Overview of Tick Borne Viral Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Tick Borne Viral Diseases National Center for Emerging and Zoonotic Infectious Diseases Division of Vector-Borne Diseases Overview of Tick Borne Viral Diseases Christopher J. Gregory, MD, MPH Chief, Arboviral Diseases Branch Division of Vector-borne Diseases Updated August 5, 2016 National Center for Emerging and Zoonotic Infectious Diseases U.S. Centers for Disease Control and Prevention LEARNING OBJECTIVES . Learn about ticks and tick-borne viral diseases including: – Tick entomology – Virology and transmission – Epidemiology – Clinical features – Diagnosis – Treatment and prevention OUTLINE • Ticks 101 • Key tick-borne diseases, their distributions and vectors • Current disease burden, trends and drivers • Tick borne viruses • Tick-borne disease prevention Ticks 101 WHAT IS A TICK? Arthropod (phylum) and arachnid (class) – Ecto (external) parasite – Feeds on the blood of mammals, birds, reptiles, and/or amphibians – Originated during Cretaceous period (146 to 66 million years ago) – Found worldwide (except Antarctica) – Generally prefer warmth and humidity Photo of Amblyomma americanum (lone star tick) courtesy of cdc.gov HARD TICKS Family Ixodidae – Hard dorsal plate or scutum – Mouth parts visible from above – “Quests” for a host in tall vegetation – Can stay attached and feed for days – Amblyomma spp. – Dermacentor spp. – Ixodes spp. – Rhipicephalus spp. Photo of Ixodes scapularis (blacklegged tick / deer tick) courtesy of cdc.gov SOFT TICKS Family Argasidae – No hard dorsal plate or scutum – Mouth parts underneath body and not visible from above – Lives near burrows, nests, rustic cabins – Sneaks up and attaches at night – Does not stay attached or feed for long – Less likely to bite humans – Ornithodoros spp. Photo of Ornithodoros spp. soft tick courtesy of cdc.gov TICK LIFE CYCLE . Different species have different cycles . Multi -stage, multi-year cycles may occur – Egg – Larva – Nymph – Adult . Blood meals needed at each stage . Preferred hosts may differ at each stage https://www.cdc.gov/ticks/life_cycle_and_hosts.html TICK QUESTING . Ticks cannot fly or jump . Many hard ticks “quest” to find a host – Perch at end of vegetation – Outstretch front legs – Wait for host to walk by . Questing site chosen based on CO2, other odors, shadows, vibrations, etc. Larvae quest lower for smaller hosts . Nymphs/adults quest higher for bigger hosts Photos of hard ticks questing courtesy of Griffin Dill at the University of Maine https://extension.umaine.edu/ipm/tickid/tick-biology/ TICK FEEDING AND PATHOGEN TRANSMISSION . Ticks need time to attach and start feeding . Feeding time can vary: – Soft ticks minutes – Hard ticks hours to days – Ticks drop after feeding complete . Ticks may acquire pathogen from one host – Or tick parent . And transmit to another host during feeding . Serving as disease “vector” Photo is the transmission ecology of Colorado tick fever virus courtesy of cdc.gov https://www.cdc.gov/ticks/life_cycle_and_hosts.html Key tick-borne diseases, their distributions and vectors NATIONALLY NOTIFIABLE TICK-BORNE DISEASES IN THE U.S. • Anaplasmosis • Babesiosis • Ehrlichiosis • Lyme disease • Powassan virus disease • Spotted fever rickettsiosis • Tularemia IMPORTANT TICK SPECIES IN THE U.S. Blacklegged Tick Brown Dog Tick Rocky Mountain Wood Tick Lone Star Tick Groundhog Tick Soft Tick American Dog Tick Gulf Coast Tick Western Blacklegged Tick DISTRIBUTION OF COMMON NATIONALLY NOTIFIABLE TICK- BORNE DISEASES Current disease burden • 16 nationally notifiable vectorborne diseases; 7 are transmitted by ticks • 77% of all reported cases of vectorborne diseases in the US are transmitted by ticks IN 2017, RECORD NUMBER OF TICK-BORNE DISEASE CASES REPORTED TO CDC Reported Tick-borne diseases, U.S. 2016 2017 Lyme disease (confirmed and probable) 36,429 42,743 Anaplasmosis/Ehrlichiosis† 5,750 7,718 Spotted Fever Rickettsiosis§ 4,269 6,248 Babesiosis§§ 1,910 2,368 Tularemia 230 239 Powassan virus 22 33 Total 48,610 59,349 † Anaplasmosis and ehrlichiosis were reported separately after 2008 but are combined here for the entire period §Includes R. rickettsii, R. parkeri, R. species 364D §§ Babesiosis surveillance data are reported independently to different CDC programs. For this reason, surveillance data reported elsewhere might vary slightly from data reported in this summary TOTAL TICK-BORNE DISEASE CASES, U.S., 2004 – 2017 60,000 59,349 49,825 50,000 48,610 46,231 42,649 43,654 39,993 40,795 40,119 40,000 34,890 31,808 30,000 26,800 23,770 22,527 20,000 10,000 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 REPORTED LYME DISEASE CASES BY YEAR, U.S., 1991-2016 45,000 40,000 Probable* 35,000 Confirmed 30,000 25,000 20,000 Cases 15,000 10,000 5,000 0 1991 1996 2001 2006 2011 2016 Year OTHER NATIONALLY NOTIFIABLE TICK-BORNE DISEASES HAVE ALSO INCREASED Annual Reported Cases of Three Selected Tick-borne Diseases, 2000–2015 10,000 9,000 Anaplasmosis 8,000 Ehrlichioses 7,000 Spotted fever group rickettsioses 6,000 5,000 4,000 Reported Cases Reported 3,000 2,000 1,000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Year Source: cdc.gov/mmwr/mmwr_nd/index.html ; cdc.gov/mmwr/volumes/65/wr/pdfs/mm6546.pdf TICK-BORNE DISEASES UNDER-REPORTING IN THE U.S. • All reportable conditions are subject to under-reporting. • Magnitude of under-reporting less for diseases that: – Are rare or unusual – Require hospitalization – Have a definitive diagnostic test • Principal reasons for under-reporting of Lyme disease: – Busy health care providers don’t fill out the report form. – Health departments do not have time to follow up on missing information. ROCKY MOUNTAIN SPOTTED FEVER . Rickettsiae released into bite site within a few hours after attachment . Incubation period following tick bite: 3-12 days (4-8 days in most patients) . Inverse correlation between incubation period and illness severity . Treatment of choice - doxycycline ROCKY MOUNTAIN SPOTTED FEVER: THE OLDEST KNOWN AND MOST LETHAL TICK-TRANSMITTED RICKETTSIAL DISEASE Reported throughout the Western Hemisphere • USA (1899) • Brazil (1931) • Colombia (1937) • México (1943) • Panamá (1950) • Costa Rica (1979) • Argentina (1994) PATHOGENIC ANAPLASMATACAE OF HUMANS IN U.S, 2018 • Ehrlichia chaffeensis (1987) • Anaplasma phagocytophilum (1994) • Ehrlichia ewingii (1999) • Ehrlichia muris euclairensis (2011) CLINICAL FEATURES OF EHRLICHIOSIS • Fever, headache, myalgia, anorexia • Leukopenia, thrombocytopenia, and transaminase elevations common • Severe illness in ~10% • Meningoencephalitis • M yocarditis • Renal failure • Hemophagocytic syndrome • DIC • ARDS HUMAN ANAPLASMOSIS • Life-threatening complications occur infrequently (~6%) • Case fatality rate <1%, deaths occur predominantly in persons >70 years-of- age • Multiple instances of transfusion- associated anaplasmosis reported Disease trends and drivers DISCOVERY OF TICK-BORNE PATHOGENS AS CAUSES OF HUMAN DISEASE BY YEAR, 1960–2016 Rickettsia 364D • Year represents when tickborne pathogen was recognized as cause of human disease. • Adapted from: Paddock CD, Lane RS, Staples JE, Labruna MB. 2016. In: Mack A, Editor. Global health impacts of vector-borne diseases: workshop summary. National Academies Press. p. 221-257. GEOGRAPHIC EXPANSION OF TICKS – RECORDED LOCATIONS OF IXODES SCAPULARIS 1996 2015 Established: >6 or more ticks or >1 life stage recorded in a single year Reported: <6 individuals of a single life stage recorded in a single year • Dennis DT, Nekomoto TS, Victor JC, et al. J Med Entomol. 1998 Sep;35(5):629-38. • Eisen RJ, Eisen L, Beard CB. J Med Entomol. 2016 Mar;53(2):349-86. TICK-BORNE DISEASE EMERGENCE – RE-EMERGENCE IN THE U.S. • Reforestation • Overabundant deer • Expansion of suburbia into wooded areas • Abundant habitat around homes for Lyme reservoir hosts • Increased numbers of ticks • Increased exposure opportunities Source: Bald hills: New England before the trees returned. From Thoreau's in people Country. American Scientist Online http://www.amercanscientist.org • Changing climate Source: K. Stafford, CT Agricultural Experiment Station CLIMATE, WEATHER, AND TICK-BORNE DISEASES . Warmer annual temperatures will result in a generally northward expansion in tick distribution. Warmer temperatures increase reproductive capacity of ticks, leading to larger populations of ticks. Higher moisture levels allow tick survival in warmer environments. With milder winters and earlier springs, tick vectors will likely show earlier seasonal activity. Larger tick populations, longer seasonal activity and expanding range of ticks will likely increase risk of human exposure to infected tick. Brownstein, J. S., T. R. Holford, and D. Fish. 2003. Environ Health Persp 111: 1152-1157 Eisen, L., R. J. Eisen, and R. S. Lane. 2002. Med Vet Entomol 16: 235-244 Yuval, B., and A. Spielman. 1990. J Med Entomol 27: 196-201 Moore, S. M., R. J. Eisen, A. Monaghan, and P. Mead. 2014. Am J Trop Med Hyg 90: 486-496 Beard, C.B., Eisen, R.J., Barker, C.M. et al. 2016. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. U.S. Global Change Research Program, Washington, DC, 129–156. http://dx.doi.org/10.7930/J0765C7V HAEMOPHYSALIS LONGICORNIS (ASIAN LONGHORNED TICK) • Discovered in New Jersey in 2017, and now reported from 10 states – Arkansas , Connecticut, Kentucky, Maryland, North Carolina, New Jersey, New York, Pennsylvania, Virginia, and West Virginia – Documented in 49 counties • Reported from 15 animal species and from humans • Pathogens found in these ticks elsewhere
Recommended publications
  • Heartland and Bourbon Virus Testing Guideance for Healthcare Providers
    Heartland and Bourbon Virus Testing Guidance for Healthcare Providers Heartland virus is an RNA virus believed to be transmitted by the Lone Star tick (Amblyomma americanum). Most patients reported tick exposure in the two weeks prior to illness onset. While no cases have been reported in Louisiana, this tick is found in Louisiana. First discovered as a cause of human illness in 2009 in Missouri, more than 40 cases have been reported from states in Midwestern and southern U.S. to date. Initial symptoms of Heartland virus disease are very similar to those of ehrlichiosis or anaplasmosis, which include fever, fatigue, anorexia, nausea and diarrhea. Cases have also had leukopenia, thrombocytopenia, and mild to moderate elevation of liver transaminases. Heartland virus disease should be considered in patients being treated for ehrlichiosis who do not respond to treatment with doxycycline. For several years, CDC has been working under IRB-approved protocols to identify additional cases and validate diagnostic test for several novel pathogens. Now the CDC Arboviral Diseases Branch offers routine diagnostic testing for Heartland and Bourbon viruses (RT-PCR, IgM and IgG MIA, PRNT). There is no commercial testing available. Treatment of Heartland virus disease is supportive only. Many patients diagnosed with the disease have required hospitalization. With supportive care, most people have fully recovered; however, a few older individuals with medical comorbidities have died. The best way to prevent Heartland virus infection is to avoid exposure
    [Show full text]
  • Tick-Transmitted Diseases
    Deer tick-transmitted infections zoonotic in the eastern U.S. •Lyme disease (Borrelia burgdorferi sensu lato): erythema migrans rash, fever, chills, muscle aches; can progress to arthritis or neurologic signs – 200-500 cases/100,000/year •Babesiosis (Babesia microti): malaria like, fever, chills, muscle aches, fatigue, hemolysis/anemia– 100-200 cases/100,000/year •Human granulocytic ehrlichiosis/anaplasmosis (Anaplasma phagocytophilum): fever, chills, muscle aches, headache—50-100 cases/100,000/year •Borrelia miyamotoi disease (BMD): fever, chills, muscle aches, headache – 50-100 cases/100,000/year •Deer tick virus fever/encephalitis: fever, headache, confusion, seizures– 1-5 cases/100,000/ year Erythema migrans: not just a “bulls-eye” Courtesy of Tim Lepore MD, Nantucket Cottage Hospital Life cycle of deer ticks…critical to develop interventions 40%-70% infection rate 10%-30% infection rate Grace period: Adaptations to extended life cycle Borrelia burgdorferi: 24-48 hours (upregulation of OspC, migration from gut to salivary glands) Babesia microti: 48-62 hours (sporogony from undifferentiated salivary sporoblast) Anaplasma phagocytophilum: 24-36 hours (acquisition of “slime layer”?) Tickborne encephalitis virus: none “Restore the risk landscape to what it was before 1980” The main drivers for emergence of the Lyme disease epidemic: 1905 Pout’s Pond, Deforestation, reforestation: Nantucket dominance of successional habitat Increased development and recreational use in reforested sites Burgeoning deer herds 1986 http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b1010.pdf
    [Show full text]
  • Transmission and Evolution of Tick-Borne Viruses
    Available online at www.sciencedirect.com ScienceDirect Transmission and evolution of tick-borne viruses Doug E Brackney and Philip M Armstrong Ticks transmit a diverse array of viruses such as tick-borne Bourbon viruses in the U.S. [6,7]. These trends are driven encephalitis virus, Powassan virus, and Crimean-Congo by the proliferation of ticks in many regions of the world hemorrhagic fever virus that are reemerging in many parts of and by human encroachment into tick-infested habitats. the world. Most tick-borne viruses (TBVs) are RNA viruses that In addition, most TBVs are RNA viruses that mutate replicate using error-prone polymerases and produce faster than DNA-based organisms and replicate to high genetically diverse viral populations that facilitate their rapid population sizes within individual hosts to form a hetero- evolution and adaptation to novel environments. This article geneous population of closely related viral variants reviews the mechanisms of virus transmission by tick vectors, termed a mutant swarm or quasispecies [8]. This popula- the molecular evolution of TBVs circulating in nature, and the tion structure allows RNA viruses to rapidly evolve and processes shaping viral diversity within hosts to better adapt into new ecological niches, and to develop new understand how these viruses may become public health biological properties that can lead to changes in disease threats. In addition, remaining questions and future directions patterns and virulence [9]. The purpose of this paper is to for research are discussed. review the mechanisms of virus transmission among Address vector ticks and vertebrate hosts and to examine the Department of Environmental Sciences, Center for Vector Biology & diversity and molecular evolution of TBVs circulating Zoonotic Diseases, The Connecticut Agricultural Experiment Station, in nature.
    [Show full text]
  • Generic Amplification and Next Generation Sequencing Reveal
    Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains.
    [Show full text]
  • Meeting the Challenge of Tick-Borne Disease Control a Proposal For
    Ticks and Tick-borne Diseases 10 (2019) 213–218 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Letters to the Editor Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes T 1. Introduction reported to the Centers for Disease Control and Prevention (2018) each year represent only about 10% of actual cases (CDC; Hinckley et al., At the ‘One Health’ 9th Tick and Tick-borne Pathogen Conference 2014; Nelson et al., 2015). In Europe, roughly 85,000 LD cases are and 1st Asia Pacific Rickettsia Conference (TTP9-APRC1; http://www. reported annually, although actual case numbers are unknown ttp9-aprc1.com), 27 August–1 September 2017 in Cairns, Australia, (European Centre for Disease Prevention and Control (ECDC), 2012). members of the tick and tick-borne disease (TBD) research communities Recent studies are also shedding light on the transmission of human and assembled to discuss a high priority research agenda. Diseases trans- animal pathogens by Australian ticks and the role of Ixodes holocyclus, mitted by hard ticks (subphylum Chelicerata; subclass Acari; family as a vector (reviewed in Graves and Stenos, 2017; Greay et al., 2018). Ixodidae) have substantial impacts on public health and are on the rise Options to control hard ticks and the pathogens they transmit are globally due to human population growth and change in geographic limited. Human vaccines are not available, except against the tick- ranges of tick vectors (de la Fuente et al., 2016). The genus Ixodes is a borne encephalitis virus (Heinz and Stiasny, 2012).
    [Show full text]
  • Ticks and Tick-Borne Diseases in New York State
    Ticks and Tick-borne Diseases in New York State Town of Bethlehem Deer and Tick-borne Diseases Committee Meeting June 3rd 2014 Melissa Prusinski Research Scientist and Laboratory Supervisor New York State Department of Health Bureau of Communicable Disease Control Vector Ecology Laboratory Tick Bio 101: Hard-bodied ticks Taxonomic family: Ixodidae 4 life stages: Egg, Larva, Nymph, and Adult Each active life-stage must feed once on blood in order to develop into the next life-stage. Ticks in New York State: • 30 species of ticks • 10 species commonly bite humans • 4 species can transmit diseases Deer tick Lone Star tick American Dog tick Woodchuck tick Ixodes scapularis Amblyomma americanum Dermacentor variabilis Ixodes cookei Tick-borne Diseases in NY: Reported NY Cases Disease (causative agent) 2001-2013* Lyme Disease (Borrelia burgdorferi) 57,047 Human Granulocytic Anaplasmosis (Anaplasma phagocytophilum) 2,784 Babesiosis (Babesia microti) 2,596 Human Monocytic Ehrlichiosis (Ehrlichia chaffeensis) 693 Rocky Mountain Spotted fever (Rickettsia rickettsii) 179 Powassan encephalitis (Powassan virus or Deer Tick virus) 18 Tick-borne relapsing fever (Borrelia miyamotoi) 5 ** Tularemia (Fransicella tularensis) 4 * Reported to the NYSDOH by medical providers and clinical laboratories ** Identified in a NYSDOH retrospective study of patients screening negative for anaplasmosis The Deer tick can potentially transmit 5 diseases: (in New York State) . Lyme disease Most common tick-borne disease in New York State (and the nation) . Babesiosis Expanding
    [Show full text]
  • Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission Xiangye Liu
    Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Xiangye Liu To cite this version: Xiangye Liu. Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission. Human health and pathology. Université Paris-Est, 2013. English. NNT : 2013PEST1066. tel-01142179 HAL Id: tel-01142179 https://tel.archives-ouvertes.fr/tel-01142179 Submitted on 14 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you.
    [Show full text]
  • Tick-Borne Disease Working Group 2020 Report to Congress
    2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R.
    [Show full text]
  • Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Journal of Medical Entomology, 2019, 1–10 doi: 10.1093/jme/tjz010 Review Review Downloaded from https://academic.oup.com/jme/advance-article-abstract/doi/10.1093/jme/tjz010/5310395 by Rutgers University Libraries user on 09 February 2019 Annotated List of the Hard Ticks (Acari: Ixodida: Ixodidae) of New Jersey James L. Occi,1,4 Andrea M. Egizi,1,2 Richard G. Robbins,3 and Dina M. Fonseca1 1Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901-8536, 2Tick- borne Diseases Laboratory, Monmouth County Mosquito Control Division, 1901 Wayside Road, Tinton Falls, NJ 07724, 3 Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, MSC, MRC 534, 4210 Silver Hill Road, Suitland, MD 20746-2863 and 4Corresponding author, e-mail: [email protected] Subject Editor: Rebecca Eisen Received 1 November 2018; Editorial decision 8 January 2019 Abstract Standardized tick surveillance requires an understanding of which species may be present. After a thorough review of the scientific literature, as well as government documents, and careful evaluation of existing accessioned tick collections (vouchers) in museums and other repositories, we have determined that the verifiable hard tick fauna of New Jersey (NJ) currently comprises 11 species. Nine are indigenous to North America and two are invasive, including the recently identified Asian longhorned tick,Haemaphysalis longicornis (Neumann, 1901). For each of the 11 species, we summarize NJ collection details and review their known public health and veterinary importance and available information on seasonality. Separately considered are seven additional species that may be present in the state or become established in the future but whose presence is not currently confirmed with NJ vouchers.
    [Show full text]
  • ADV Heartland and Bourbon Virus Testing Guidance in Pennsylvania
    PENNSYLVANIA DEPARTMENT OF HEALTH 201 8– PAHAN –418 –07-27- ADV Heartland and Bourbon Virus Testing Guidance in Pennsylvania DATE: July 27, 2018 TO:DATE: Health Alert Network FROM: Rachel Levine, MD, Secretary of Health SUBJECT: Heartland and Bourbon Virus Testing Guidance DISTRIBUTION: Statewide LOCATION: Statewide STREET ADDRESS: n/a COUNTY: n/a MUNICIPALITY: n/a ZIP CODE: n/a This transmission is a “Health Advisory” provides important information for a specific incident or situation; may not require immediate action. HOSPITALS : PLEASE SHARE WITH ALL MEDICAL, PEDIATRIC, INFECTION CONTROL, NURSING AND LABORATORY STAFF IN YOUR HOSPITAL; EMS COUNCILS: PLEASE DISTRIBUTE AS APPROPRIATE; FQHCs: PLEASE DISTRIBUTE AS APPROPRIATE LOCAL HEALTH JURISDICTIONS: PLEASE DISTRIBUTE AS APPROPRIATE; PROFESSIONAL ORGANIZATIONS: PLEASE DISTRIBUTE TO YOUR MEMBERSHIP Summary • CDC Arboviral Diseases Branch will now offer routine diagnostic testing for Heartland and Bourbon viruses (transmitted by the Lone Star tick). • To submit samples for testing, send to PADOH BOL with both BOL and CDC submission forms. • In addition to testing for more likely arboviruses in Pennsylvania (such as West Nile, Powassan, Eastern equine encephalitis, etc.), testing for Heartland or Bourbon virus should be considered for patients with an acute febrile illness within the past 3 months AND at least one epidemiologic criterion AND at least one clinical criterion (see below for details). Background on Heartland and Bourbon virus Heartland virus is an RNA virus in the genus Phlebovirus, family Phenuiviridae believed to be transmitted by the Lone Star tick (Amblyomma americanum). First discovered as a cause of human illness in 2009 in Missouri, more than 35 cases of Heartland virus disease have been reported from states in the midwestern and southern United States to date.
    [Show full text]
  • The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health
    viruses Review The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health Kurt J. Vandegrift 1 and Amit Kapoor 2,3,* 1 The Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Center for Vaccines and Immunity, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA 3 Department of Pediatrics, Ohio State University, Columbus, OH 43205, USA * Correspondence: [email protected] Received: 21 March 2019; Accepted: 29 May 2019; Published: 7 June 2019 Abstract: Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses.
    [Show full text]
  • Tick-Borne “Bourbon” Virus: Current Situation JEZS 2016; 4(3): 362-364 © 2016 JEZS and Future Implications Received: 15-03-2016
    Journal of Entomology and Zoology Studies 2016; 4(3): 362-364 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Tick-borne “Bourbon” Virus: Current situation JEZS 2016; 4(3): 362-364 © 2016 JEZS and future implications Received: 15-03-2016 Accepted: 16-04-2016 Asim Shamim and Muhammad Sohail Sajid Asim Shamim Department of Parasitology, Abstract Faculty of Veterinary Science, Ticks transmit wide range of virus to human and animals all over the globe. Bourbon virus is new tick University of Agriculture transmitted virus from bourbon county of United States of America. This is first reported case from Faisalabad, Punjab, Pakistan. western hemisphere. The objective of this review is to share information regarding present situation of Muhammad Sohail Sajid this newly emerged virus and future challenges. Department of Parasitology, Faculty of Veterinary Science, Keywords: Global scenario, tick, bourbon virus University of Agriculture Faisalabad, Punjab, Pakistan. Introduction Ticks (Arthropoda: Acari), an obligate blood imbibing ecto-parasite of vertebrates [1] spreads mass of pathogens to humans and animals globally [2]. Ticks have been divided into two broad families on the base of their anatomical structure i.e. Ixodidae and Argasidae commonly called as hard and soft ticks respectively [3]. Approximately 900 species of ticks are on the record [4-6] [7] and 10% of these known tick species , communicate several types of pathogens to human and animals of both domestic and wild types. Ticks ranked next to mosquitos as vectors of human [8], and animal diseases. During the past few decades, it has been noticed that the number of reports on eco-epidemiology of tick-borne diseases increased [2].
    [Show full text]