Kinetic Modeling of Runaway-Electron Dynamics in Partially Ionized Plasmas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trapped-Electron Runaway Effect
J. Plasma Physics (2015), vol. 81, 475810403 c Cambridge University Press 2015 1 doi:10.1017/S0022377815000446 Trapped-electron runaway effect E. Nilsson1†, J. Decker2,N.J.Fisch3 and Y. Peysson1 1CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 2Ecole Polytechnique Fed´ erale´ de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne, Switzerland 3Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA (Received 1 March 2015; revised 27 March 2015; accepted 31 March 2015; first published online 28 April 2015) In a tokamak, trapped electrons subject to a strong electric field cannot run away immediately, because their parallel velocity does not increase over a bounce period. However, they do pinch toward the tokamak center. As they pinch toward the center, the trapping cone becomes more narrow, so eventually they can be detrapped and run away. When they run away, trapped electrons will have a very different signature from circulating electrons subject to the Dreicer mechanism. The characteristics of what are called trapped-electron runaways are identified and quantified, including their distinguishable perpendicular velocity spectrum and radial extent. 1. Introduction Under acceleration by a constant toroidal electric field, circulating electrons in tokamaks run away when their velocity parallel to the magnetic field is so large that the frictional collision forces become too small to impede acceleration by the electric field. The runaway velocity is the demarcation velocity: the electric field cannot prevent electrons slower than this velocity from slowing down further due to collisions; collisions are too weak to prevent electrons faster than this velocity from undergoing acceleration by the electric field to even higher energies. -
Overview of Versatile Experiment Spherical Torus (VEST)
Overview of Versatile Experiment Spherical Torus (VEST) Y.S. Hwang and VEST team March 29, 2017 CARFRE and CATS Dept. of Nuclear Engineering Seoul National University 23rd IAEA Technical MeetingExperimental on Researchresults and plans of Using VEST Small Fusion Devices, Santiago, Chille Outline Versatile Experiment Spherical Torus (VEST) . Device and discharge status Start-up experiments . Low loop voltage start-up using trapped particle configuration . EC/EBW heating for pre-ionization . DC helicity injection Studies for Advanced Tokamak . Research directions for high-beta and high-bootstrap STs . Preparation of long-pulse ohmic discharges . Preparation for heating and current drive systems . Preparation of profile diagnostics Long-term Research Plans Summary 1/36 VEST device and Machine status VEST device and Machine status 2/36 VEST (Versatile Experiment Spherical Torus) Objectives . Basic research on a compact, high- ST (Spherical Torus) with elongated chamber in partial solenoid configuration . Study on innovative start-up, non-inductive H&CD, high and innovative divertor concept, etc Specifications Present Future Toroidal B Field [T] 0.1 0.3 Major Radius [m] 0.45 0.4 Minor Radius [m] 0.33 0.3 Aspect Ratio >1.36 >1.33 Plasma Current [kA] ~100 kA 300 Elongation ~1.6 ~2 Safety factor, qa ~6 ~5 3/36 History of VEST Discharges • #2946: First plasma (Jan. 2013) • #10508: Hydrogen glow discharge cleaning (Nov. 2014) Ip of ~70 kA with duration of ~10 ms • #14945: Boronization with He GDC (Mar. 2016) Maximum Ip of ~100 kA • # ??: -
Evaluation of Monte Carlo Tools for High Energy Atmospheric Physics
Geosci. Model Dev., 9, 3961–3974, 2016 www.geosci-model-dev.net/9/3961/2016/ doi:10.5194/gmd-9-3961-2016 © Author(s) 2016. CC Attribution 3.0 License. Evaluation of Monte Carlo tools for high energy atmospheric physics Casper Rutjes1, David Sarria2, Alexander Broberg Skeltved3, Alejandro Luque4, Gabriel Diniz5,6, Nikolai Østgaard3, and Ute Ebert1,7 1Centrum Wiskunde & Informatica (CWI), Amsterdam, the Netherlands 2Astroparticules et Cosmologie, University Paris VII Diderot, CNRS, Paris, France 3Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway 4Instituto de Astrofísica de Andalucía (IAA-CSIC), P.O. Box 3004, Granada, Spain 5Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brazil 6Instituto de Física, Universidade de Brasília, Brasília (UnB), Distrito Federal, Brazil 7Eindhoven University of Technology, Eindhoven, the Netherlands Correspondence to: Casper Rutjes ([email protected]) Received: 8 June 2016 – Published in Geosci. Model Dev. Discuss.: 20 June 2016 Revised: 9 September 2016 – Accepted: 7 October 2016 – Published: 8 November 2016 Abstract. The emerging field of high energy atmospheric 1 Introduction physics (HEAP) includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thun- 1.1 Phenomena in high energy atmospheric physics derstorms. Similar emissions of high energy particles oc- cur in pulsed high voltage discharges. Understanding these Thunderstorms have been observed to produce terrestrial phenomena requires appropriate models for the interaction gamma-ray flashes (TGFs) (Fishman et al., 1994) and of electrons, positrons and photons of up to 40 MeV en- electron–positron beams (Dwyer et al., 2008b; Briggs et al., ergy with atmospheric air. -
The Physics of Streamer Discharge Phenomena
The physics of streamer discharge phenomena Sander Nijdam1, Jannis Teunissen2;3 and Ute Ebert1;2 1 Eindhoven University of Technology, Dept. Applied Physics P.O. Box 513, 5600 MB Eindhoven, The Netherlands 2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands 3 KU Leuven, Centre for Mathematical Plasma-astrophysics, Leuven, Belgium E-mail: [email protected] Abstract. In this review we describe a transient type of gas discharge which is commonly called a streamer discharge, as well as a few related phenomena in pulsed discharges. Streamers are propagating ionization fronts with self-organized field enhancement at their tips that can appear in gases at (or close to) atmospheric pressure. They are the precursors of other discharges like sparks and lightning, but they also occur in for example corona reactors or plasma jets which are used for a variety of plasma chemical purposes. When enough space is available, streamers can also form at much lower pressures, like in the case of sprite discharges high up in the atmosphere. We explain the structure and basic underlying physics of streamer discharges, and how they scale with gas density. We discuss the chemistry and applications of streamers, and describe their two main stages in detail: inception and propagation. We also look at some other topics, like interaction with flow and heat, related pulsed discharges, and electron runaway and high energy radiation. Finally, we discuss streamer simulations and diagnostics in quite some detail. This review is written with two purposes in mind: First, we describe recent results on the physics of streamer discharges, with a focus on the work performed in our groups. -
Etude Par La Simulation Et L'expérimentation De La Production D
Etude par la simulation et l’expérimentation de la production d’ions métalliques Calcium à l’aide d’une source d’ions du type Résonance Cyclotronique Electronique Alexandre Leduc To cite this version: Alexandre Leduc. Etude par la simulation et l’expérimentation de la production d’ions métalliques Cal- cium à l’aide d’une source d’ions du type Résonance Cyclotronique Electronique. Physique [physics]. Normandie Université, 2019. Français. NNT : 2019NORMC239. tel-02520530v2 HAL Id: tel-02520530 https://tel.archives-ouvertes.fr/tel-02520530v2 Submitted on 27 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité PHYSIQUE Préparée au sein de l'Université de Caen Normandie Εtude par la simulatiοn et l'expérimentatiοn de la prοductiοn d'iοns métalliques Calcium à l'aide d'une sοurce d'iοns du type Résοnance Cyclοtrοnique Εlectrοnique Présentée et soutenue par Alexandre LEDUC Thèse soutenue publiquement le 06/11/2019 devant le jury composé de M. LUIGI CELONA Directeur de recherche, INFN-LNS Rapporteur du jury M. LAURENT GARRIGUES Directeur de recherche, Université Toulouse 3 Paul Sabatier Rapporteur du jury M. -
H-Mode Transition Physics Close to DN on MAST and Its Applications to Other Tokamaks
20th IAEA FUSION ENERGY CONFERENCE 1-6 November 2004 Vilamoura, Portugal Organized by the International Atomic Energy Agency Hosted by the Government of Portugal through: INSTITUTO SUPERIOR TÉCNICO Centro de Fusão Nuclear www.cfn.ist.utl.pt Book of Abstracts IAEA-CN-116 20th IAEA Fusion Energy Conference 2004 Book of Abstracts Contents Overview (OV) 1 OV/1-1 ·Overview of JT-60U Progress towards Steady-state Advanced Tokamak . 2 OV/1-2 ·Overview of JET results . 2 OV/1-3 ·Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak 2 OV/1-4 ·Confinement and MHD stability in the Large Helical Device . 2 OV/1-5 ·Overview of ASDEX Upgrade Results . 3 OV/2-1 ·Overview of Zonal Flow Physics . 3 OV/2-2 ·Steady-state operation of Tokamaks: key physics and technology developments on Tore Supra. 3 OV/2-3 ·Progress Towards High Performance Plasmas in the National Spherical Torus Experiment (NSTX) . 4 OV/2-4 ·Overview of MAST results . 4 OV/2-5 ·Overview of Alcator C-Mod Research Program . 5 OV/3-1 ·Recent Advances in Indirect Drive ICF Target Physics . 5 OV/3-2 ·Laser Fusion research with GEKKO XII and PW laser system at Osaka . 5 OV/3-3 ·Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition . 5 OV/3-4 ·Acceleration Technology and Power Plant Design for Fast Ignition Heavy Ion Inertial Fusion Energy . 6 OV/3-5Ra ·Progress on Z-Pinch Inertial Fusion Energy . 6 OV/3-5Rb ·Wire Array Z pinch precursors, implosions and stagnation . -
Largest Particle Simulations Downgrade the Runaway Electron Risk for ITER
Largest Particle Simulations Downgrade the Runaway Electron Risk for ITER Jian Liu1*, Hong Qin1,2*, Yulei Wang1*, Guangwen Yang3,4, Jiangshan Zheng1, Yicun Yao1, Yifeng Zheng1, Zhao Liu4, Xin Liu5 1. School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2. Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA 3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 4. National Supercomputing Center in Wuxi, Wuxi 214072, China 5. National Research Center of Parallel Computer Engineering and Technology * These authors contributed equally to this work. Fusion energy will be the ultimate clean energy source for mankind. The ITER device under construction by international partners will bring this goal one-step closer 1,2. Before constructing the first prototype fusion power plant, one of the most visible concerns that needs to be addressed is the threat of deleterious runaway electrons (REs) produced during unexpected disruptions of the fusion plasma 3-7. Massive REs can carry up to 70% of the initial plasma current in ITER, and understanding their dynamical behavior is crucial to assess the safety of ITER. However, the complex dynamics of REs in a realistic fusion reactor is almost impossible to simulate numerically because it requires efficient long-term algorithms and super-large scale computing power 8,9. In the present study, we deploy the world’s fastest supercomputer, Sunway TaihuLight 10,11, and the newly developed relativistic volume-preserving algorithm 12 to carry out long-term particle simulations of 107 sampled REs in 6D phase space. -
Arxiv:2009.11801V3 [Physics.Plasm-Ph] 2 Oct 2020 in Agreement with Experimental Observations
Compressional Alfv´eneigenmodes excited by runaway electrons Chang Liu Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America E-mail: [email protected] Dylan P. Brennan Princeton University, Princeton, NJ, United States of America Andrey Lvovskiy Oak Ridge Associated Universities, Oak Ridge, TN, United States of America Carlos Paz-Soldan General Atomics, San Diego, CA, United States of America Eric D. Fredrickson Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America Princeton University, Princeton, NJ, United States of America Abstract. Compressional Alfv´en eigenmodes (CAE) driven by energetic ions have been observed in magnetic fusion experiments. In this paper, we show that the modes can also be driven by runaway electrons formed in post-disruption plasma, which may explain kinetic instabilities observed in DIII-D disruption experiments with massive gas injection. The mode-structure is calculated, as are the frequencies which are arXiv:2009.11801v3 [physics.plasm-ph] 2 Oct 2020 in agreement with experimental observations. Using a runaway electron distribution function obtained from a kinetic simulation, the mode growth rates are calculated and found to exceed the collisional damping rate when the runaway electron density exceeds a threshold value. The excitation of CAE poses a new possible approach to mitigate seed runaway electrons during the current quench and surpassing the avalanche. Compressional Alfv´eneigenmodes excited by runaway electrons 2 1. Introduction The generation of high-energy runaway electrons poses one of the major threats to the safety and reliable performance of tokamak fusion reactors [1]. -
Italy . Frascati Tokamak Upgrade . Superconductors
it enea the italian fusion programme is coordinated by EnEa (agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile). EnEa works with linked third parties: universities, research institutes, and industries. institutes carrying out fusion research along with EnEa include plasma physics institute (ifp), Consorzio rfX, national research Council of italy (Cnr), national institute for nuclear physics (infn) and university of padova. about 600 professionals work on fusion research in institutions across italy. enea • EnEa centre at frascati houses the frascati tokamak upgrade (ftu) tokamak, a high- magnetic-field, high-plasma-density tokamak; it investigates radio-frequency plasma heating, control techniques and plasma-wall interaction with liquid metal walls • frascati neutron generator, a medium intensity 14-mev neutron generator, is used for experimental validation of fusion nuclear data and codes. • studies and development of superconductor materials are carried out at the EnEa superconductivity laboratory • EnEa’s high heat flux Components laboratory set up and tested the manufacturing process and a dedicated facility for the fabrication of full scale itEr divertor target prototypes • Design and experimental validation of liquid metal technology for breeding blankets can be done at EnEa centre at Brasimone. ConsoRZio RFX • Consorzio rfX staff are involved in the scientific exploitation and upgrade of the rfX-mod experiment, a flexible device which can be operated both as a high current reversed field pinch -
European Consortium for the Development of Fusion Energy European Consortium for the Development of Fusion Energy CONTENTS CONTENTS
EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy Contents Contents introDuCtion ReseaRCH units CooRDinating national ReseaRCH FoR euRofusion 16 agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (enea), italy euRofusion: eMboDying tHe sPiRit oF euRoPean CollaboRation 17 FinnFusion, finland 4 the essence of fusion 18 fusion@Öaw, austria the tantalising challenge of realising fusion power 19 hellenic fusion research unit (Hellenic Ru), greece the history of European fusion collaboration 20 institute for plasmas and nuclear fusion (iPFn), portugal 5 Eurofusion is born 21 institute of solid state physics (issP), latvia the road from itEr to DEmo 22 Karlsruhe institute of technology (Kit), germany 6 Eurofusion facts at a glance 23 lithuanian Energy institute (lei), lithuania 7 itEr facts at a glance 24 plasma physics and fusion Energy, Department of physics, technical university of Denmark (Dtu), Denmark JEt facts at a glance 25 plasma physics Department, wigner Fusion, hungary 8 infographic: Eurofusion devices and research units 26 plasma physics laboratory, Ecole royale militaire (lPP-eRM/KMs), Belgium 27 ruder Boškovi´c institute, Croatian fusion research unit (CRu), Croatia 28 slovenian fusion association (sFa), slovenia 29 spanish national fusion laboratory (lnF), CiEmat, spain 30 swedish research Council (vR), sweden rEsEarCh unit profilEs 31 sylwester Kaliski institute of plasma physics and laser microfusion (iPPlM), poland 32 the institute -
Dynamics of Runaway Electrons in Tokamak Plasmas Emelie Nilsson
Dynamics of runaway electrons in tokamak plasmas Emelie Nilsson To cite this version: Emelie Nilsson. Dynamics of runaway electrons in tokamak plasmas. Physics [physics]. CEA, 2015. English. tel-01212017 HAL Id: tel-01212017 https://pastel.archives-ouvertes.fr/tel-01212017 Submitted on 5 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Association Euratom-CEA Ecole´ Polytechnique Institut de Recherche sur la Fusion par confinement Magn´etique Graduate School CEA/DSM/IRFM/SCCP/GSEM 91128 Palaiseau F-13118 Saint-Paul-lez-Durance France France Dynamics of runaway electrons in tokamak plasmas Th`esede doctorat pr´esent´eedevant la Graduate School de l’Ecole´ Polytechnique par Emelie Nilsson pour obtenir le grade de Docteur de l’Ecole´ Polytechnique Sp´ecialit´e:Physique des plasmas soutenue le 9 September 2015 devant le jury compos´ede Prof. Nathaniel Fisch Princeton Plasma Physics Laboratory Pr´esident du Jury Prof. Yves Peysson CEA, IRFM Directeur de Th`ese Prof. Lars-G¨oranEriksson European Commission Rapporteur Dr. Gergo Pokol Budapest University -
Relativistic Runaway Electrons Tokamak Plasmas Roger Jaspers
Relativistic Runaway Electrons Tokamak Plasmas Roger Jaspers 1 C] /U i I'J • / -^ / S RELATIVISTIC RUNAWAY ELECTRONS IN TOKAMAK PLASMAS *DEO08O71036* Met een samenvatting in het Nederlands KS00192253X R: FI DE0O8071036 Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. J.H. van Lint, voor een commissie aangewezen door het College van Dekanen in het openbaar te verdedigen op vrijdag 3 februari 1995 om 16.00 uur door Roger Jozef Elisabeth Jaspers geboren op 20 april 1968 te Wittem Dit proefschrift is goedgekeurd door de promotoren: Prof.dr. N.J. Lopes Cardozo en Prof.dr. F.C. Schüller en de co-promotor: dr. K.H. Finken CIP-DATA Koninklijke Bibliotheek, Den Haag Jaspers, Roger Jozef Elisabeth Relativistic runaway electrons in tokamak plasmas / Roger Jozef Elisabeth Jaspers Proefschrift Technische Universiteit Eindhoven - Met een samenvatting in het Nederlands. ISBN 90-386-0474-2 The work described in this thesis was performed as part of a research programme of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM) and 'Institut für Plasmaphysik, Forschungszentrum Jülich GmbH' with financial support from the 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek' (NWO), EURATOM and Forschungszentrum Jülich, and was carried out at the TEXTOR tokamak, Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Germany. " If we knew what it was we were doing, it would not be called research, would it?" A. Einstein Octal n£CL TABLE OF CONTENTS 1A General