Summary of Findings There Are No Expected Direct, Indirect, Or

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Findings There Are No Expected Direct, Indirect, Or United States Forest Bend/Fort Rock 63095 Deschutes Market Road Department of Service Ranger District Bend, Oregon 97701 Agriculture Date: 12 February 2015 To: The Record Re: Survey and Manage Plant Species within Ursus Project From: Charmane Powers Summary of Findings There are no expected direct, indirect, or cumulative effects from implementation of any alternative, because: • There are no known Survey and Manage sites located within the project treatment areas. • There is no old-growth habitat present within project treatment areas, which would trigger survey for some species. This report documents the survey findings, project effects, and project recommendations regarding the Northwest Forest Plan (NWFP) “Survey and Manage” plant species as they relate to the Ursus Project; the entirety of Ursus falls within the NWFP area. The Survey and Manage guidelines have changed many times since its inception. The following represents the direction at the time of this document and project, taken from a May 13, 2014 letter of direction: “… in order to allow projectsDRAFT that are already initiated (meaning scoping initiated or the project is entered into the Schedule of Proposed Actions) to proceed with minimal disruption, there is a grace period for implementing this direction. Field units can choose which direction to follow until April 30, 2015; projects initiated in this next year can follow the direction in (a) or (b) below. For projects initiated after April 30, 2015, your project must follow direction in (b). (a) The January 2001 ROD standards and guidelines and the associated January 2001 species list, and/or the four categories of projects exempt from the Survey and Manage standards and guidelines as stipulated by Judge Pechman (October 11, 2006 Pechman exemptions). (Same as previous June 12, 2013 Interim Direction.) (b) The January 2001 ROD standards and guidelines and the December 2003 species list, except for the red tree vole which remains as Category C across its range, and/or the Ursus Project—Survey and Manage Report (Plants) Page 1 of 10 four categories of projects exempt from the Survey and Manage standards and guidelines as stipulated by Judge Pechman (October 11, 2006, “Pechman exemptions”.) This document follows the direction outline in (b) above. Project Consistency The Ursus project applies the Survey and Manage species list in the 2001 ROD using the December 2003 species list (Table 1-1, Standards and Guidelines, pages 41-51) and thus meets the provisions of the May 2014 guidance letter (referenced above) and the 2001 Record of Decision and Standards and Guidelines for Amendments to the Survey and Manage, Protection Buffer, and other Mitigation Measures Standards and Guidelines. See Appendix A for the Survey and Manage categories into which species are grouped; see Appendix B for a list and brief habitat description of the potential Deschutes National Forest species for which pre-disturbance surveys are required and for which any known sites are required to be managed; see Appendix C for Definitions of “Equivalent Effort Surveys in Old Growth” and “Habitat Disturbing”. One way the NWFP requires the Forest Service to address late-successional forest ecosystem function is through consideration of “Survey and Manage” species associated with this ecosystem. These are selected species of fungi, lichens, bryophytes, vascular plants, and invertebrate animals whose viability are of concern within this broad ecosystem type. The November 2000 FEIS identifies six categories into which species are grouped. In order to fall into one of these categories, the species must meet three basic criteria: 1. The species must occur within the Northwest Forest Plan area, or occur close to the NWFP area and have potentially suitable habitat within the NFP area. 2. The species must be closely associated with late-successional or old-growth forest. 3. The reserve system and other Standards and Guidelines of the NFP do not appear to provide for a reasonable assurance of species persistence. All six categories contain a requirement to conduct “strategic surveys”, which is something separate from project-level surveys andDRAFT is not required to be addressed in this document. Specific habitat information on Survey and Manage species is becoming better understood as species-specific surveys are conducted and data is compiled and compared. However, many habitat descriptions are based on relatively few records and will continue to be scrutinized and refined as new sites are discovered. The following discussion is an effort to assess and apply existing information as it relates to the Ursus project. PROJECT DESCRIPTION Alternative 1 (NO ACTION) Alternative 1 is the No Action alternative. This alternative is required by law and serves as a baseline for comparison of the effects of all of the alternatives. Under Alternative 1, current management plans would continue to guide management. There would be no change in the level of ongoing management activities Ursus Project—Survey and Manage Report (Plants) Page 2 of 10 within the project area. All custodial activities such as road maintenance, law enforcement, and response to emergencies, including wildfire, would continue. No treatment would be implemented to reduce stand density and fire risk and meet the Purpose and Need of this proposed project. Alternative 2 (PROPOSED ACTION) Alternative 2, the proposed action, would respond to the Purpose and Need by harvesting 4,208 of 6,066 acres of stands in the project area. Thirty-one percent of the planning area or 1,858 acres would remain untreated. Fuel treatment would occur on 4,158 acres. This alternative is consistent with management direction set forth in the Deschutes National Forest Plan. Alternative 3 Alternative 3 would respond to the Purpose and Need by harvesting 4,148 of 6,066 acres of stands in the project area. Thirty-two percent of the planning area or 1,919 acres would remain untreated. Fuel treatment would occur on 4,075 acres. This alternative is consistent with management direction set forth in the Deschutes National Forest Plan. PREFIELD REVIEW The plant associations in Ursus include lodgepole pine and mixed conifer. Soils are most commonly characterized by sandy volcanic ash and pumice on a buried soil over glacial till, while on the buttes, it becomes sandy pumiceous volcanic ash & pumice lapilli over sandy buried soils. The elevation lies between 5400’ – 6400’. The average annual precipitation measures about 20 – 30”. The area is characterized generally by a depauperate understory. (Common understory herbaceous plants include upland sedges, western needlegrass, Idaho fescue, bottlebrush squirreltail, silvery lupine, and strawberry). There are no known sites within Ursus treatment areas of any Survey and Manage species listed on the Deschutes National Forest S&M list (Appendix B). If sites were present, that would trigger protection from project disturbance. There is no old growth (see definition in Appendix C) present within Ursus that is proposed for treatment, which eliminates considerationDRAFT of all Category B species (most prominently featuring many fungi species). VASCULAR PLANTS There is no habitat present within the project area for Cypripedium montanum; this species would require pre-disturbance surveys if habitat is present. This species has never been found on the Bend/Ft. Rock Ranger District. BRYOPHYTES The only Deschutes bryophyte requiring pre-disturbance survey if habitat is present, Schistostega Ursus Project—Survey and Manage Report (Plants) Page 3 of 10 pennata, does not have habitat within Ursus. LICHENS There are no S&M lichens that are in a category that requires surveys nor are there any known sites to protect within Ursus. FUNGI Category B fungi are required to have “equivalent effort” surveys conducted if the project proposes to enter old-growth habitat (see Appendix C) and if the activity is deemed habitat-disturbing (see Appendix C), and if the project does not meet the Judge Pechman exemptions (see Appendix D). Surveys for Category B fungi are not warranted in the Ursus project, because there is no old growth habitat present within proposed treatment areas. This determination was made using the 1993 Region 6 Interim Old Growth definitions referenced in Appendix C, as reflected in the old growth lidar dataset in the GIS layerfiles of the Deschutes National Forest. PROJECT EFFECTS Direct, Indirect and Cumulative Effects: There are no expected direct, indirect, or cumulative effects to Survey and Manage species in the proposed project because there are no known S&M sites present, nor is there old-growth habitat present within disturbance areas, which would trigger a survey for certain species. See page one for a summary of Findings. REFERENCES AND COMMUNICATIONS Bend/Ft. Rock Ranger DistrictDRAFT Survey and Manage species GIS layer. Deschutes National Forest old growth lidar GIS layerfile. USDA Forest Service, USDI Bureau of Land Management. 2000. Final Supplemental Environmental Impact Statement: For Amendment to the Survey & Manage, Protection Buffer, and other Mitigation Measures, Standards and Guidelines, Volumes I and II. USDA Forest Service, USDI Bureau of Land Management. January 2001. Record of Decision and Standards and Guidelines: For Amendment to the Survey and Manage, Protection Buffer, and other Mitigation Measures, Standards and Guidelines USDA Forest Service, May 13, 2014. Letter of direction titled “Direction Regarding the Survey and Manage Standards and Guidelines”. Ursus Project—Survey and Manage Report (Plants) Page 4 of 10 APPENDIX A SURVEY AND MANAGE CATEGORIES Category A – Rare species. Pre-disturbance surveys are practical. The objective of this category is to manage all known sites and minimize inadvertent loss of undiscovered sites. Management direction includes manage all known sites, survey prior to habitat-disturbing activities, and conduct strategic surveys. Category B – Rare species. Pre-disturbance surveys are not practical. The objective of this category is to manage all known sites and minimize inadvertent loss of undiscovered sites. Management direction includes manage all known sites and conduct strategic surveys. Category C – Uncommon species.
Recommended publications
  • Fungi of North East Victoria Online
    Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
    Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988).
    [Show full text]
  • Redalyc.Field Performance of Pinus Ponderosa Seedlings Inoculated
    Bosque ISSN: 0304-8799 [email protected] Universidad Austral de Chile Chile Barroetaveña, Carolina; Bassani, Vilma Noemí; Monges, Juan Ignacio; Rajchenberg, Mario Field performance of Pinus ponderosa seedlings inoculated with ectomycorrhizal fungi planted in steppe-grasslands of Andean Patagonia, Argentina Bosque, vol. 37, núm. 2, 2016, pp. 307-316 Universidad Austral de Chile Valdivia, Chile Available in: http://www.redalyc.org/articulo.oa?id=173148403009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative BOSQUE 37(2): 307-316, 2016 DOI: 10.4067/S0717-92002016000200009 Field performance of Pinus ponderosa seedlings inoculated with ectomycorrhizal fungi planted in steppe-grasslands of Andean Patagonia, Argentina Comportamiento a campo de Pinus ponderosa inoculado con hongos ectomicorrícicos plantado en pastizales de estepa en Patagonia Andina, Argentina Carolina Barroetaveña a,b,c*, Vilma Noemí Bassani a, Juan Ignacio Monges a, Mario Rajchenberg a,b,c a Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina. b Consejo Nacional de Ciencia y Tecnología (CONICET), Argentina. * Corresponding autor: c Universidad Nacional de la Patagonia SJ Bosco, Facultad de Ingeniería sede Esquel, Centro Forestal CIEFAP, C.C. 14, 9200, Esquel, Chubut, Argentina, [email protected] SUMMARY Pinus ponderosa is the most planted tree species in the ecotone area of Patagonia, Argentina, subjected to water stress and a Mediterranean climate. Ectomycorrhizal (EM) fungi form obligate mutually beneficial associations with ponderosa pine which improve plant growth and resistance to adverse conditions.
    [Show full text]
  • Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences
    AN ABSTRACT OF THE THESIS OF Lisa C. Grubisha for the degree of Master of Science in Botany and Plant Pathology presented on June 22, 1998. Title: Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences. Abstract approved Redacted for Privacy Joseph W. Spatafora Rhizopogon is a hypogeous fungal genus that forms ectomycorrhizae with genera of the Pinaceae. The greatest number and species of Rhizopogon are found in coniferous forests of the Pacific Northwestern United States, where members of the Pinaceae are also concentrated. Rhizopogon spp. are host-specific primarily with Pinus spp. and Pseudotsuga spp. and thus are an important component of these forest ecosystems. Rhizopogon includes over 100 species; however, the systematics of Rhizopogon have not been well understood. Currently the genus is placed in the Boletales, an order of ectomycorrhizal fungi that are primarily epigeous and have a tubular hymenium. Suillus is a stipitate genus closely related to Rhizopogon that is also in the Boletales and host specific with Pinaceae.I examined the relationship of Rhizopogon to Suillus and other genera in the Boletales. Infrageneric relationships in Rhizopogon were also investigated to test current taxonomic hypotheses and species concepts. Through phylogenetic analyses of large subunit and internal transcribed spacer nuclear ribosomal DNA sequences, I found that Rhizopogon and Suillus formed distinct monophyletic groups. Rhizopogon was composed of four distinct groups; sections Amylopogon and Villosuli were strongly supported monophyletic groups. Section Rhizopogon was not monophyletic, and formed two distinct clades. Section Fulviglebae formed a strongly supported group within section Villosuli.
    [Show full text]
  • Patterns of Vegetative Growth and Gene Flow in Rhizopogon Vinicolor and R
    Molecular Ecology (2005) 14,2259-2268 doi: 10.111 1/j.1365-294X.2005.02547.x Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota) ANNETTE M. KRETZER,"SUSIE DUNHAM,+ RANDY MOLINAS and JOSEPH W. SPATAFORAt *SUNYCollege of Environmental Science and Forest y, Faculty of Environmental and Forest Biology, 1 Forest y Drive, Syracuse, NY 13210, toregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, SUSDA Forest Service; 620 SW Main St., Suite 400, Portland, OR 97205 Abstract We have collected sporocarps and tuberculate ectomycorrhizae of both Rhizopogon vini- color and Rhizopogon vesiculosus from three 50 x 100 m plots located at Mary's Peak in the Oregon Coast Range (USA); linear map distances between plots ranged from c. 1km to c. 5.5 km. Six and seven previously developed microsatellite markers were used to map the approximate size and distribution of R. vinicolor and R. vesiculosus genets, respectively. Genetic structure within plots was analysed using spatial autocorrelation analyses. No sig- nificant clustering of similar genotypes was detected in either species when redundant samples from the same genets were culled from the data sets. In contrast, strong clustering was detected in R. vesiculosus when all samples were analysed, but not in R. vinicolor. These results demonstrate that isolation by distance does not occur in either species at the intraplot sampling scale and that clonal propagation (vegetative growth) is significantly more prevalent in R. vesiculosus than in R. vinicolor. Significant genetic differentiation was detected between some of the plots and appeared greater in the more clonal species R.
    [Show full text]
  • Obituary Prof
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2003 Band/Volume: 55 Autor(en)/Author(s): Anonymus Artikel/Article: Obituary Prof. Dr. M. M. Moser. 1-17 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Obituary In memoriam Meinhard M. Moser (1924-2002): a pioneer in taxonomy and ecology of Agaricales (Basidiomycota) Meinhard M. Moser was born on 13 March 1924 in Innsbruck (Tyrol, Austria) where he also attended elementary school and grammar school (1930 to 1942). Already as a youngster, he developed a keen and broad interest in natural sciences, further spurred and supported by his maternal grandfather E. Heinricher, Professor of Botany at the University of Innsbruck. His fascination for fungi is proven by his first paintings of mushrooms, which date back to 1935 when he was still an eleven-year old boy. Based upon a solid huma- nistic education, he also soon discovered his linguistic talents and in subsequent years he became fluent in several major languages (including Swedish and Russian), which in later years helped him to correspond and interact with colleagues from all over the world. In 1942, M. Moser enrolled at the University of Innsbruck and attended classes in botany, zoology, geology, physics and chemistry. In this period during World War II, his particular interest and knowledge in botany and mycology gave him the opportunity to become an authorized mushroom controller and instructor. In con- nection with this public function and to widen his experience, he was also officially requested to attend seminars in mushroom iden- tification both in Germany and Austria.
    [Show full text]
  • Ectomycorrhizal Fungi and Effects of Soil Microbes Associated with Slash Pine Encroachment Into Native Longleaf Pine Habitat
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) Spring 5-9-2020 Ectomycorrhizal Fungi and Effects of Soil Microbes Associated with Slash Pine Encroachment into Native Longleaf Pine Habitat Madison Brooke Woodruff Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Woodruff, Madison Brooke, "Ectomycorrhizal Fungi and Effects of Soil Microbes Associated with Slash Pine Encroachment into Native Longleaf Pine Habitat" (2020). Honors Theses. 1475. https://egrove.olemiss.edu/hon_thesis/1475 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. ECTOMYCORRHIZAL FUNGI AND EFFECTS OF SOIL MICROBES ASSOCIATED WITH SLASH PINE ENCROACHMENT INTO NATIVE LONGLEAF PINE HABITAT by Madison Woodruff A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2020 Approved by _____________________________ Advisor: Dr. Jason Hoeksema _____________________________ Reader: Dr. J. Stephen Brewer _____________________________ Reader: Dr. Colin Jackson _____________________________ © 2020 Madison Brooke Woodruff ALL RIGHTS RESERVED Acknowledgements First and foremost, I would like to thank Dr. Jason Hoeksema for allowing me to research in his lab. I am extremely thankful for the patience and feedback he has given me throughout my research and the writing of this thesis. Thank you to Dr. Stephen Brewer and Dr. Colin Jackson for the feedback and suggestions on my writing.
    [Show full text]
  • Pterospora Andromedea) in Eastern North America Linked to Rarity of Its Unique Fungal Symbiont?
    Mycorrhiza (2012) 22:393–402 DOI 10.1007/s00572-011-0414-y ORIGINAL PAPER Is rarity of pinedrops (Pterospora andromedea) in eastern North America linked to rarity of its unique fungal symbiont? Christina Hazard & Erik A. Lilleskov & Thomas R. Horton Received: 8 July 2011 /Accepted: 27 September 2011 /Published online: 12 October 2011 # Springer-Verlag 2011 Abstract Like other myco-heterotrophic plants, Ptero- Keywords Myco-heterotrophy. Pterospora andromedea spora andromedea (pinedrops) is dependent upon its (pinedrops) . Rhizopogon . Fungal specificity. Rarity . specific fungal symbionts for survival. The rarity of Distribution pinedrops fungal symbiont was investigated in the eastern United States where pinedrops are rare. Wild populations of eastern pinedrops were sampled, and the plant haplotypes Introduction and fungal symbionts were characterized with molecular techniques; these data were compared to those from the Mycorrhizal symbioses are often generalized as mutually West with phylogenetic analyses. The frequency of the beneficial for the plant and fungal symbionts, but this is fungal symbiont in eastern white pine forests was assessed not always correct in that mycorrhizal symbioses can using a laboratory soil bioassay and in situ pinedrops seed fall along a continuum from mutualism to parasitism baiting. Only one plant haplotype and fungal symbiont was (Johnson et al. 1997; Jones and Smith 2004). An extreme detected. The plant haplotype was not unique to the East. example in this mutualism-parasitism continuum is the The fungal symbiont appears to be a new species within the parasitic mycorrhizal relationship between many non- genus Rhizopogon, closely related to the western sym- photosynthetic plants and their fungal symbionts. These bionts.
    [Show full text]
  • Ectomycorrhizal Fungal Spore Bank Recovery After a Severe Forest Fire: Some Like It Hot
    The ISME Journal (2016) 10, 1228–1239 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot Sydney I Glassman1, Carrie R Levine1, Angela M DiRocco2, John J Battles1 and Thomas D Bruns1,2 1Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA and 2Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire.
    [Show full text]
  • Comparative Mitochondrial Genome Analysis of Two Ectomycorrhizal
    International Journal of Molecular Sciences Article Comparative Mitochondrial Genome Analysis of Two Ectomycorrhizal Fungi (Rhizopogon) Reveals Dynamic Changes of Intron and Phylogenetic Relationships of the Subphylum Agaricomycotina Qiang Li, Yuanhang Ren, Xiaodong Shi, Lianxin Peng, Jianglin Zhao , Yu Song and Gang Zhao * Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; [email protected] (Q.L.); [email protected] (Y.R.); [email protected] (X.S.); [email protected] (L.P.); [email protected] (J.Z.); [email protected] (Y.S.) * Correspondence: [email protected]; Tel.: +86-028-84616653 Received: 20 September 2019; Accepted: 17 October 2019; Published: 18 October 2019 Abstract: In the present study, we assembled and compared two mitogenomes from the Rhizopogon genus. The two mitogenomes of R. salebrosus and R. vinicolor comprised circular DNA molecules, with the sizes of 66,704 bp and 77,109 bp, respectively. Comparative mitogenome analysis indicated that the length and base composition of protein coding genes (PCGs), rRNA genes and tRNA genes varied between the two species. Large fragments aligned between the mitochondrial and nuclear genomes of both R. salebrosus (43.41 kb) and R. vinicolor (12.83 kb) indicated that genetic transfer between mitochondrial and nuclear genomes has occurred over evolutionary time of Rhizopogon species. Intronic regions were found to be the main factors contributing to mitogenome expansion in R. vinicolor. Variations in the number and type of introns in the two mitogenomes indicated that frequent intron loss/gain events occurred during the evolution of Rhizopogon species.
    [Show full text]
  • Studies on the Symbiotic Properties of Mycorrhizal Fungi of Scots Pine (Pinus Sylvestris L.) As Affected by Age of the Fungal Culture
    ARBORETUM KÓRNICKIE ROCZNIK XXXI - 1986 Maria Rudawska Studies on the symbiotic properties of mycorrhizal fungi of Scots pine (Pinus sylvestris L.) as affected by age of the fungal culture Abstract Rudawska M. 1986. Studies on the symbiotic properties of mycorrhizal fungi of Scots pine (Pinus sylvestris L.) as affected by age of the fungal culture. Arbor. Kórnickie 31: 269-280. The main purpose of the study was to examine the mycorrhizal ability of 10 different strains and species of mycorrhizal fungi stored on synthetic media over 2 to 17 years. The symbiotic potential of fungi used in the experiment was not related with their age in pure cultures. Best results were obtained with the oldest culture of Rhizopogon luteolus. However all the remained fungi revealed to a varying extent a lowered mycorrhizal ability to infect the host tissue with age. Individual features of each strains appear to play the most important role for the preservation of the symbiotic potential of mycorrhizal fungi during storage. The origin of the great variability among mycorrhizal symbionts of Scots pine as regards their ability to infect host tissues is dis­ cussed. Additional key words: Amanita muscaria, Suillus bovinus, S. luteus, S. hirtellus, S. granulat us, Rhizopogon luteolus, Paxillus involutus. Address: M. Rudawska, Institute of Dendrology, 62-035 Kórnik, Poland. INTRODUCTION The great importance of mycorrhizal associations for growth and development of forest trees is well documented (Marks and Kozlowski 1973). Research on mycorrhizal symbiosis has increased dramatically during the last decade, particularly in applied sciences. However certain important physiological and biochemical prob­ lems (eg.
    [Show full text]