1 ps. It also allows the to deliver the increased energy could be carried out at laser to reach new, previously inaccessible regimes, smaller beam diameter while still keeping the B-integral with the capability to deliver up to 500 J in pulses of below three, the limit for what was acceptable for a 10 ps or longer (100ps max). 10 ps pulse. This meant that rod amplifiers, rather than The increase in the delivered energy was made possible large, costly disk amplifiers, could be used. An by the use of dielectric gratings for this new 10 ps additional 45 mm diameter rod amplifier was installed beamline. -
Overview of Versatile Experiment Spherical Torus (VEST)
Overview of Versatile Experiment Spherical Torus (VEST) Y.S. Hwang and VEST team March 29, 2017 CARFRE and CATS Dept. of Nuclear Engineering Seoul National University 23rd IAEA Technical MeetingExperimental on Researchresults and plans of Using VEST Small Fusion Devices, Santiago, Chille Outline Versatile Experiment Spherical Torus (VEST) . Device and discharge status Start-up experiments . Low loop voltage start-up using trapped particle configuration . EC/EBW heating for pre-ionization . DC helicity injection Studies for Advanced Tokamak . Research directions for high-beta and high-bootstrap STs . Preparation of long-pulse ohmic discharges . Preparation for heating and current drive systems . Preparation of profile diagnostics Long-term Research Plans Summary 1/36 VEST device and Machine status VEST device and Machine status 2/36 VEST (Versatile Experiment Spherical Torus) Objectives . Basic research on a compact, high- ST (Spherical Torus) with elongated chamber in partial solenoid configuration . Study on innovative start-up, non-inductive H&CD, high and innovative divertor concept, etc Specifications Present Future Toroidal B Field [T] 0.1 0.3 Major Radius [m] 0.45 0.4 Minor Radius [m] 0.33 0.3 Aspect Ratio >1.36 >1.33 Plasma Current [kA] ~100 kA 300 Elongation ~1.6 ~2 Safety factor, qa ~6 ~5 3/36 History of VEST Discharges • #2946: First plasma (Jan. 2013) • #10508: Hydrogen glow discharge cleaning (Nov. 2014) Ip of ~70 kA with duration of ~10 ms • #14945: Boronization with He GDC (Mar. 2016) Maximum Ip of ~100 kA • # ??: -
H-Mode Transition Physics Close to DN on MAST and Its Applications to Other Tokamaks
20th IAEA FUSION ENERGY CONFERENCE 1-6 November 2004 Vilamoura, Portugal Organized by the International Atomic Energy Agency Hosted by the Government of Portugal through: INSTITUTO SUPERIOR TÉCNICO Centro de Fusão Nuclear www.cfn.ist.utl.pt Book of Abstracts IAEA-CN-116 20th IAEA Fusion Energy Conference 2004 Book of Abstracts Contents Overview (OV) 1 OV/1-1 ·Overview of JT-60U Progress towards Steady-state Advanced Tokamak . 2 OV/1-2 ·Overview of JET results . 2 OV/1-3 ·Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak 2 OV/1-4 ·Confinement and MHD stability in the Large Helical Device . 2 OV/1-5 ·Overview of ASDEX Upgrade Results . 3 OV/2-1 ·Overview of Zonal Flow Physics . 3 OV/2-2 ·Steady-state operation of Tokamaks: key physics and technology developments on Tore Supra. 3 OV/2-3 ·Progress Towards High Performance Plasmas in the National Spherical Torus Experiment (NSTX) . 4 OV/2-4 ·Overview of MAST results . 4 OV/2-5 ·Overview of Alcator C-Mod Research Program . 5 OV/3-1 ·Recent Advances in Indirect Drive ICF Target Physics . 5 OV/3-2 ·Laser Fusion research with GEKKO XII and PW laser system at Osaka . 5 OV/3-3 ·Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition . 5 OV/3-4 ·Acceleration Technology and Power Plant Design for Fast Ignition Heavy Ion Inertial Fusion Energy . 6 OV/3-5Ra ·Progress on Z-Pinch Inertial Fusion Energy . 6 OV/3-5Rb ·Wire Array Z pinch precursors, implosions and stagnation . -
Nd Lu Caf2 for High-Energy Lasers Simone Normani
Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D. -
Italy . Frascati Tokamak Upgrade . Superconductors
it enea the italian fusion programme is coordinated by EnEa (agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile). EnEa works with linked third parties: universities, research institutes, and industries. institutes carrying out fusion research along with EnEa include plasma physics institute (ifp), Consorzio rfX, national research Council of italy (Cnr), national institute for nuclear physics (infn) and university of padova. about 600 professionals work on fusion research in institutions across italy. enea • EnEa centre at frascati houses the frascati tokamak upgrade (ftu) tokamak, a high- magnetic-field, high-plasma-density tokamak; it investigates radio-frequency plasma heating, control techniques and plasma-wall interaction with liquid metal walls • frascati neutron generator, a medium intensity 14-mev neutron generator, is used for experimental validation of fusion nuclear data and codes. • studies and development of superconductor materials are carried out at the EnEa superconductivity laboratory • EnEa’s high heat flux Components laboratory set up and tested the manufacturing process and a dedicated facility for the fabrication of full scale itEr divertor target prototypes • Design and experimental validation of liquid metal technology for breeding blankets can be done at EnEa centre at Brasimone. ConsoRZio RFX • Consorzio rfX staff are involved in the scientific exploitation and upgrade of the rfX-mod experiment, a flexible device which can be operated both as a high current reversed field pinch -
Advanced Approaches to High Intensity Laser-Driven Ion Acceleration
Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig M¨unchen2010 Advanced Approaches to High Intensity Laser-Driven Ion Acceleration Andreas Henig Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Andreas Henig aus W¨urzburg M¨unchen, den 18. M¨arz2010 Erstgutachter: Prof. Dr. Dietrich Habs Zweitgutachter: Prof. Dr. Toshiki Tajima Tag der m¨undlichen Pr¨ufung:26. April 2010 Contents Contentsv List of Figures ix Abstract xiii Zusammenfassung xv 1 Introduction1 1.1 History and Previous Achievements...................1 1.2 Envisioned Applications.........................3 1.3 Thesis Outline...............................5 2 Theoretical Background9 2.1 Ionization.................................9 2.2 Relativistic Single Electron Dynamics.................. 14 2.2.1 Electron Trajectory in a Linearly Polarized Plane Wave.... 15 2.2.2 Electron Trajectory in a Circularly Polarized Plane Wave... 17 2.2.3 Electron Ejection from a Focussed Laser Beam......... 18 2.3 Laser Propagation in a Plasma..................... 18 2.4 Laser Absorption in Overdense Plasmas................. 20 2.4.1 Collisional Absorption...................... 20 2.4.2 Collisionless Absorption..................... 21 2.5 Ion Acceleration.............................. 22 2.5.1 Target Normal Sheath Acceleration (TNSA).......... 22 2.5.2 Shock Acceleration........................ 26 2.5.3 Radiation Pressure Acceleration / Light Sail / Laser Piston. 27 3 Experimental Methods I - High Intensity Laser Systems 33 3.1 Fundamentals of Ultrashort High Intensity Pulse Generation..... 33 vi CONTENTS 3.1.1 The Concept of Mode-Locking.................. 33 3.1.2 Time-Bandwidth Product.................... 37 3.1.3 Chirped Pulse Amplification................... 39 3.1.4 Optical Parametric Amplification (OPA)............ 40 3.2 Laser Systems Utilized for Ion Acceleration Studies......... -
Proton Beams Generated by Ultrashort-Pulse Lasers Will Help
S&TR December 2003 Proton-Beam Experiments 11 Proton beams ROTONS, the positively charged, Psubatomic particles discovered by Lord Rutherford nearly 100 years ago, are still surprising scientists. Lawrence generated by Livermore researchers are discovering that proton beams created by powerful, ultrashort pulses of laser light can be used to create and even diagnose plasmas, the ultrashort-pulse superhot state of matter that exists in the cores of stars and in detonating nuclear weapons. The proton-beam experiments promise new techniques for maintaining lasers will help the nationʼs nuclear arsenal and for better understanding how stars function. The proton beams used in the Laboratoryʼs experiments are produced advance our by pulses of laser light lasting only about 100 femtoseconds (a femtosecond is 10–15 seconds, or one-quadrillionth of a second) and having a brightness, or understanding of irradiance, up to 5 × 1020 watts per square centimeter. When such fleeting pulses are focused onto thin foil targets, as many as 100 billion protons are emitted, with plasmas. energies up to 25 megaelectronvolts. The protons come from a spot on the foil about 200 micrometers in diameter, and the beamʼs duration is a few times longer than the laser pulse. The highest-energy protons diverge 1 to 2 degrees from the perpendicular, while the lowest-energy protons form a cone about 20 degrees from perpendicular. Funded by the Laboratory Directed Research and Development Program, the Livermore experiments are led by physicists Pravesh Patel and Andrew Mackinnon. Patel, who works in the Laboratoryʼs Physics and Advanced Lawrence Livermore National Laboratory 12 Proton-Beam Experiments S&TR December 2003 Technologies Directorate, is researching per gram) that exist in stars. -
The Vulcan 10 PW Project 7
LASER SCIENCE AND DEVELOPMENT I Vulcan The Vulcan 10 PW project 7 Contact [email protected] C. Hernandez-Gomez, S. P. Blake, O. Chekhlov, R. J. Clarke, A. M. Dunne, M. Galimberti, S. Hancock, P. Holligan, A. Lyachev, P. Matousek, I. O. Musgrave, D. Neely, P. A. Norreys, I. Ross, Y. Tang, T. B. Winstone, B. E. Wyborn and J. Collier Central Laser Facility, STFC, Rutherford Appleton Laboratory, HSIC, Didcot, Oxfordshire, OX11 0QX, UK Introduction This projects aim is to upgrade the Vulcan high power laser located at the Central Laser Facility (CLF), to beyond the 10 PW power level (1016 W) and provide focused intensities of greater than 1023 Wcm-2 to its international user community [1]. The project was divided in two phases. Phase 1 of 2 year duration, started in December 2006. A proposal for phase 2 has been submitted and reviewed. The start date of phase 2 is still under discussions. We report here on the overall progress made during the first phase. There were essentially three key areas to address as part of phase 1: • A novel “front end” system has been developed for Figure 1. Area photograph of the 10 PW Front End. the overall project and its performance has been verified with respect to key indicators such as wavelength, energy, bandwidth, pulselength, develop this high (150 nm) bandwidth version and the contrast etc. overall design is now based on this approach. • There has been a significant reduction in the risk associated with several key technical elements of the The 910 nm seed currently generated with the chirped project, particularly the large aperture diffraction scheme has a bandwidth of 165 nm and energy of gratings and laser amplifiers Several outstanding 40 µJ per pulse. -
A New Interlock System for the Vulcan Laser
Laser Science and Development – Instrumentation A new interlock system for the Vulcan laser C J Reason, W J Lester, P Holligan, D A Pepler, R W W Wyatt Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK Main contact email address: [email protected] Introduction architecture allows the rest of the system to continue providing safety functionality even when a room is ‘turned The provision of safety interlocks in the CLF has developed off’ (e.g. lost power). through stages, starting with a hardwired system, through to a computer system, ‘Cerberus’1) using Arcnet and written in Cerberus Borland Turbo Pascal V 3 running under DOS, to Layout display Door / room displays ‘Cerberus’2) – rewritten as a computer system using Ethernet and written in Borland Turbo Pascal V 7 running under DOS. This has had to be replaced for a number of reasons including Cerberus Computer Video splitter • Much of the hardware is no longer available (e.g. Ethernet network door displays, Amplicon IO cards etc). PLC system Digital signals • The computers with ISA slots are no longer easily available. Safety PLC system • DOS and Borland Turbo Pascal are no longer Laser or target area Next room supported. Argus • The limits on code and data of 64 Kbytes were preventing necessary changes to the system. Figure 1. The system architecture. Also a new international standard IEC 61508 - Functional Safety for E, E, EP (Electrical / Electronic / Electronic The Argus PLC system 3) Programmable) systems has been published. It is This was designed from the lifecycle developed from IEC recommended (but not mandatory) that safety systems should 61508. -
Review of Laser Diagnostics at the Vulcan Laser Facility
High Power Laser Science and Engineering, (2015), Vol. 3, e26, 10 pages. © The Author(s) 2015. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>. doi:10.1017/hpl.2015.27 Review of laser diagnostics at the Vulcan laser facility Ian Musgrave, Marco Galimberti, Alexis Boyle, Cristina Hernandez-Gomez, Andrew Kidd, Bryn Parry, Dave Pepler, Trevor Winstone, and John Collier Central Laser Facility, Science and Technology Facilities Council, RAL, Didcot, Oxfordshire OX 11 0QX, UK (Received 1 May 2015; revised 6 July 2015; accepted 31 July 2015) Abstract In this paper we review the provision of the laser diagnostics that are installed on the Vulcan laser facility. We will present strategies for dealing with the energy of high energy systems and with ways of handling the beam sizes of the lasers. We present data captured during typical experimental campaigns to demonstrate their reliability and variation in shot to shot values. Keywords: calorimeter; high power laser; laser diagnostics; pulse energy 1. Introduction Offner¨ stretcher. Following this are three further stages of OPCPA to achieve >60 mJ of energy. These pulses are The Vulcan laser facility of the Central Laser Facility is then amplified in a mixed silicate and phosphate glass rod located in the UK. It is an open access laser facility operated amplifier chain before final amplification in a phosphate ostensibly for the UK academic community for the purposes disc chain. The pulses are finally compressed before being of studying laser–matter interactions[1–3]. -
A History of High-Power Laser Research and Development in the United Kingdom
High Power Laser Science and Engineering, (2021), Vol. 9, e18, 86 pages. doi:10.1017/hpl.2021.5 REVIEW A history of high-power laser research and development in the United Kingdom Colin N. Danson1,2,3, Malcolm White4,5,6, John R. M. Barr7, Thomas Bett8, Peter Blyth9,10,11,12, David Bowley13, Ceri Brenner14, Robert J. Collins15, Neal Croxford16, A. E. Bucker Dangor17, Laurence Devereux18, Peter E. Dyer19, Anthony Dymoke-Bradshaw20, Christopher B. Edwards1,14, Paul Ewart21, Allister I. Ferguson22, John M. Girkin23, Denis R. Hall24, David C. Hanna25, Wayne Harris26, David I. Hillier1, Christopher J. Hooker14, Simon M. Hooker21, Nicholas Hopps1,17, Janet Hull27, David Hunt8, Dino A. Jaroszynski28, Mark Kempenaars29, Helmut Kessler30, Sir Peter L. Knight17, Steve Knight31, Adrian Knowles32, Ciaran L. S. Lewis33, Ken S. Lipton34, Abby Littlechild35, John Littlechild35, Peter Maggs36, Graeme P. A. Malcolm OBE37, Stuart P. D. Mangles17, William Martin38, Paul McKenna28, Richard O. Moore1, Clive Morrison39, Zulfikar Najmudin17, David Neely14,28, Geoff H. C. New17, Michael J. Norman8, Ted Paine31, Anthony W. Parker14, Rory R. Penman1, Geoff J. Pert40, Chris Pietraszewski41, Andrew Randewich1, Nadeem H. Rizvi42, Nigel Seddon MBE43, Zheng-Ming Sheng28,44, David Slater45, Roland A. Smith17, Christopher Spindloe14, Roy Taylor17, Gary Thomas46, John W. G. Tisch17, Justin S. Wark2,21, Colin Webb21, S. Mark Wiggins28, Dave Willford47, and Trevor Winstone14 1AWE Aldermaston, Reading, UK 2Oxford Centre for High Energy Density Science, Department of Physics, -
Nobel Lecture, December 8, 2018 by Gérard Mourou University of Michigan, Ann Arbor, MI, USA & École Polytechnique, Palaiseau, France
96 Extreme Light Physics and Application Nobel Lecture, December 8, 2018 by Gérard Mourou University of Michigan, Ann Arbor, MI, USA & École Polytechnique, Palaiseau, France. I. INTRODUCTION The advent of ultraintense laser pulses generated by the technique of chirped pulse amplifcation (CPA), along with the development of high-fuence laser materials has opened up entirely new felds of optics. A CPA laser exhibits stunning capabilities. It can generate the largest feld, the largest pressure, the highest temperature and accelerating feld, mak- ing it a universal source of high energy particles and radiation. CPA technology produces a wide range of intensities extending from 1014 to 1025 W/cm 2. In the lower part of this range, the intensity regimes of 1014 to 1017 have applications that include micromachining, which can be performed on material regardless of its nature, i.e. ceramic, metal, biologi- cal tissue, cornea, etc. Extremely clean cuts of minimal roughness even at the atomic scale are produced. This attractive property led us to applica- tions in ophthalmic procedures like refractive surgery, cataract surgery, corneal transplants and glaucoma treatment. Today, a million patients a year are benefting from femtosecond interventions. In science, in the same intensity level, CPA makes possible to reach the attosecond frontier, ofering a formidable tool to time resolved fundamental electronic pro- cesses. Gérard Mourou Lecture 97 For intensities >1018 W/cm 2 laser-matter interaction becomes strongly dominated by the relativistic character of the electron. In contrast to the nonrelativistic regime, the laser feld moves matter more efectively, including motion in the direction of laser propagation, nonlinear modula- tion and harmonic generation, leading to high energy particle and radia- tion production.