Northern Hemisphere Winter Storm Tracks of the Eemian Interglacial and the Last Glacial Inception

Total Page:16

File Type:pdf, Size:1020Kb

Northern Hemisphere Winter Storm Tracks of the Eemian Interglacial and the Last Glacial Inception Clim. Past, 3, 181–192, 2007 www.clim-past.net/3/181/2007/ Climate © Author(s) 2007. This work is licensed of the Past under a Creative Commons License. Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception F. Kaspar, T. Spangehl, and U. Cubasch Freie Universitat¨ Berlin, Institut fur¨ Meteorologie Received: 16 November 2006 – Published in Clim. Past Discuss.: 7 December 2006 Revised: 3 April 2007 – Accepted: 5 April 2007 – Published: 23 April 2007 Abstract. Climate simulations of the Eemian interglacial et al., 2002). The simulations approximately represent pe- and the last glacial inception have been performed by forc- riods with maximum and minimum summer insolation in the ing a coupled ocean-atmosphere general circulation model northern hemisphere. These periods are connected with dif- with insolation patterns of these periods. The parameters ferent states of the climate system that are visible in palaeo- of the Earth’s orbit have been set to conditions of 125 000 data, namely: The minimum of global ice volume occurred and 115 000 years before present (yr BP). Compared to to- at approx. 125 000 yr BP. We therefore consider this date day, these dates represent periods with enhanced and weak- as representative for the warm phase of the Eemian (here- ened seasonality of insolation in the northern hemisphere. after: EEM). After ca. 115 000 yr BP, open vegetation re- Here we analyse the simulated change in northern hemi- placed forests in northwestern Europe and at Vostok air tem- sphere winter storm tracks. The change in the orbital con- peratures dropped sharply (Kukla et al., 2002). We use this figuration has a strong impact on the meridional tempera- date to represent the start of the last glaciation (hereafter: ture gradients and therefore on strength and location of the GI, “glacial inception”). Three parameters are responsible storm tracks. The North Atlantic storm track is strengthened, for the seasonal distribution of insolation: the eccentricity shifted northward and extends further to the east in the sim- of the Earth’s orbit, the angle of the axis of rotation (obliq- ulation for the Eemian at 125 kyr BP. As one consequence, uity) and the position of the equinoxes relative to the perihe- the northern parts of Europe experience an increase in winter lion. The combined effect of greater obliquity and eccentric- precipitation. The frequency of winter storm days increases ity, together with the fact that perihelion occurred in northern over large parts of the North Atlantic including the British hemisphere summer caused an amplification of the northern Isles and the coastal zones of north-western Europe. Oppo- hemispheric seasonal cycle of insolation at 125 000 yr BP. site but weaker changes in storm track activity are simulated Figure 1 illustrates the latitudinal distribution of insolation for 115 kyr BP. during the seasons for 125 000 yr BP as anomaly from to- day. The changes are especially strong on the high north- ern latitudes during summer. At 65◦North the insolation in mid June was 11.7% higher than today (531 W/m2 instead of 1 Introduction 475 W/m2). The insolation in mid December was 1.9 W/m2 compared to 3.0 W/m2 today. At 115 000 yr BP the angle of Climate variations during the last 500 000 years are domi- perihelion was almost opposite compared to 125 000 yr BP nated by interglacial-glacial-cycles, which are generally be- and similar to today. The perihelion occurring in northern lieved to be responses to changes in insolation as a result hemisphere winter combined with greater eccentricity and of variations in Earth’s orbit around the sun (Berger, 1988). lower obliquity caused a weakening of the seasonal cycle of Palaeoclimatic records reveal that interglacials occurred ap- insolation in the northern hemisphere. This results in an al- proximately every 100 000 years in this period and lasted for most opposite distribution of the anomalies as for 125 000 yr 7 000 to 17 000 years. Here, we present simulations of the BP, but with smaller absolute differences. The insolation in Eemian interglacial, which was the last interglacial before the mid June at 65◦North was 7.6% lower (439 W/m2) than to- present one (approx. 130 000 yr BP–116 000 yr BP; Kukla day. In mid December it was 6.8 W/m2. For a detailed dis- Correspondence to: F. Kaspar cussion of insolation patterns during interglacials see Berger ([email protected]) et al. (2007). Published by Copernicus GmbH on behalf of the European Geosciences Union. 182 F. Kaspar et al.: Storm tracks of the Eemian and the last glacial inception (Hoskins and Hodges, 2002). Alternative measures for syn- optic scale activity are based on the identification and track- ing of individual systems (cyclones and anticyclones) from sea level pressure or near surface geopotential height fields (Lagrangian view). In contrast to the Eulerian view this La- grangian approach yields more detailed information on cy- clone characteristics and enables to separate different types of systems (e.g. weak and strong cyclones). Here a num- ber of methods have been developed and applied to general circulation models (GCMs) and reanalysis data (e.g. Knip- pertz et al., 2000; Hoskins and Hodges, 2002; Wernli and Schwierz, 2006). These methods require a smoothing of the input fields or the introduction of numerous parameters and thresholds to eliminate artificial and spurious lows. A di- rect comparison between different studies is often compli- Fig. 1. Insolation anomaly in W/m2 at 125 000 yr BP as a function cated as results are sensitive to both the resolution/spherical of latitude and the position on the Earth’s orbit. The values are truncation of the input fields and the setting of the individual shown as deviation from present-day conditions and are calculated parameters (Pinto et al., 2005). General circulation models according to Berger (1978). See Berger et al. (2007) for more details are able to simulate the present-day storm tracks fairly well on conditions during interglacials. (Hall et al., 1996). Whereas the main characteristics of the storm tracks are captured by models with lower spectral res- olution (Stendel and Roeckner, 1998) the representation of Although absolute changes in insolation in the northern numerous features (e.g. the number of weak cyclones, the in- hemisphere are strongest in summer, northern high latitudi- tensity of strong cyclones, the representation of associated nal winter temperatures can also be strongly modified due to fronts and wind speeds) can be significantly improved by in- indirect effects, as for example via the influence of oceanic creased model resolution (Jung et al., 2006). or atmospheric dynamics or changes in sea-ice distribution. As GCMs indicate significant changes in storm tracks un- Therefore, the changed orbital configuration could lead to der climate change scenarios (Yin, 2005; Pinto et al., 2007), distinct changes in the seasonal cycle of temperature. As it is of interest to analyse the behaviour of the models un- the strength of this effect strongly depends on the latitude, der different conditions. Simulations of palaeoclimates offer it leads to significant changes in the meridional temperature the opportunity to compare variables that are linked to storm gradients. Due to the temperature gradients in midlatitudes tracks with reconstructed data, e.g. changes in precipitation. atmospheric circulation is characterised by the occurrence of Kageyama et al. (1999) analysed storm tracks in a number baroclinic waves. According to the theory of baroclinic insta- of GCMs for the last glacial maximum at 21 000 yr BP. At bility (Charney, 1947) these waves develop from small dis- that time orbital configuration was similar to today, but cli- turbances and depending on the background flow conditions mate was strongly influenced by the presence of large ice they amplify to mature synoptic scale systems. They interact sheets and differences in sea surface temperatures and sea with the background flow by reducing the meridional tem- ice cover. Nearly all models reacted with an eastward shift perature gradient and by dynamical feedbacks (Hoskins and of the northern hemispheric storm tracks. Hall and Valdes Valdes, 1990). Of relevance for the local weather and cli- (1997) analysed winter storm tracks in a GCM simulation mate are the synoptic scale cyclones and the associated fronts for 6000 years before present, also a period with enhanced as they are largely responsible for the precipitation and near summer insolation in the northern hemisphere. They found surface wind at these latitudes. an increase in baroclinicity in the storm track regions of the The regions of higher frequency atmospheric variability Atlantic and the Pacific. that are characterized by the frequent passage of cyclones Previous modelling experiments for the last glacial in- and anticyclones (in contrast to low frequency variability ception at approx. 115 000 yr BP focused on the question associated with blocking) have been intensively studied for if the change in insolation is sufficient to generate a peren- observed present-day climate (Blackmon, 1976; Blackmon nial snow coverage in polar latitudes. Early experiments with et al., 1977) as well as in model-based climate change projec- atmosphere-only models failed, but later experiments led to tions for the 21st century. “Storm tracks” defined after Black- better results by considering additional feedbacks, for exam- mon et al. (1977) as regions with large synoptic-scale activ- ple that of the ocean (Khodri et al., 2001) or vegetation (Gal- ity can be calculated as the standard deviation of the band- limore and Kutzbach, 1996). For a detailed review, see Vet- pass filtered geopotential height and are often used to quan- toretti and Peltier (2004). tify baroclinic wave activity (Eulerian view) as they are easy In this article, we analyse storm tracks in simulations of to apply and provide a general storm track activity measure the Eemian interglacial and the subsequent glacial inception.
Recommended publications
  • The Last Maximum Ice Extent and Subsequent Deglaciation of the Pyrenees: an Overview of Recent Research
    Cuadernos de Investigación Geográfica 2015 Nº 41 (2) pp. 359-387 ISSN 0211-6820 DOI: 10.18172/cig.2708 © Universidad de La Rioja THE LAST MAXIMUM ICE EXTENT AND SUBSEQUENT DEGLACIATION OF THE PYRENEES: AN OVERVIEW OF RECENT RESEARCH M. DELMAS Université de Perpignan-Via Domitia, UMR 7194 CNRS, Histoire Naturelle de l’Homme Préhistorique, 52 avenue Paul Alduy 66860 Perpignan, France. ABSTRACT. This paper reviews data currently available on the glacial fluctuations that occurred in the Pyrenees between the Würmian Maximum Ice Extent (MIE) and the beginning of the Holocene. It puts the studies published since the end of the 19th century in a historical perspective and focuses on how the methods of investigation used by successive generations of authors led them to paleogeographic and chronologic conclusions that for a time were antagonistic and later became complementary. The inventory and mapping of the ice-marginal deposits has allowed several glacial stades to be identified, and the successive ice boundaries to be outlined. Meanwhile, the weathering grade of moraines and glaciofluvial deposits has allowed Würmian glacial deposits to be distinguished from pre-Würmian ones, and has thus allowed the Würmian Maximum Ice Extent (MIE) –i.e. the starting point of the last deglaciation– to be clearly located. During the 1980s, 14C dating of glaciolacustrine sequences began to indirectly document the timing of the glacial stades responsible for the adjacent frontal or lateral moraines. Over the last decade, in situ-produced cosmogenic nuclides (10Be and 36Cl) have been documenting the deglaciation process more directly because the data are obtained from glacial landforms or deposits such as boulders embedded in frontal or lateral moraines, or ice- polished rock surfaces.
    [Show full text]
  • The Eemian - Local Sequences, Global Perspectives: Introduction
    Geologie en Mijnbouw / Netherlands Journal of Geosciences 79 (2/3): 129-133 (2000) The Eemian - local sequences, global perspectives: introduction Thijs van Kolfschoten1 & Philip L. Gibbard2 1 Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA LEIDEN, the Netherlands; Corresponding author; e-mail: [email protected] 2 Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, Downing Street, CAMBRIDGE CB2 3EN, England; e-mail:[email protected] Received: May 2000; accepted in revised form: 20 June 2000 G The history of this special issue gation and discussion on the Middle/Late Pleistocene boundary on the original type area of the Eemian in The history of this volume goes back to a 1973 IN- the Netherlands. The Eemian sequence was often QUA congress in New Zealand, where an INQUA used as reference and furthermore the term 'Eemian' Commission of Stratigraphy working group on major was widely used to identify the last interglacial far be­ subdivisions of the Pleistocene was established. The yond western central Europe. Examination of the Pleistocene series/epoch was hitherto generally subdi­ available data from the Eemian type area showed that vided into the Lower/Early, Middle and Upper/Late a re-evaluation of existing data and collection of criti­ Pleistocene (see, among others, Zeuner, 1935, 1959) cal new data were needed to define an unambiguous but the boundaries between these subseries/sube- stratigraphical boundary. Although the identification pochs were not formally defined. The boundary be­ of boundaries is central to stratigraphical subdivision, tween the Early and Middle Pleistocene was, in the it is nevertheless the Eemian as an entity that is of European literature, put at the base of the Cromerian particular interest for understanding the development Complex (Zagwijn, 1963) or at the Brunhes/Matuya- of a complete interglacial cycle.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • The Climate of the Last Glacial Maximum: Results from a Coupled Atmosphere-Ocean General Circulation Model Andrew B
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D20, PAGES 24,509–24,525, OCTOBER 27, 1999 The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model Andrew B. G. Bush Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada S. George H. Philander Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton University Princeton, New Jersey Abstract. Results from a coupled atmosphere-ocean general circulation model simulation of the Last Glacial Maximum reveal annual mean continental cooling between 4Њ and 7ЊC over tropical landmasses, up to 26Њ of cooling over the Laurentide ice sheet, and a global mean temperature depression of 4.3ЊC. The simulation incorporates glacial ice sheets, glacial land surface, reduced sea level, 21 ka orbital parameters, and decreased atmospheric CO2. Glacial winds, in addition to exhibiting anticyclonic circulations over the ice sheets themselves, show a strong cyclonic circulation over the northwest Atlantic basin, enhanced easterly flow over the tropical Pacific, and enhanced westerly flow over the Indian Ocean. Changes in equatorial winds are congruous with a westward shift in tropical convection, which leaves the western Pacific much drier than today but the Indonesian archipelago much wetter. Global mean specific humidity in the glacial climate is 10% less than today. Stronger Pacific easterlies increase the tilt of the tropical thermocline, increase the speed of the Equatorial Undercurrent, and increase the westward extent of the cold tongue, thereby depressing glacial sea surface temperatures in the western tropical Pacific by ϳ5Њ–6ЊC. 1. Introduction and Broccoli, 1985a, b; Broccoli and Manabe, 1987; Broccoli and Marciniak, 1996].
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • Late Pleistocene Climate Change and Its Impact on Palaeogeography of the Southern Baltic Sea Region
    Late Pleistocene climate change and its impact on palaeogeography of the southern Baltic Sea region Leszek Marks Polish Geological Institute–National Research Institute, Warsaw, Poland Department of Climate Geology, University of Warsaw, Warsaw, Poland Main items • Regional bakground for climatic impact of the Eemian sea • Outline of Eemian climate changes in the adjoining terrestrial area • Principles of Central European climate during the last glacial stage • Climate change at the turn of Pleistocene and Holocene Surface hydrography of the Baltic Sea PRESENT EEMIAN SALINITY OF SURFACE WATER: dark blue – >30‰, light blue – 25-30‰, brown – 15-25‰, yellow – 5-15‰, red – <5‰ CURRENTS INDICATED BY ARROWS: red – warm surface current, blue – cold bottom current, green – brackish surface current (≈10‰), stripped red/yellow – coastal water surface current (>15‰), yellow – major source of river runoff Funder 2002) Eemian sea in the Lower Vistula Valley Region Cierpięta research borehole Cierpięta Makowska (1986), modified Chronology of Eemian based on pollen stratigraphy RPAZ after Mamakowa (1988, 1989) Head et al. (2005) Correlation of Eemian LPAZ with RPAZ in southern Baltic region Knudsen et al. (2012) Chronology of Eemian sea in southern Baltic region Top of Eemian deposits ca. 8500–11 000 yrs Boundary E5/E6 7000 lat Top of marine Eemian deposits Boundary E4/E5 3000 yrs Boundary E3/E4 750 yrs Boundary E2/E3 300 yrs E1 or E2 <300 yrs Bottom of marine Eemian deposits Boundary Saalian/Eemian 0 (126 ka BP) Based on correlation with regional pollen
    [Show full text]
  • Greenland Climate Simulations Show High Eemian Surface Melt Which Could Explain Reduced Total Air Content in Ice Cores
    Clim. Past, 17, 317–330, 2021 https://doi.org/10.5194/cp-17-317-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores Andreas Plach1,2,3, Bo M. Vinther4, Kerim H. Nisancioglu1,5, Sindhu Vudayagiri4, and Thomas Blunier4 1Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway 2Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria 3Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland 4Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 5Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway Correspondence: Andreas Plach ([email protected]) Received: 27 July 2020 – Discussion started: 18 August 2020 Revised: 27 November 2020 – Accepted: 1 December 2020 – Published: 29 January 2021 Abstract. This study presents simulations of Greenland sur- 1 Introduction face melt for the Eemian interglacial period (∼ 130000 to 115 000 years ago) derived from regional climate simula- tions with a coupled surface energy balance model. Surface The Eemian interglacial period (∼ 130000 to 115 000 years melt is of high relevance due to its potential effect on ice ago; hereafter ∼ 130 to 115 ka) was the last period with a core observations, e.g., lowering the preserved total air con- warmer-than-present summer climate on Greenland (CAPE tent (TAC) used to infer past surface elevation. An investi- Last Interglacial Project Members, 2006; Otto-Bliesner et al., gation of surface melt is particularly interesting for warm 2013; Capron et al., 2014).
    [Show full text]
  • Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest During the Late Quaternary Period
    Western Washington University Western CEDAR Scholars Week 2017 - Poster Presentations May 17th, 9:00 AM - 12:00 PM Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period Henry Haro Western Washington University Follow this and additional works at: https://cedar.wwu.edu/scholwk Part of the Environmental Studies Commons, and the Higher Education Commons Haro, Henry, "Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period" (2017). Scholars Week. 20. https://cedar.wwu.edu/scholwk/2017/Day_one/20 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Animating the Temporal Progression of Cordilleran Deglaciation in the Pacific Northwest during the late Quaternary Period Henry Haro – 2017 The Cordilleran Ice Sheet Sequential Progression of Cordilleran Retreat The topography of the Pacific Northwest, its fjords, inland waterways and islands, are a result of an extended period of glaciation and glacial retreat. This retreat influenced the physical features and the resulting succession of vegetation that led to the landscape we see today. Despite this importance of the Cordilleran ice sheet and the large volume of research on the topic, there lacks a good detailed animation of the movement of the entire ice sheet from the last glacial maximum to the present day. In this study, I used spatial data of the glacial extent at different periods of time during the Quaternary period to model and animate the movement of the Cordilleran ice sheet as it retreated from 18,000 BCE to 10,000 BCE.
    [Show full text]
  • Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2010 Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Glaciology Commons Recommended Citation Birkel, Sean David, "Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation" (2010). Electronic Theses and Dissertations. 97. http://digitalcommons.library.umaine.edu/etd/97 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean David Birkel B.S. University of Maine, 2002 M.S. University of Maine, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) The Graduate School The University of Maine December, 2010 Advisory Committee: Peter O. Koons, Professor of Earth Sciences, Advisor George H. Denton, Libra Professor of Earth Sciences, Co-advisor Fei Chai, Professor of Oceanography James L. Fastook, Professor of Computer Science Brenda L. Hall, Professor of Earth Science Terrence J. Hughes, Professor Emeritus of Earth Science ©2010 Sean David Birkel All Rights Reserved iii CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean D. Birkel Thesis Advisor: Dr. Peter O. Koons An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) December, 2010 This dissertation describes the application of the University of Maine Ice Sheet Model (UM-ISM) and Environmental Change Model (UM-ECM) to understanding mechanisms of ice-sheet/climate integration during ice ages.
    [Show full text]
  • Glacial/Interglacial Variations in Atmospheric Carbon Dioxide
    review article Glacial/interglacial variations in atmospheric carbon dioxide Daniel M. Sigman* & Edward A. Boyle² * Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey 08544, USA ² Department of Earth, Atmospheric, and Planetary Sciences, Room E34-258, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Massachusetts 02139, USA ............................................................................................................................................................................................................................................................................ Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's `biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more ef®cient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region. he past two million years have been characterized by of these mechanisms with data from the recent geological and large cyclic variations in climate and glaciation. During glaciological record has been a challenging and controversial task, cold `ice age' periods, large continental ice sheets cover leading as yet to no consensus on a fundamental mechanism.
    [Show full text]
  • How Did Marine Isotope Stage 3 and Last Glacial Maximum Climates Differ? – Perspectives from Equilibrium Simulations
    Clim. Past, 5, 33–51, 2009 www.clim-past.net/5/33/2009/ Climate © Author(s) 2009. This work is distributed under of the Past the Creative Commons Attribution 3.0 License. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations C. J. Van Meerbeeck1, H. Renssen1, and D. M. Roche1,2 1Department of Earth Sciences - Section Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands 2Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Laboratoire CEA/INSU-CNRS/UVSQ, C.E. de Saclay, Orme des Merisiers Bat. 701, 91190 Gif sur Yvette Cedex, France Received: 15 August 2008 – Published in Clim. Past Discuss.: 6 October 2008 Revised: 14 January 2009 – Accepted: 20 February 2009 – Published: 5 March 2009 Abstract. Dansgaard-Oeschger events occurred frequently mimics stadials over the North Atlantic better than both con- during Marine Isotope Stage 3 (MIS3), as opposed to the fol- trol experiments, which might crudely estimate interstadial lowing MIS2 period, which included the Last Glacial Max- climate. These results suggest that freshwater forcing is nec- imum (LGM). Transient climate model simulations suggest essary to return climate from warm interstadials to cold sta- that these abrupt warming events in Greenland and the North dials during MIS3. This changes our perspective, making the Atlantic region are associated with a resumption of the Ther- stadial climate a perturbed climate state rather than a typical, mohaline Circulation (THC) from a weak state during sta- near-equilibrium MIS3 climate.
    [Show full text]