Uso De Suelo Del Área De Estudio De La XV Región De Arica Y Parinacota

Total Page:16

File Type:pdf, Size:1020Kb

Uso De Suelo Del Área De Estudio De La XV Región De Arica Y Parinacota Uso de Suelo del Área de Estudio de la XV Región de Arica Y Parinacota 420000 440000 460000 480000 500000 µ PERU Calvariune (! Calvariune Pinuta (! PAMPA VISVIRI Visviri Visviri PAMPA PINUTA (! Rio Putani Pucarani (! Co. Vichocollo Pucarani PAMPA PUTANI 8050000 General Lagos 8050000 (! General Lagos Challaserco Queullare Punta B Co. Chupiquina Portezuelo La Laguna Blanca (! Laguna Blanca Cullani Azufreras Chupiquina Challaserca (! Challapujo Cullani PAMPA CORCOTA (! Corcota Corcota Azufreras Tacora Achacollo (! Chislloma (! Co. Guallancallani Chislluma (! Airo San Luis Azufreras Vilque (! (! Contornasa Co. Charsallani (! BOLIVIA Chapoco Guallancallari VOLCAN TACORA Putani (! (! Guallancallari Aguas Calientes PAMPA CRUZ VILQUE Co. Vilasaya Putani Guanaquilca (! (! (! Negro A Anantocollo Anantocollo(! Co. De Caracarani Atilla Umaguilca Atilla (! (! Putuputane Putuputane (! Canal Mauri Guacollo Canal Uchasuma (! Co. Charsaya Cosapilla Guacollo Tacora Cosapilla Paso Huaylillas Norte Co. Solterocollo Co. Guanapotosi (! Linanpalca Linanpalca PAMPA PALCOPAMPA Quebrada CaracaraniVilla Industrial (! Agua Rica (! NEVADO DE CHIQUINANTA Limani Limani (! Loma Liczone Rio Azufre Huancarcollo Camana Camana Tiluyo Tiluyo Co. Chinchillane (! (! Loma Liczones Sarayuma (! (! Sarayuma Chuquicamata Loma Liczones PAMPA ANCOMA Co. Jaroma Co. Iquilla Tuma PalcaTuma Palca Co. Cosapilla (! T Ancocalani (! Hospicio Pamputa Co. Churicahua Pamputa(! (! Pahuta Aricopujo Hospicio (! Aricopujo (! Pahuta Co. Copotanca Co. Pumata Quebrada Chayata Co. Titire Chollota Chollota (! Nasahuento PAMPA AGUA MILAGRO (! Nasahuento PAMPA GUANAVINTO Iquilla Co.Pararene PAMPA JAMACHAVINTO Tiacopa Quebrada <uquilla Colpitas Co.Plapuline Quebrada Colpitas Tacata Rio Lluta Co. Colpitas PAMPA TACATA CERRO HUENUME Colpitas Co. Ajachala Quebrada Allame Coronel Alcerraca Quebrada Risco Guailla Uncaliri GrandeUncaliri(! Chico Co. Paracoya Uncaliri Grande (!(! Uncaliri Chico Ancovilque Rosapare(! Co. Condoriri SIERRA DE HUAYLILLAS Queumahuna Co. Pichincho Rosapare (! Autilla (! (! Autilla Quebrada Huarillas PAMPA DE ALLANE Queumahuna PAMPA CASCACHANE PAMPA GUANOCO Co. Curaguara Cochantare (! Quenuavinto Quenuavinto Qubrada Pucuma Pacharaque (! Jaillabe (! Co. Muntirune Jaillabe (! Pacharaque Caquena Colpita (! (! (!Culiculini Co. Huilacuragura Arojare Co. Lampallares Laguna Cosuri Hembra Paso de Casiri Taapaca Arojare (! Lampallares PAMPA GUARIPUJO Quebrada UllaniChanopalca CERROS DE ANCOMA (! Pisarata Saracota Chanopalca Pisarata (! (! Co. Larancagua Copete Quebrada Ancumu Quebrada Guaillara Quebrada PatanataneAcueducto Morro Caquena La Rinconada 8000000 (! 8000000 Co. de Taapaca Niquela Apacheta Ancoma Upaje Challapujo Taapaca (! (! Co. Larancagua Lagunillas (!Upaje NEVADOS DE PUTRE Laguna Cotapampa Hueilla Co. de Pisasmarca Campo de Nieve (! Co. Llancoma PAMPA LARANCAGUA Co. Guaneguane NEVADOS DE PAYACHATA Co. Negro PAMPA AMALLACHE VOLCAN PARINACOTA Chuviri Las Cuevas Chuviri (! Laguna Cotacatam Rosapata Rosapata (! (!Silpasilvani Putre Portezuelo de Putre Lauca Lauca Co. Titine (! Quebrada Juraso (! Parinacota Laguna Caramcoto (! Tulduni PAMPA QUILLAQUILLANI CERROS DE ANCOLACALLA Co. Tilivire Chucullo Chucullo(! (! Japucucho Co. Milagro (! Aux. Valenzuela Japucucho Ajata Pocollo CERROS DE QUISIQUISINI Aroma (! Ajata (! Quebrada Aroma Pocollo Quebrada Conderoi Rio Lauca LAGO CHUNGARA Alto Pacollo QuebradaAncochalloani Quebrada Tilivire Co. Llailane Co. Chantacollo PAMPA DE QUISIQUISINI Socoroma (! Quebrada Culicaline Co. Chatiza Co. Choquelimpie Portezuelo de Tambo Quemado Co. Pujullani Rio Blanco Sopocalane Pamputa (! Quebrada Caillacota Co. Tejene Co. Apacheta Choquelimpie Sopocalane (! Pamputa Choquellmpie Chungara Co. Piedra Grande (! Campamento del Departamento de Riego Co. Fundicion (! PAMPA TEJENE PAMPA SUNCOMALLANE Quebrada Miluns Zapahuira Zapahuira Rio Vizcachani (! Co. Torrentorine Co. Umarata Chapiquina Quebrada Plazuela Murmuntani Calatambo PAMPA ZAPAHUIRA (! Calatambo Churiguaya Umarata Sur (! (! NEVADOS DE QUIMSACHATA Quebrada Gualqueverini Misituni Misituni Quebrada Jara Canal Lauco Co. Viscachune (! Cosapilla Co. Chapiquina Co. Tancane Rio Sico (! Chapiquina Campamento Experimental Misituni Co. Copaquilla Cosapilla (! (! Carisa Ancohilque (! (! Campamento Experimental Misituni Quebrada Chureaque Rio Lauca Ancohilque VOLCAN GUALLATIRI Quebrada Loco Co. Charaque Quebrada Caliente Carboniri Carboniri (! Co. Carboniri Co. Marquirabe Pacahama Quebrada PacopampaQuenuacollo Quebrada Cuillama (! Co. Guacapeque Ancuta Co. Challacollo Rio (!Chusiavida PAMPA GUANOCO Caragua Portezuelo Belen Quebrada Charaque (! Belen Co. Belen Caragua (! PAMPA PACOPAMPA Lliza Quebrada Lapica (! Belen Co. Lliza Co. Salla Quebrada Chuba Quebrada Guellalni PAMPA CHUBA Guallatiri (! Rio Tignamar Cotanave Co. Llanquila (! Cortacollo Co. Llaquilla Lauca (! (! Pisarata Lauca Pisarata Cortacollo Quebrada Vichuta (! Tomaguaya Japu Co. Catanave (! Japu (! Quiburcanca Ancalle Portezuelo de Japu o Caranguillas Co. Vichocollo (! Ancayuconi Uncaliri ! (! 7950000 Ancayuconi ( 7950000 Quebrada Chanane Utalacata Uncaliri (! PAMPA DE ANCALLE Co. Chiliri Co. Anarabe Utalacata Pucara Quebrada Culco Chiliri Quebrada Tumaya Tignamar Nuevo (! Tignamar Viejo (! Pujuna Tignamar Viejo (! Co. Pucupucune Citanane Co. Pucara Co. Tuxuma PAMPA CITANANE Co. Pichican Co. Patarane Co. Tallacollo Suricollo Rio Tinamar Quebrada Ona Quebrada Chano Co. Tapiguano Co. Japiullo Osiel Co. Orcotunco PAMPA DE PAQUERI Timalchaca (! Orcotunco Co. Tulapalca Timalchaca Quebrada Orcotunco Paquisa (! PUCARA PAQUISA Paquisa Co. Margarita Co. Chucal Co. Arintica Co. Puquintica Arintica Co. Arintica Apacheta de Lupo Co. Melaque Co. de Anocarire Quebrada Guaiguasi PAMPA CHILCAYA Anocarire Co. Calajalata Chilcaya Portezuelo Quilhuire Umirpa Umirpa (! Chaca Co. Pastocollo Chancacollo Co. Viento Castilluna (! (! Palca Palca Laguna Caracola (! Co. Oquecollo Co. Huaiguasi o Vizcachitambo PAMPA GUARMIRE Rio Macosa Co. Quilhuiri PAMPA ORCOGUANO Portezuelo de Chulluncallam SALAR DE SURIRE Co. Macusa Pailcoaillo Apacheta Millucucho Pailcoaillo (! Co. Vilacollo Co. Cosupe Co. Polloquere PAMPA DE SURIRE Pollequere Paruguiri Co. Chuquiananta (! Paruguiri Surire Aijota Surire (! (! Rio Blanco Co. Chihuana Chihuana Portezuelo de Co. Capitan Co. Cerro Capitan Rio Ajatamu Co. Mangayuta Co. Mulluri Co. Prieto Arepunta Jaroma Rio Caltaya Quebrada Chacja Co. Caltaya Laguna Vilacota PAMPA TANCA Co. Cunjase Co. Amachuma Portezuelo de Mulluri 7900000 7900000 Caritaya Mulluri Mulluri Caritaya (! Embalse Caritaya (! PAMPA CHULUCHUNUTA Arroyo de Vecoi Q. de Guaiguasi Rio Caritalla Quebrada de Mulluri I R E G I Ó N D E T A R A P A C A 4 0 4 8 12 16 20 Km. 420000 440000 460000 480000 500000 SIMBOLOGÍA Estudio: Título: Caracterización de Humedales Altoandinos Uso de Suelo Áreas y División Politico Uso de Suelo para una gestión sustentable de las actividades Uso Actual Localidades del Área de Estudio Administrativa productivas del sector norte del país Afloramientos Rocosos Nieves Proyecto Financiado Por Innova Chile Corfo. de la XV Región de Arica Y Parinacota Área de estudio Comunas Areas Sobre Limite Vegetación Otros Terrenos Sin Vegetación Caminos Limite Regional Escala: Proyección Cartográfica: Fuente: Fecha: Lámina: Bofedales Playas y Dunas Rios Limite Interncional UTM Huso 19 - CIREN Corridas de Lava y Escoriales Rotación Cultivo-Pradera 1:200.000 13/May/2013 01 de 01 Quebradas WGS 1984 - CONAMA Estepa Altiplánica Salares (! Localidades Terrenos de Uso Agrícola Lago-Laguna-Embalse-Tranque La División Político Administrativa de CIREN se realiza de acuerdo a la descripción de los límites político Matorral Pradera Abierto Vegas administrativos de la ley DFL 18.715 en adelante. El trazado de límites administrativos construidocon estas fuentes de información no compromete en modo alguno al Estado de Chile y es meramente referencial. Minería Industrial.
Recommended publications
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Alkalic-Type Epithermal Gold Deposit Model
    Alkalic-Type Epithermal Gold Deposit Model Chapter R of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–R U.S. Department of the Interior U.S. Geological Survey Cover. Photographs of alkalic-type epithermal gold deposits and ores. Upper left: Cripple Creek, Colorado—One of the largest alkalic-type epithermal gold deposits in the world showing the Cresson open pit looking southwest. Note the green funnel-shaped area along the pit wall is lamprophyre of the Cresson Pipe, a common alkaline rock type in these deposits. The Cresson Pipe was mined by historic underground methods and produced some of the richest ores in the district. The holes that are visible along several benches in the pit (bottom portion of photograph) are historic underground mine levels. (Photograph by Karen Kelley, USGS, April, 2002). Upper right: High-grade gold ore from the Porgera deposit in Papua New Guinea showing native gold intergrown with gold-silver telluride minerals (silvery) and pyrite. (Photograph by Jeremy Richards, University of Alberta, Canada, 2013, used with permission). Lower left: Mayflower Mine, Montana—High-grade hessite, petzite, benleonardite, and coloradoite in limestone. (Photograph by Paul Spry, Iowa State University, 1995, used with permission). Lower right: View of north rim of Navilawa Caldera, which hosts the Banana Creek prospect, Fiji, from the portal of the Tuvatu prospect. (Photograph by Paul Spry, Iowa State University, 2007, used with permission). Alkalic-Type Epithermal Gold Deposit Model By Karen D. Kelley, Paul G. Spry, Virginia T. McLemore, David L. Fey, and Eric D. Anderson Chapter R of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–R U.S.
    [Show full text]
  • A Structural and Geochronological Study of Tromen Volcano
    Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina) Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars To cite this version: Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars. Vol- canism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina). Tectonics, American Geophysical Union (AGU), 2007, 26 (4), pp.TC4010. <10.1029/2006TC002011>. <insu-00180007> HAL Id: insu-00180007 https://hal-insu.archives-ouvertes.fr/insu-00180007 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. TECTONICS, VOL. 26, TC4010, doi:10.1029/2006TC002011, 2007 Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuque´n province, Argentina) Olivier Galland,1,2 Erwan Hallot,1 Peter R. Cobbold,1 Gilles Ruffet,1 and Jean de Bremond d’Ars1 Received 28 June 2006; revised 6 February 2007; accepted 16 March 2007; published 2 August 2007. [1] We document evidence for growth of an active [3] In contrast, a context of crustal thickening, where the volcano in a compressional Andean setting.
    [Show full text]
  • La Calidad Y Accesibilidad Del Agua Potable Rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2011 La Calidad y Accesibilidad del Agua Potable Rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Demography, Population, and Ecology Commons, Inequality and Stratification Commons, Natural Resources Management and Policy Commons, and the Water Resource Management Commons Recommended Citation Kapples, Eileen, "La Calidad y Accesibilidad del Agua Potable Rural Chile: Arica – Parinacota" (2011). Independent Study Project (ISP) Collection. 1168. https://digitalcollections.sit.edu/isp_collection/1168 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. La calidad y accesibilidad del agua potable rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad Programa: Salud Publica, Medicina Tradicional y Empoderamiento de la Comunidad Diciembre, 2011 Consejero: Dr. Alfrodin Turra Directora Académica: Rossana Testa, Ph.D Abstract The World Health Organization (WHO) affirms that clean drinking water is an essential resource and deems it a basic human right. The principle objective of this investigation is to study the quality and accessibility of drinking water in rural Chile, in the northern most region, XV Arica – Parinacota. Specific objectives include the investigation of the functioning and management of water services, determining the percentages of populations who do not have access to water services, and conducting analyses of the physical-chemical and bacteriological content of the water.
    [Show full text]
  • ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO Diálogo Andino - Revista De Historia, Geografía Y Cultura Andina, Núm
    Diálogo Andino - Revista de Historia, Geografía y Cultura Andina ISSN: 0716-2278 [email protected] Universidad de Tarapacá Chile Rodríguez Valdivia, Alan; Albornoz Espinoza, Cristián; Tapia Tosetti, Alejandro GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO Diálogo Andino - Revista de Historia, Geografía y Cultura Andina, núm. 54, 2017, pp. 7-20 Universidad de Tarapacá Arica, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=371353686002 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Nº 54, 2017. Páginas 7-20 Diálogo Andino GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO* GEOMORPHOLOGY OF THE PUTRE AREA, NORTHERN ANDES OF CHILE: VOLCANIC AND CLIMATE ACTION IN ITS MODELING Alan Rodríguez Valdivia**, Cristián Albornoz Espinoza*** y Alejandro Tapia Tosetti**** El área de Putre se localiza en una subcuenca de montaña a 3.500 msnm, en la vertiente oeste de la cordillera occidental Andina (extremo norte de Chile), en el que predominan formas de relieve asociadas a la acción volcánica y del clima. Dicho relieve es producto de la evolución geológica del Complejo Volcánico Taapaca (CVT), cuyos procesos eruptivos han dado paso a morfolito- logías constructivas que configuran la subcuenca estudiada, en las que el factor climático ha actuado constantemente, meteorizando y erosionando los materiales, dando como resultado formas derivadas de procesos gravitacionales, fluviales y, en menor medida, periglaciales.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Geología Del Área De Estudio De La XV Región De Arica Y Parinacota
    Geología del Área de Estudio de la XV Región de Arica Y Parinacota 420000 440000 460000 480000 500000 µ PERU Calvariune ! Pinuta ! VisviriVisviri PAMPA PINUTA ! Pucarani ! Co. Vichocollo PAMPA PUTANI 8050000 General Lagos 8050000 ! Queullare Co. Chupiquina Challaserco ! Punta B Pedregoso Cullani Azufreras Chupiquina Challapujo ! ! Corcota Azufreras Tacora ! Chislloma ! Co. Guallancallani Azufreras Vilque ! Airo San Luis Contornasa ! ! ! BOLIVIA Chapoco Guallancallari PAMPA CONTORNASA ! Putani ! PAMPA CRUZ VILQUE Aguas Calientes Co. Vilasaya Putani Co. Patanca Guanaquilca ! ! Negro A ! Anantocollo ! Co. De Caracarani Atilla ! Umaguilca Putuputane! ! Guacollo ! Co. Charsaya Cosapilla Co. Solterocollo Co. Guanapotosi ! Linanpalca PAMPA PALCOPAMPA Villa Industrial ! Agua Rica ! NEVADO DE CHIQUINANTA Limani ! Loma Liczone Huancarcollo Camana Tiluyo Co. Chinchillane ! ! Loma Liczones Sarayuma ! ! Loma Liczones PAMPA ANCOMA GENERAL LAGOS Co. Iquilla Tuma Palca Co. Cosapilla ! Ancocalani ! Pamputa Hospicio ! ! Pahuta Co. Churicahua Aricopujo ! ! Co. Copotanca Co. Pumata Co. Titire Chollota ! Nasahuento PAMPA AGUA MILAGRO ! PAMPA GUANAVINTO Co.Pararene PAMPA JAMACHAVINTO Co.Plapuline Co. Colpitas PAMPA TACATA CERRO HUENUME Colpitas Guailla ! Uncaliri Chico PAMPA MARANSILANE Co. Paracoya !! Uncaliri GrandeRosapare! Co. Condoriri SIERRA DE HUAYLILLAS Queumahuna ! Autilla ! ! PAMPA DE ALLANE PAMPA CASCACHANE PAMPA GUANOCO Co. Curaguara Cochantare Quenuavinto ! Pacharaque ! Jaillabe ! Co. Muntirune ! Caquena Colpita! ! !Culiculini Co. Huilacuragura
    [Show full text]
  • Geomorfología Del Área De Putre, Andes Del Norte De Chile
    Nº 54, 2017. Páginas 7-20 Diálogo Andino GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO* GEOMORPHOLOGY OF THE PUTRE AREA, NORTHERN ANDES OF CHILE: VOLCANIC AND CLIMATE ACTION IN ITS MODELING Alan Rodríguez Valdivia**, Cristián Albornoz Espinoza*** y Alejandro Tapia Tosetti**** El área de Putre se localiza en una subcuenca de montaña a 3.500 msnm, en la vertiente oeste de la cordillera occidental Andina (extremo norte de Chile), en el que predominan formas de relieve asociadas a la acción volcánica y del clima. Dicho relieve es producto de la evolución geológica del Complejo Volcánico Taapaca (CVT), cuyos procesos eruptivos han dado paso a morfolito- logías constructivas que configuran la subcuenca estudiada, en las que el factor climático ha actuado constantemente, meteorizando y erosionando los materiales, dando como resultado formas derivadas de procesos gravitacionales, fluviales y, en menor medida, periglaciales. Se reconoce en el modelado existente, la acción ejercida por procesos de tipo gravitacional que se han traducido en movimientos en masa de tipo derrumbes y flujos de detritos, mientras que la acción fluvial ha favorecido la formación de profundas y angostas quebradas en el área. Palabras claves: Putre, Complejo Volcánico Taapaca, Geomorfología, Movimientos en masa. The Putre area is located in a sub-basin at an altitude of 3,500 m on the west slope of the Western Andean mountain range (in the northernmost part of Chile), with volcanoes and the climate forming the predominant landforms. This relief is the result of the geological evolution of the Taapaca Volcanic Complex (CVT) whose eruptions have given rise to constructive morpho-lithologies shaping the sub-basin, and the climate consistently weathering and eroding, leading to forms which resulte primary from gravi- tational and fluvial processes and secundary from periglacial mechanisms.
    [Show full text]
  • The Causes and Effect of Temporal Changes in Magma Generation Processes in Space and Time Along the Central Andes (13°S – 25°S)
    The causes and effect of temporal changes in magma generation processes in space and time along the Central Andes (13°S – 25°S) Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Rosanne Marjoleine Heistek aus Nederland/Niederlande Göttingen 2015 Betreuungsausschuss: Prof. Dr. Gerhard Wörner, Abteilung Geochemie, GZG Prof. Dr. Andreas Pack, Abteilung Isotopengeologie, GZG Referent: Prof. Dr. Gerhard Wörner Prof. Dr. Andreas Pack Weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Prof. Dr. Hilmar von Eynatten Prof. Dr. Jonas Kley Dr. John Hora Tag der mündlichen Prüfung: 25.06.2015 TABLE OF CONTENTS Acknowledgements .................................................................................................................................1 Abstracts .................................................................................................................................................2 Chapter 1: Introduction .........................................................................................................................7 1.1.The Andean volcanic belt .............................................................................................................................. 7 1.2. The Central volcanic zone ...........................................................................................................................
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
    Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time.
    [Show full text]