State Entomologist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ENSAYO DE CONTROL DE Curculio Elephas EN BELLOTAS DE ENCINA (Quercus Ilex)
ENSAYO DE CONTROL DE Curculio elephas EN BELLOTAS DE ENCINA (Quercus ilex) E. PÉREZ-LAORGA (1), A.GIMÉNEZ (2), A. IBÁÑEZ (2), R. GONZÁLEZ ABOLAFIO (3), E. GONZÁLEZ BIOSCA (3), M.M. LÓPEZ GONZÁLEZ (3). (1) Servicio de Prevención de Incendios y Sanidad Forestal. Consellería de Territorio y Vivienda. Generalitat Valenciana. C/ Francisco Cubells, 7. 46011 Valencia. [email protected] (2) PYG Estructuras Ambientales, S.L. Centre per a l’Investigació i la Experimentació Forestal C.I.E.F. Avda. Comarques del País Valencià, nº 114. 46930-Quart de Poblet (Valencia). plagas- [email protected] (3) Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, Moncada, 46113 Valencia. Resumen Las bellotas de encina que se emplean como semillas en viveros y repoblaciones forestales, se ven con frecuencia afectadas por larvas de insectos que merman su viabilidad, siendo las más frecuentes las de curculiónidos del género Curculio. El ensayo ha consistido en la búsqueda de un tratamiento fitosanitario para su control y en el estudio de su influencia sobre la disminución del número de bellotas por él picadas. Los tratamientos probados con deltametrín se han mostrado eficaces para la reducción del número de bellotas afectadas, aumentando el número de frutos sanos y de los que permanecen en el árbol. Debido a que el tratamiento está restringido a un número reducido de encinas en las que se recoge semilla, el impacto en la entomofauna es muy local. En la experiencia inicial de 1998, el número de bellotas con melazo, provocado por la bacteria Brenneria quercina, en los grupos tratados con deltametrín, fue directamente proporcional al número de bellotas afectadas por Curculio sp. -
Tropical Insect Chemical Ecology - Edi A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world. -
Plum Curculio (A4160) I-06-2018 4
A4160 Plum Curculio Annie Deutsch and Christelle Guédot lum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Identification Curculionidae), is one of the most Plum curculio is a type of weevil (snout Pcommon and detrimental pests of apple beetle). Adults have a distinctive, long, in Wisconsin and can cause significant curved snout, characteristic of weevils damage to tree fruit. Along with apple, it (figure 1). Adults are about 1/6 to 1/4 of an attacks pear, quince, and stone fruits such inch long and are speckled gray, brown, as plum, cherry, peach, and apricot. and black. They have four pairs of ridges along the back, although only one pair Plum curculio is a native beetle, distributed is readily apparent. Eggs are minute throughout the eastern and midwestern (approximately 1/50 of an inch long), white, United States and Canada. In its natural and oval shaped. The full-grown larva environment, it survives in wild plum, is 1/4 to 1/3 of an inch long, with a legless, native crabapple, and hawthorn. Many C-shaped, cream-colored body and brown wild crabapples and stone fruits occur in head (figure 2). Plum curculio pupae are woodlots and fencerows, which, along with about the size of full-grown larvae and are neglected or abandoned fruit trees, can white to tan in color. host plum curculio populations. All of these FIGURE 2. Plum curculio larvae inside a plants are potential sources of infestation peach. for cultivated trees. In the winter, the adult Life cycle beetles seek protection in wooded areas Plum curculio overwinters as an adult laying 100 to 500 eggs in their lifetime. -
The Role of Orchard Habitats and the Surrounding Landscape in Supporting Apple Production and Conserving Biodiversity: Report of a Hudson Valley Pilot Project
The Role of Orchard Habitats and the Surrounding Landscape in Supporting Apple Production and Conserving Biodiversity: Report of a Hudson Valley Pilot Project. Conrad Vispo, Claudia Knab-Vispo, Kyle Bradford, and Otter Vispo. Hawthorne Valley Farmscape Ecology Program, Jan. 2015. INTRODUCTION In the mid 1800s, as the extent of agricultural land in the Hudson Valley was peaking, orchard observers began to notice a blossoming of apple orchard pests. Not only that, but they associated this with the decline in natural enemies, specifically birds. It was a decline due both to direct hunting and to the loss of avian habitat (see Trimble, 1865). It should thus be no surprise that, when we look at other creatures, such as spiders, wasps and native bees, we – and others - see a detectable influence of landscape context. And, predictably, in broad strokes, and given that ours was a largely forested landscape, the abundance of those organisms is usually enhanced by the presence of forest in the neighborhood and reduced by the abundance of more altered land including residential or commercial development and more orchards. Although Native Americans no doubt created openings of various sizes, this region’s land was surely a wilder place prior to European settlement. In those forests, wetlands, and scattered openings, various insects made a living, feeding on plants, microbes and other animals, including other insects (in this report but not in taxonomy, “insects” includes spiders). As European agriculture expanded, new habitats were created or old ones reached novel extents. These habitats were dominated by the likes of grains, fodder, and fruits. -
Coleoptera: Curculionidae) in an Organic Apple Orchard Using Molecular Gut-Content Analysis
insects Article Elucidating the Common Generalist Predators of Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) in an Organic Apple Orchard Using Molecular Gut-Content Analysis Jason M. Schmidt 1,2,*, Zsofia Szendrei 1 and Matthew Grieshop 1 1 Department of Entomology, Michigan State University, 578 Wilson Rd., East Lansing, MI 48824, USA; [email protected] (Z.S.); [email protected] (M.G.) 2 Department of Entomology, University of Georgia, 2360 Rainwater Rd., Tifton, GA 31793, USA * Correspondence: [email protected]; Tel.: +1-229-386-7251 Academic Editors: Andrew G. S. Cuthbertson and Eric W. Riddick Received: 22 April 2016; Accepted: 20 June 2016; Published: 24 June 2016 Abstract: Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), plum curculio, is a serious direct pest of North American tree fruit including, apples, cherries, peaches and plums. Historically, organophosphate insecticides were used for control, but this tool is no longer registered for use in tree fruit. In addition, few organically approved insecticides are available for organic pest control and none have proven efficacy as this time. Therefore, promoting biological control in these systems is the next step, however, little is known about the biological control pathways in this system and how these are influenced by current mechanical and cultural practices required in organic systems. We used molecular gut-content analysis for testing field caught predators for feeding on plum curculio. During the study we monitored populations of plum curculio and the -
Issue Full File
BİLGE INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY RESEARCH VOLUME: 4 ISSUE: 2 2020 ISSN: 2651-401X e-ISSN: 2651-4028 Owner: Dr. Hamza KANDEMİR Editor in Chief: Prof. Dr. Kürşad ÖZKAN Co-Editor: Editorial Advisory Board: Editorial Board: Dr. Mustafa KARABOYACI Ahmet AKSOY, Prof. Dr. Ali Cesur ONMAZ, Assoc. Prof. Dr. Akdeniz University, Turkey Erciyes University, Turkey Technical Editors: Res. Asst. Abdullah BERAM Amer KANAN, Prof. Dr. Asko Tapio LEHTİJÄRVİ, Assoc. Prof. Dr. Instructor Serkan ÖZDEMİR Al-Quds University, Palestine Bursa Technical University, Turkey Cüneyt ÇIRAK, Prof. Dr. Halil GÖKÇE, Assoc. Prof. Dr. Layout Editors: Ondokuz Mayıs University, Turkey Giresun University, Turkey Instructor Doğan AKDEMİR MSc. Tunahan ÇINAR Ender MAKİNECİ, Prof. Dr. Kubilay AKÇAÖZOĞLU, Assoc. Prof. Dr. İstanbul University, Turkey Niğde Ömer Halisdemir University, Turkey Cover designer: Instructor Serkan ÖZDEMİR Gülcan ÖZKAN, Prof. Dr. Şule Sultan UĞUR, Assoc. Prof. Dr. Süleyman Demirel University, Turkey Suleyman Demirel University, Turkey Press: Kutbilge Association of Academicians İbrahim ÖZDEMİR, Prof. Dr. Ahmet MERT, Assoc. Prof. Dr. Distribution, Sales, Publisher; Certificate Isparta University of Applied Sciences, Turkey No: 42086 Isparta University of Applied Sciences, Turkey 32040, Isparta, TURKEY Kari HELİÖVAARA, Prof. Dr. Ayşe KOCABIYIK, Asst. Prof. Dr. University of Helsinki, Finland Suleyman Demirel University, Turkey Contact: Kutbilge Association of Academicians, Kırali MÜRTEZAOĞLU, Prof. Dr. Fecir DURAN, Asst. Prof. Dr. 32040, Isparta, TURKEY Gazi University, Turkey Gazi University, Turkey Web : dergipark.gov.tr/bilgesci Mehmet KILIÇ, Prof. Dr. Kubilay TAŞDELEN, Asst. Prof. Dr. E-mail : [email protected] Suleyman Demirel University, Turkey Suleyman Demirel University, Turkey Mehmet KİTİŞ, Prof. Dr. Nuri ÖZTÜRK, Asst. Prof. Dr. Suleyman Demirel University, Turkey Giresun University, Turkey Mohamed Lahbib BEN JAMAA, Prof. -
Rhubarb Curculio Lixus Concavus Say; Family: Curculionidae
IDL INSECT DIAGNOSTIC LABORATORY Cornell University, Dept. of Entomology, 2144 Comstock Hall, Ithaca NY 14853-2601 Rhubarb Curculio Lixus concavus Say; Family: Curculionidae Adult rhubarb curculio, with yellowish coating present. Size: about 1/2 inch long. Photo by M. Malkin. Injury Rhubarb is a hardy perennial that is not usually seriously affected by insect pests. However, attacks of the rhubarb curculio occasionally do occur. The leaf stalks of the rhubarb may show exuding sap and partial decay from late-May through early summer, due to the feeding and egg laying punctures of the rhubarb curculio. Feeding injury appears as notches in the stem and on the leaf edges. Sap exudes from wounds of either type and collects as glistening drops of gum when fresh. Fortunately, the eggs of this insect do not hatch when deposited in rhubarb. Description The rhubarb curculio (or rhubarb weevil) is a large snout beetle, about 1/2 inch long. It is dark colored, with a yellow powdery material dusted on its back. The yellowish covering easily rubs off when the insect is handled. The head has a downwardly curved snout, at the end of which are the mandibles (the chewing mouth parts). The eggs are oblong and yellow- white in color. The mature larva is a legless grub about 3/4 inch in length, with a brown head. Life History The curculio overwinters as an adult, in piles of debris or in other protected places near the rhubarb planting. In about mid-May the adults appear, and are seen resting on the stalks and leaves of rhubarb, dock, thistle or sunflower. -
Life History and Habits of the Plum Curculio' in the Georgia Peach Belt
TECHNICAL BULLETIN NO. 188 SEPTEMBER, 1930 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. LIFE HISTORY AND HABITS OF THE PLUM CURCULIO' IN THE GEORGIA PEACH BELT By OLIVER I. SNAPP Entomologist, Division of Deciduous Fruit Insects, Burean of Entomology . CONTENTS Page Introduction - - - 1 lÁíe history and habits of the plum curculio, as The Qeorgia peach belt and its climate 2 observed from 1921 to 1924, inclusive—Con. Methods and equipment 3 The egg 7 Studies of oviposition 3 The larva 27 Studies of incubation 3 The larva, pupa, and adult in the soil 37 Studies of the larval period 3 The adult 45 Larvae from peach drops 3 Time required for transformation from egg Studies of pupation 4 to adult 58 Emergence of adults 4 Occurrence of beetles in orchards through- Studies of parasites 4 out the seasons of 1921 to 1924, inclusive.. 60 Studies of hibernation -. 4 Relation of temperature to appearance of Results of jarring 5 plum curculios from hibernation 70 Studies of longevity 5 The relation of moisture and temperature Feeding tests 5 to the development of the curculio^..:._, 73 The insectary _ 6 Parasites of the plum curculio in Georgia 77 Weather records 6 Feeding tests with lead arsenate 80 Life history and habits of the plum curculio, as Conotracheliis anaglypticus as a peach i;)est 88 observed from 1921 to 1924, inclusive-^ 6 Summary..- .- 90 INTRODUCTION The plum curculio, Conotrachelus nenuphar Herbst, is the most important insect pest attacking the peach fruit in Georgia and presents one of the chief problems with which the peach growers of that State have to contend. -
Clover Root Curculio (Sitona Hispidulus F.) Kaitlin Rim, USU Biology • Steven Price, Extension Carbon County • Ricardo Ramirez, Extension Entomologist
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-199-18PR February 2019 Clover Root Curculio (Sitona hispidulus F.) Kaitlin Rim, USU Biology • Steven Price, Extension Carbon County • Ricardo Ramirez, Extension Entomologist Do You Know? • Clover root curculio (CRC) is native to Europe but has expanded across all of North America since its introduction in the 1800s. • Clover root curculio feed on economically important legumes such as clovers and alfalfa. • Larval feeding on roots causes the most plant injury and can increase susceptibility to soilborne pathogens. • Management focuses on crop rotation, planting date, and appropriate irrigation practices. Fig. 1. Clover root curculio adult on alfalfa host. The clover root curculio (CRC, Sitona hispidulus F.) is an important agricultural pest in forage crops. Adult beetles feed on foliage while the more damaging larval stage feeds on roots. Heavy larval feeding has been associated with reduced stand establishment, disruption of nutrient and water uptake, susceptibility to soilborne pathogens, Fig. 2. CRC eggs. Fig. 3. CRC larvae. Fig. 4. CRC pupa. decreased winter plant survival, delayed green-up, and reductions in forage quality and yield. Due to the are white when first laid, and turn black after 2-3 days hidden nature of eggs and larvae in the soil, CRC has (Fig. 2). The smooth, shiny, ovoid eggs are difficult to see been overlooked and damage is often misdiagnosed as in the field because of their small size (< 1/32 inch). nutrient deficiencies or pathogens. Larvae are white, legless grubs with brown heads and Historically, applications of chlorinated hydrocarbons, chewing mouthparts (Fig. -
Curculio Curculis Lupus: Biology, Behavior and Morphology of Immatures of the Cannibal Weevil Anchylorhynchus Eriospathae G. G. Bondar, 1943
Curculio Curculis lupus: biology, behavior and morphology of immatures of the cannibal weevil Anchylorhynchus eriospathae G. G. Bondar, 1943 Bruno Augusto Souza de Medeiros1, Daniela de Cassia´ Bena´ 2 and Sergio Antonio Vanin2 1 Department of Organismic & Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2 Departamento de Zoologia, Instituto de Biociencias,ˆ Universidade de Sao˜ Paulo, Sao˜ Paulo, SP, Brazil ABSTRACT Weevils are one of the largest groups of living organisms, with more than 60,000 species feeding mostly on plants. With only one exception, their described larvae are typical plant-feeders, with mouthparts adapted to chewing plant material. Here we describe the second case of a weevil with early-instar larvae adapted to killing conspecifics. We have studied the life history of Anchylorhynchus eriospathae G. G. Bondar, 1943 (Curculioninae: Derelomini sensu Caldara, Franz & Oberprieler (2014)), a species whose immatures feed internally on palm flowers and fruits. We provide detailed descriptions of all immature stages, including the extremely modi- fied first-instar larva. Unlike other weevils and later instars, this stage exhibits a flat body with very long ventropedal lobe setae, a large and prognathous head with a gula, and falciform mandibles, each with a serrate retinaculum, that are used to fight with and eventually kill other first-instar larvae. We also provide biological notes on all stages and the results of behavioral tests that showed that larval aggression occurs only among early life stages. Finally we show that adult size is highly dependent on Submitted 31 March 2014 timing of oviposition. This specialized killer first instar probably evolved indepen- Accepted 15 July 2014 dently from the one other case known in weevils, in Revena rubiginosa (Conoderinae: Published 31 July 2014 Bariditae sensu Prena, Colonnelli & Hespenheide (2014)). -
Background and General Information 2
United States Department of National Program 304: Agriculture Agricultural Crop Protection and Research Service Quarantine National Program Staff August 2007 TABLE OF CONTENTS Background and General Information 2 Component I: Identification and Classification of Insects and Mites 5 Component II: Biology of Pests and Natural Enemies (Including Microbes) 8 Component III: Plant, Pest, and Natural Enemy Interactions and Ecology 17 Component IV: Postharvest, Pest Exclusion, and Quarantine Treatment 24 Component V: Pest Control Technologies 30 Component VI: Integrated Pest Management Systems and Areawide Suppression 41 Component VII: Weed Biology and Ecology 48 Component VIII: Chemical Control of Weeds 53 Component IX: Biological Control of Weeds 56 Component X: Weed Management Systems 64 APPENDIXES – Appendix 1: ARS National Program Assessment 70 Appendix 2: Documentation of NP 304 Accomplishments 73 NP 304 Accomplishment Report, 2001-2006 Page 2 BACKGROUND AND GENERAL INFORMATION THE AGRICULTURAL RESEARCH SERVICE The Agricultural Research Service (ARS) is the intramural research agency for the U.S. Department of Agriculture (USDA), and is one of four agencies that make up the Research, Education, and Economics mission area of the Department. ARS research comprises 21 National Programs and is conducted at 108 laboratories spread throughout the United States and overseas by over 2,200 full-time scientists within a total workforce of 8,000 ARS employees. The research in National Program 304, Crop Protection and Quarantine, is organized into 140 projects, conducted by 236 full-time scientists at 41 geographic locations. At $102.8 million, the fiscal year (FY) 2007 net research budget for National Program 304 represents almost 10 percent of ARS’s total FY 2007 net research budget of $1.12 billion. -
CLOVER ROOT CURCULIO BIOLOGY and CONTROL Steven J
CLOVER ROOT CURCULIO BIOLOGY AND CONTROL Steven J. Price1, Rachael Long2, Erik J. Wenninger3, and Ricardo A. Ramirez4 ABSTRACT Clover root curculio (CRC; Sitona hispidulus) is a pest of alfalfa and clovers. While damage from adults is negligible in established stands, root damage from larvae can have economically significant impacts. Severe root damage can reduce forage yield, decrease stand longevity, decrease winter hardiness, increase winter heaving, and increase plant pathogen infection. In the past, control predominately relied on environmentally persistent, soil-active insecticide applications since phased-out leaving producers with few management options for established stands. Since CRC biology and control has been mostly researched in the eastern U.S., our regional understanding in the West has been too inadequate to begin developing up-to-date management strategies timed to when life stages susceptible to control are present. The objective of this study was to determine the timing of CRC life stages, including the damaging larval stage and overwintering stages, in the Intermountain West. From 2015 to 2018, field surveys were completed in Utah, Idaho, and California using multiple sampling techniques to capture all life stages. The observed CRC larval period is similar to many of those reported in the East. Egg hatch began in early spring (April). Larval development primarily took place until late June to early July, when the most pupation occurred, with very few larvae being found by August. A noteworthy difference observed in the biology of CRC in the West was the primary overwintering stage compared to what has been reported in many areas of the East.