The Transcription Factor ERG Is a Gatekeeper of Endothelial Cell Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

The Transcription Factor ERG Is a Gatekeeper of Endothelial Cell Homeostasis The Transcription Factor ERG is a Gatekeeper of Endothelial Cell Homeostasis Nicola Helen Dryden This thesis is submitted to Imperial College London for the degree of Doctor of Philosophy (PhD) Imperial College London National Heart and Lung Institute Vascular Sciences Section 1 Declaration of originality I, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Endothelial cells (EC) maintain homeostasis through the tightly controlled balance between expression of protective genes and repression of pro-inflammatory genes, and loss of this balance can cause endothelial dysfunction, leading to inflammatory diseases including atherosclerosis. We have previously shown that the ETS transcription factor Erg is involved in maintaining EC homeostasis through transactivation of genes involved in key functions including angiogenesis, migration and survival. In addition to the role for Erg as a transcriptional activator, recent genome wide gene expression analysis has also highlighted a role for Erg in the repression of multiple pro-inflammatory genes. In this Thesis I describe a novel mechanism for Erg-mediated repression of these pro-inflammatory genes using ICAM- 1 as a model. We identify two ETS binding sites (EBS) within the ICAM-1 promoter (EBS- 118 and -181) which are required for Erg mediated repression. One of these EBS is within a functional NF-κB binding site. We show that the increase in ICAM-1 expression upon Erg inhibition is NF-κB dependent, and that Erg prevents NF-κB p65 from binding to the ICAM- 1 promoter, suggesting a direct mechanism of interference. Gene Set Enrichment Analysis (GSEA) of transcriptome profiles of Erg and NF-κB dependent genes, together with chromatin immunoprecipitation (ChIP) studies, reveals that this mechanism is common to other pro-inflammatory genes, including cIAP2 and IL8. We investigate the role of chromatin modifying enzymes and histone modifications in Erg-mediated repression and show that in quiescent EC the ICAM-1 promoter is also bound by the histone methyltransferase ESET, and by HDAC1, both indicators of a repressed chromatin structure. Moreover, in silico data on histone modifications suggest that in quiescent EC the ICAM-1 promoter is in a repressed conformation. The results from this Thesis suggest that Erg acts as a gatekeeper to inhibit transactivation of pro-inflammatory genes in quiescent EC, providing an important barrier to protect against inappropriate endothelial activation. 3 For My Family 4 Table of Contents The Transcription Factor ERG is a Gatekeeper of Endothelial Cell Homeostasis .................... 1 Declaration of originality ........................................................................................................... 2 Abstract ...................................................................................................................................... 3 Publications arising from this Thesis ....................................................................................... 13 Acknowledgements .................................................................................................................. 14 List of Figures .......................................................................................................................... 15 List of Tables ........................................................................................................................... 18 Chapter One: Introduction ...................................................................................................... 19 1.1. Inflammation ................................................................................................................. 20 1.1.1. Inflammation in atherosclerosis .......................................................................... 21 1.1.2. Mechanisms of inflammation in atherosclerosis ................................................ 21 1.1.3. The resting endothelium ..................................................................................... 24 1.1.4. Activation of endothelium during inflammation ................................................ 24 1.1.5. Leukocyte recruitment ........................................................................................ 25 1.2. Inflammatory stimuli involved in leukocytes recruitment and downstream targets ..... 28 1.2.1. TNF-α ................................................................................................................. 28 1.2.2. IL-1 ..................................................................................................................... 28 1.2.3. IFN-γ ................................................................................................................... 29 1.3. Role of the transcription factor NF-κB in inflammation .............................................. 29 1.3.1. NF-κB family members and structure ................................................................ 29 1.3.2. NF-κB consensus sequences and specificity ...................................................... 32 1.3.3. Regulation of NF-κB .......................................................................................... 32 1.4. The inflammatory molecule ICAM-1 ........................................................................... 35 1.4.1. Structure and mechanisms of action in EC ......................................................... 35 1.4.2. Regulation of ICAM-1 expression ..................................................................... 37 1.4.3. Transcription factors involved in the regulation of ICAM-1 expression ........... 39 5 1.4.3.1. Regulation of ICAM-1 expression by AP-1/ETS transcription factors ......... 39 1.4.3.2. Regulation of ICAM-1 expression by ETS transcription factors ................... 39 1.4.3.3. Regulation of ICAM-1 expression by STAT and ETS transcription factors . 40 1.4.3.4. Regulation of ICAM-1 expression by NF-κB ................................................ 40 1.4.3.5. Regulation of ICAM-1 expression by STAT-1 .............................................. 43 1.4.3.6. Regulation of ICAM-1 expression by AP-1 ................................................... 43 1.5. Epigenetic regulation of transcription ........................................................................... 43 1.5.1. Introduction ........................................................................................................ 43 1.5.2. Histone acetylation ............................................................................................. 46 1.5.3. Histone methylation ............................................................................................ 47 1.5.4. Other post-translational modifications of histones ............................................. 47 1.5.5. The histone code ................................................................................................. 50 1.5.6. HDAC inhibitors ................................................................................................. 50 1.5.7. HDAC inhibitors and inflammation ................................................................... 50 1.6. The ETS family of transcription factors ....................................................................... 51 1.6.1. Structure and interactions of ETS factors ........................................................... 51 1.6.2. DNA binding and specificity of ETS factors ...................................................... 55 1.6.3. Expression and function of ETS factors ............................................................. 57 1.6.4. ETS transcriptional activators ............................................................................ 57 1.6.5. ETS transcriptional repressors ............................................................................ 57 1.6.6. ETS factors with both activating and repressing properties ............................... 58 1.6.7. ETS factors and endothelial cells ....................................................................... 58 1.6.8. ETS factors and inflammation ............................................................................ 59 1.7. The ETS related gene Erg ............................................................................................. 60 1.7.1. Expression of Erg ............................................................................................... 60 1.7.2. Erg: genomic structure and isoforms .................................................................. 60 1.7.3. Domains of the Erg protein ................................................................................ 63 6 1.7.3.1. Erg ETS DNA binding domain ...................................................................... 63 1.7.3.2. Erg Pointed domain ........................................................................................ 63 1.7.3.3. Additional Erg functional domains ................................................................ 63 1.7.3.4. Erg fusion proteins and the deregulation of Erg in cancer ............................. 64 1.7.3.5. FUS(TLS)/Erg and EWS/Erg fusions in sarcoma and leukaemia.................. 64 1.7.3.6. TMPRSS2/Erg in prostate cancer .................................................................. 64 1.8. Erg binding partners ...................................................................................................... 67 1.9. Function of Erg ............................................................................................................
Recommended publications
  • ERG Dependence Distinguishes Developmental Control of Hematopoietic Stem Cell Maintenance from Hematopoietic Specification
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification Samir Taoudi,1,2,6 Thomas Bee,3 Adrienne Hilton,1 Kathy Knezevic,3 Julie Scott,4 Tracy A. Willson,1,2 Caitlin Collin,1 Tim Thomas,1,2 Anne K. Voss,1,2 Benjamin T. Kile,1,2 Warren S. Alexander,2,5 John E. Pimanda,3 and Douglas J. Hilton1,2 1Molecular Medicine Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 2Department of Medical Biology, The University of Melbourne, Melbourne, Parkville, Victoria 3010, Australia; 3Lowy Cancer Research Centre, The Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia; 4Microinjection Services, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 5Cancer and Haematology Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development.
    [Show full text]
  • Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
    International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes.
    [Show full text]
  • Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
    Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation.
    [Show full text]
  • Inducible Transgene Expression in PDX Models
    Liu et al. Biomarker Research (2020) 8:46 https://doi.org/10.1186/s40364-020-00226-z RESEARCH Open Access Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL Wen-Hsin Liu1, Paulina Mrozek-Gorska2, Anna-Katharina Wirth1, Tobias Herold1,3, Larissa Schwarzkopf1, Dagmar Pich2, Kerstin Völse1, M. Camila Melo-Narváez2, Michela Carlet1, Wolfgang Hammerschmidt2,4 and Irmela Jeremias1,5,6* Abstract Background: Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods: We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results: With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Seven Novel and Stable Translocations Associated with Oncogenic Gene Expression in Malignant Melanoma1
    BRIEF ARTICLE Neoplasia . Vol. 7, No. 4, April 2005, pp. 303 – 311 303 www.neoplasia.com Seven Novel and Stable Translocations Associated with Oncogenic Gene Expression in Malignant Melanoma1 Ichiro Okamoto*, Christine Pirker y, Martin Bilban z, Walter Berger y, Doris Losert §, Christine Marosi b, Oskar A. Haas #, Klaus Wolff* and Hubert Pehamberger* *Division of General Dermatology, Department of Dermatology, Center of Excellence and the Ludwig Boltzmann Institut for Clinical and Experimental Oncology, Medical University of Vienna, Wa¨hringer Gu¨rtel 18-20, Vienna A-1090, Austria; y Institute of Cancer Research, Divisions of Applied and Experimental Oncology, Medical University of Vienna, Borschkegasse 8a, Vienna A-1090, Austria; z Department of Medical and Chemical Diagnostics, Medical University of Vienna, Wa¨hringer Gu¨rtel 18-20, Vienna A-1090, Austria; §Section of Experimental Oncology/Molecular Pharmacology, Department of Clinical Pharmacology, Medical University of Vienna, Wa¨hringer Gu¨rtel 18-20, Vienna A-1090, Austria; b Department of Internal Medicine I, Division of Oncology, Medical University of Vienna, Wa¨hringer Gu¨rtel 18-20, Vienna A-1090, Austria; # Children’s Cancer Research Institute (CCRI), Kinderspitalgasse 6, Vienna A-1090, Austria Abstract Cytogenetics has not only precipitated the discovery of Introduction several oncogenes, but has also led to the molecular Malignant melanoma (MM) is a fatal disease once metastasis classification of numerous malignancies. The correct has occurred and a dramatic increase in incidence has been identification of aberrations in many tumors has, how- recorded [1]. Despite successful identification of molecular ever, been hindered by extensive tumor complexity and mechanisms in many malignancies using cytogenetic data, the limitations of molecular cytogenetic techniques.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Loss of MGA Repression Mediated by an Atypical Polycomb Complex
    RESEARCH ARTICLE Loss of MGA repression mediated by an atypical polycomb complex promotes tumor progression and invasiveness Haritha Mathsyaraja1, Jonathen Catchpole1, Brian Freie1, Emily Eastwood2, Ekaterina Babaeva1, Michael Geuenich1, Pei Feng Cheng1, Jessica Ayers3, Ming Yu3, Nan Wu2, Sitapriya Moorthi2, Kumud R Poudel1, Amanda Koehne4, William Grady3,5, A McGarry Houghton2,3, Alice H Berger2, Yuzuru Shiio6, David MacPherson2*, Robert N Eisenman1* 1Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States; 2Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, United States; 3Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States; 4Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, United States; 5Department of Medicine, University of Washington School of Medicine, Seattle, United States; 6Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center, San Antonio, United States Abstract MGA, a transcription factor and member of the MYC network, is mutated or deleted in a broad spectrum of malignancies. As a critical test of a tumor suppressive role, we inactivated Mga in two mouse models of non-small cell lung cancer using a CRISPR-based approach. MGA loss significantly accelerated tumor growth in both models and led to de-repression of non-canonical Polycomb ncPRC1.6 targets, including genes involved in metastasis and meiosis. Moreover, MGA deletion in human lung adenocarcinoma lines augmented invasive capabilities. We further show that MGA-MAX, E2F6, and L3MBTL2 co-occupy thousands of promoters and that MGA stabilizes these ncPRC1.6 subunits. Lastly, we report that MGA loss also induces a pro-growth effect in *For correspondence: human colon organoids.
    [Show full text]
  • Downloaded 10 April 2020)
    Breeze et al. Genome Medicine (2021) 13:74 https://doi.org/10.1186/s13073-021-00877-z RESEARCH Open Access Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci Charles E. Breeze1,2,3* , Anna Batorsky4, Mi Kyeong Lee5, Mindy D. Szeto6, Xiaoguang Xu7, Daniel L. McCartney8, Rong Jiang9, Amit Patki10, Holly J. Kramer11,12, James M. Eales7, Laura Raffield13, Leslie Lange6, Ethan Lange6, Peter Durda14, Yongmei Liu15, Russ P. Tracy14,16, David Van Den Berg17, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed MESA Multi-Omics Working Group, Kathryn L. Evans8, William E. Kraus15,18, Svati Shah15,18, Hermant K. Tiwari10, Lifang Hou19,20, Eric A. Whitsel21,22, Xiao Jiang7, Fadi J. Charchar23,24,25, Andrea A. Baccarelli26, Stephen S. Rich27, Andrew P. Morris28, Marguerite R. Irvin29, Donna K. Arnett30, Elizabeth R. Hauser15,31, Jerome I. Rotter32, Adolfo Correa33, Caroline Hayward34, Steve Horvath35,36, Riccardo E. Marioni8, Maciej Tomaszewski7,37, Stephan Beck2, Sonja I. Berndt1, Stephanie J. London5, Josyf C. Mychaleckyj27 and Nora Franceschini21* Abstract Background: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. Methods: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays.
    [Show full text]
  • The Role of Hypoxia in Inflammatory Disease (Review)
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 859-869, 2015 The role of hypoxia in inflammatory disease (Review) JOHN BIDDLESTONE1,2*, DANIEL BANDARRA1* and SONIA ROCHA1 1Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH; 2Plastic Surgery Training Programme, NHS Scotland, Scotland, UK Received January 20, 2015; Accepted January 27, 2015 DOI: 10.3892/ijmm.2015.2079 Abstract. Mammals have developed evolutionarily conserved 1. Introduction programs of transcriptional response to hypoxia and inflam- mation. These stimuli commonly occur together in vivo and Oxygen (O2) constitutes 20.8% of the atmospheric air, and there is significant crosstalk between the transcription factors is the third-most abundant element in the universe, after that are classically understood to respond to either hypoxia hydrogen and helium. It is not only a key component of all or inflammation. This crosstalk can be used to modulate the major biomolecules of living organisms, but also a key overall response to environmental stress. Several common constituent of inorganic compounds. Oxygen homeostasis is disease processes are characterised by aberrant transcrip- crucially important to maintain the survival of all vertebrate tional programs in response to environmental stress. In this species (1). Therefore, organisms developed a way to coor- review, we discuss the current understanding of the role of the dinate the oxygen levels in the intracellular compartments hypoxia-responsive (hypoxia-inducible factor) and inflamma- in order to maintain homeostasis. When these mechanisms tory (nuclear factor-κB) transcription factor families and their fail, and the intracellular concentration of oxygen decreases, crosstalk in rheumatoid arthritis, inflammatory bowel disease a stress condition called hypoxia is created.
    [Show full text]
  • RUNX1 Together with a Compendium of Hematopoietic Regulators, Chromatin Modifiers and Basal Transcr
    Leukemia (2014) 28, 770–778 OPEN & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE CBFB–MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia A Mandoli1, AA Singh1, PWTC Jansen2, ATJ Wierenga3,4, H Riahi1, G Franci5, K Prange1, S Saeed1, E Vellenga3, M Vermeulen2, HG Stunnenberg1 and JHA Martens1 Different mechanisms for CBFb–MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFb–MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFb–MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFb–MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFb–MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFb–MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype. Leukemia (2014) 28, 770–778; doi:10.1038/leu.2013.257 Keywords: CBFb–MYH11; RUNX1; histone acetylation; acute myeloid leukemia; inv(16) INTRODUCTION Heterozygous Cbfb-Myh11 knock-in mice are embryonic lethal, Core-binding transcription factors (CBFs) have roles in stem cell with definitive hematopoiesis blocked at the stem-cell level.
    [Show full text]
  • Role of MDH2 Pathogenic Variant in Pheochromocytoma and Paraganglioma Patients
    ARTICLE © American College of Medical Genetics and Genomics Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients Bruna Calsina, MSc, Mercedes Robledo, PhD et al.# Purpose: MDH2 (malate dehydrogenase 2) has recently been variant (c.429+1G>T). All were germline and those with available proposed as a novel potential pheochromocytoma/paraganglioma biochemical data, corresponded to noradrenergic PPGL. (PPGL) susceptibility gene, but its role in the disease has not been MDH2 MDH2 Conclusion: This study suggests that pathogenic variants addressed. This study aimed to determine the prevalence of may play a role in PPGL susceptibility and that they might be pathogenic variants among PPGL patients and determine the responsible for less than 1% of PPGLs in patients without associated phenotype. pathogenic variants in other major PPGL driver genes, a prevalence Methods: Eight hundred thirty patients with PPGLs, negative for similar to the one recently described for other PPGL genes. the main PPGL driver genes, were included in the study. However, more epidemiological data are needed to recommend Interpretation of variants of unknown significance (VUS) was MDH2 testing in patients negative for other major PPGL genes. performed using an algorithm based on 20 computational predictions, by implementing cell-based enzymatic and immuno- Genetics in Medicine (2018) 20:1652–1662; https://doi.org/10.1038/ fluorescence assays, and/or by using a molecular dynamics s41436-018-0068-7 simulation approach. Results: Five variants with potential
    [Show full text]