1 Evidence of Glacial Readvances During Recession from the Last
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Last Maximum Ice Extent and Subsequent Deglaciation of the Pyrenees: an Overview of Recent Research
Cuadernos de Investigación Geográfica 2015 Nº 41 (2) pp. 359-387 ISSN 0211-6820 DOI: 10.18172/cig.2708 © Universidad de La Rioja THE LAST MAXIMUM ICE EXTENT AND SUBSEQUENT DEGLACIATION OF THE PYRENEES: AN OVERVIEW OF RECENT RESEARCH M. DELMAS Université de Perpignan-Via Domitia, UMR 7194 CNRS, Histoire Naturelle de l’Homme Préhistorique, 52 avenue Paul Alduy 66860 Perpignan, France. ABSTRACT. This paper reviews data currently available on the glacial fluctuations that occurred in the Pyrenees between the Würmian Maximum Ice Extent (MIE) and the beginning of the Holocene. It puts the studies published since the end of the 19th century in a historical perspective and focuses on how the methods of investigation used by successive generations of authors led them to paleogeographic and chronologic conclusions that for a time were antagonistic and later became complementary. The inventory and mapping of the ice-marginal deposits has allowed several glacial stades to be identified, and the successive ice boundaries to be outlined. Meanwhile, the weathering grade of moraines and glaciofluvial deposits has allowed Würmian glacial deposits to be distinguished from pre-Würmian ones, and has thus allowed the Würmian Maximum Ice Extent (MIE) –i.e. the starting point of the last deglaciation– to be clearly located. During the 1980s, 14C dating of glaciolacustrine sequences began to indirectly document the timing of the glacial stades responsible for the adjacent frontal or lateral moraines. Over the last decade, in situ-produced cosmogenic nuclides (10Be and 36Cl) have been documenting the deglaciation process more directly because the data are obtained from glacial landforms or deposits such as boulders embedded in frontal or lateral moraines, or ice- polished rock surfaces. -
Introduction to Geological Process in Illinois Glacial
INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base. -
Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
The Climate of the Last Glacial Maximum: Results from a Coupled Atmosphere-Ocean General Circulation Model Andrew B
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D20, PAGES 24,509–24,525, OCTOBER 27, 1999 The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model Andrew B. G. Bush Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada S. George H. Philander Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton University Princeton, New Jersey Abstract. Results from a coupled atmosphere-ocean general circulation model simulation of the Last Glacial Maximum reveal annual mean continental cooling between 4Њ and 7ЊC over tropical landmasses, up to 26Њ of cooling over the Laurentide ice sheet, and a global mean temperature depression of 4.3ЊC. The simulation incorporates glacial ice sheets, glacial land surface, reduced sea level, 21 ka orbital parameters, and decreased atmospheric CO2. Glacial winds, in addition to exhibiting anticyclonic circulations over the ice sheets themselves, show a strong cyclonic circulation over the northwest Atlantic basin, enhanced easterly flow over the tropical Pacific, and enhanced westerly flow over the Indian Ocean. Changes in equatorial winds are congruous with a westward shift in tropical convection, which leaves the western Pacific much drier than today but the Indonesian archipelago much wetter. Global mean specific humidity in the glacial climate is 10% less than today. Stronger Pacific easterlies increase the tilt of the tropical thermocline, increase the speed of the Equatorial Undercurrent, and increase the westward extent of the cold tongue, thereby depressing glacial sea surface temperatures in the western tropical Pacific by ϳ5Њ–6ЊC. 1. Introduction and Broccoli, 1985a, b; Broccoli and Manabe, 1987; Broccoli and Marciniak, 1996]. -
An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250
The Ohio Naturalist, PUBLISHED BY The Biological Club of the Ohio State University. Volume VIII. JANUARY. 1908. No. 3 TABLE OF CONTENTS. SCHEPFEL—An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250 AN ESKER GROUP SOUTH OF DAYTON, OHIO.1 EARL R. SCHEFFEL Contents. Introduction. General Discussion of Eskers. Preliminary Description of Region. Bearing on Archaeology. Topographic Relations. Theories of Origin. Detailed Description of Eskers. Kame Area to the West of Eskers. Studies. Proximity of Eskers. Altitude of These Deposits. Height of Eskers. Composition of Eskers. Reticulation. Rock Weathering. Knolls. Crest-Lines. Economic Importance. Area to the East. Conclusion and Summary. Introduction. This paper has for its object the discussion of an esker group2 south of Dayton, Ohio;3 which group constitutes a part of the first or outer moraine of the Miami Lobe of the Late Wisconsin ice where it forms the east bluff of the Great Miami River south of Dayton.4 1. Given before the Ohio Academy of Science, Nov. 30, 1907, at Oxford, O., repre- senting work performed under the direction of Professor Frank Carney as partial requirement for the Master's Degree. 2. F: G. Clapp, Jour, of Geol., Vol. XII, (1904), pp. 203-210. 3. The writer's attention was first called to the group the past year under the name "Morainic Ridges," by Professor W. B. Werthner, of Steele High School, located in the city mentioned. Professor Werthner stated that Professor August P. Foerste of the same school and himself had spent some time together in the study of this region, but that the field was still clear for inves- tigation and publication. -
Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area. -
Eemian Interglacial Deposits at Haćki Near Bielsk Podlaski: Implications for the Limit of the Last Glaciation in Northeastern Poland
Geological Quarterly, 2002, 46 (1): 75-80 Eemian Interglacial deposits at Haćki near Bielsk Podlaski: implications for the limit of the last glaciation in northeastern Poland Stanisław BRUD and Mirosława KUPRYJANOWICZ Brud S. and Kupryjanowicz M. (2002) — Eemian Interglacial deposits at Haćki near Bielsk Podlaski: implications forthe limit of the last glaciation in northeastern Poland. Geol. Quart., 46 (1): 75-80. Warszawa. Pollen analysis was conducted on organic deposits on a kame ridge at Haćki in northeastern Poland. The deposits are referred to the Eemian Interglacial. Slope sediments only covered these Biogenic deposits. The glacigenic landforms therefore relate to the Wartanian Glaciation, and so this area has not been occupied By an ice sheet of the Vistulian Glaciation. Stanisław Brud, Institute of Geological Sciences, Jagiellonian University, Oleandry 2A, PL-30-063 Kraków, Poland, e-mail: [email protected]; Mirosława Kupryjanowicz, Department o f Botany, Institute o f Biology, University o f Białystok, Świerkowa 20b, PL-15-950 Białystok, Poland, e-mail: [email protected] (received: November 3, 2000; accepted: February 26, 2001). Key words: NE Poland, Wartanian Glaciation, Eemian Interglacial, Vistulian, kames, pollen analysis. INTRODUCTION (Mojski, 1969) (Fig. 2). This deglaciation consisted of gradual reduction in ice sheet thickness, its dismembering into individ ual dead ice blocks, and their further melting. The most com mon landforms occurring north of Bielsk Podlaski are kames Numerous sites with biogenic deposits have Been found (Mojski and Nowicki, 1961). They rise from a few to aBout a during geological mapping of the Bielsk Podlaski sheet De dozen metres above melt-out depressions, marking an accumu tailed Geological Map of Poland, 1:50 000 scale. -
Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest During the Late Quaternary Period
Western Washington University Western CEDAR Scholars Week 2017 - Poster Presentations May 17th, 9:00 AM - 12:00 PM Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period Henry Haro Western Washington University Follow this and additional works at: https://cedar.wwu.edu/scholwk Part of the Environmental Studies Commons, and the Higher Education Commons Haro, Henry, "Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period" (2017). Scholars Week. 20. https://cedar.wwu.edu/scholwk/2017/Day_one/20 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Animating the Temporal Progression of Cordilleran Deglaciation in the Pacific Northwest during the late Quaternary Period Henry Haro – 2017 The Cordilleran Ice Sheet Sequential Progression of Cordilleran Retreat The topography of the Pacific Northwest, its fjords, inland waterways and islands, are a result of an extended period of glaciation and glacial retreat. This retreat influenced the physical features and the resulting succession of vegetation that led to the landscape we see today. Despite this importance of the Cordilleran ice sheet and the large volume of research on the topic, there lacks a good detailed animation of the movement of the entire ice sheet from the last glacial maximum to the present day. In this study, I used spatial data of the glacial extent at different periods of time during the Quaternary period to model and animate the movement of the Cordilleran ice sheet as it retreated from 18,000 BCE to 10,000 BCE. -
Glacial Processes and Landforms-Transport and Deposition
Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted. -
Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2010 Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Glaciology Commons Recommended Citation Birkel, Sean David, "Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation" (2010). Electronic Theses and Dissertations. 97. http://digitalcommons.library.umaine.edu/etd/97 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean David Birkel B.S. University of Maine, 2002 M.S. University of Maine, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) The Graduate School The University of Maine December, 2010 Advisory Committee: Peter O. Koons, Professor of Earth Sciences, Advisor George H. Denton, Libra Professor of Earth Sciences, Co-advisor Fei Chai, Professor of Oceanography James L. Fastook, Professor of Computer Science Brenda L. Hall, Professor of Earth Science Terrence J. Hughes, Professor Emeritus of Earth Science ©2010 Sean David Birkel All Rights Reserved iii CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean D. Birkel Thesis Advisor: Dr. Peter O. Koons An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) December, 2010 This dissertation describes the application of the University of Maine Ice Sheet Model (UM-ISM) and Environmental Change Model (UM-ECM) to understanding mechanisms of ice-sheet/climate integration during ice ages. -
Glacial/Interglacial Variations in Atmospheric Carbon Dioxide
review article Glacial/interglacial variations in atmospheric carbon dioxide Daniel M. Sigman* & Edward A. Boyle² * Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey 08544, USA ² Department of Earth, Atmospheric, and Planetary Sciences, Room E34-258, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Massachusetts 02139, USA ............................................................................................................................................................................................................................................................................ Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's `biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more ef®cient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region. he past two million years have been characterized by of these mechanisms with data from the recent geological and large cyclic variations in climate and glaciation. During glaciological record has been a challenging and controversial task, cold `ice age' periods, large continental ice sheets cover leading as yet to no consensus on a fundamental mechanism.