Clim. Past, 17, 507–528, 2021 https://doi.org/10.5194/cp-17-507-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Lower oceanic δ13C during the last interglacial period compared to the Holocene Shannon A. Bengtson1,2, Laurie C. Menviel1, Katrin J. Meissner1,2, Lise Missiaen1, Carlye D. Peterson3, Lorraine E. Lisiecki4, and Fortunat Joos5,6 1Climate Change Research Centre, The University of New South Wales, Sydney, Australia 2The Australian Research Council Centre of Excellence for Climate Extremes, Sydney, Australia 3Earth Sciences, University of California, Riverside, California, USA 4Department of Earth Science, University of California, Santa Barbara, California, USA 5Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland 6Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland Correspondence: Shannon A. Bengtson (
[email protected]) Received: 20 May 2020 – Discussion started: 11 June 2020 Revised: 14 December 2020 – Accepted: 15 December 2020 – Published: 25 February 2021 Abstract. The last time in Earth’s history when high lati- 1 Introduction tudes were warmer than during pre-industrial times was the last interglacial period (LIG, 129–116 ka BP). Since the LIG The most recent and well documented warm time period is is the most recent and best documented interglacial, it can the last interglacial period (LIG), which is roughly equivalent provide insights into climate processes in a warmer world. to Marine Isotope Stage (MIS) 5e (Past Interglacials Work- However, some key features of the LIG are not well con- ing Group of PAGES, 2016; Shackleton, 1969). The LIG strained, notably the oceanic circulation and the global car- began at the end of the penultimate deglaciation and ended bon cycle.