Lymphatic Mapping and Sentinel Lymph Node Biopsy for Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Lymphatic Mapping and Sentinel Lymph Node Biopsy for Breast Cancer JAMA ONCOLOGY PATIENT PAGE Lymphatic Mapping and Sentinel Lymph Node Biopsy for Breast Cancer Sentinel lymph nodes provide valuable information to guide breast cancer treatment. The Lymphatic System and Lymph Nodes Lymph nodes are kidney bean–shaped structures found through- Sentinel lymph node biopsy for breast cancer out the body that are an important part of the immune system. For- Sentinel lymph nodes are the first nodes eign particles such as bacteria or tumor cells can travel in lymphatic to which cancer cells may spread from a tumor. In breast cancer, the sentinel lymph channels toward lymph nodes, which act as a filter. Some breast can- nodes are in the axilla (armpit) and can be cer cells have the ability to travel through the lymphatic channels in evaluated by a sentinel lymph node biopsy. the breast toward the lymph nodes in the axilla (the underarm area). What Is a Sentinel Node? 1 Colored dye and/or radioactive tracer is There are usually between 20 and 40 lymph nodes in each axilla, and injected into breast tissue theseareconnectedwitheachotherandwiththebreast.Ingeneral,lym- surrounding the tumor. Axillary lymph nodes phaticchannelsfromthebreastmergeastheytraveltowardthelymph Primary tumor nodes,initiallydraininginto1orseveralnodesbeforemovingontoreach other nodes. This first point of drainage, whether into 1 lymph node or 2 The injected substance drains into the sentinel several,isconsideredthesentinel,or“guarding”lymphnodeornodes. lymph nodes and identifies them for surgical removal. How Are Sentinel Nodes Identified? Sentinel lymph nodes The sentinel nodes are identified through a mapping procedure. Be- cause cancer cells are too small to be easily traced as they travel, a tracking substance is injected into the lymphatic channels near the 3 Sentinel lymph nodes are cancer to define the potential path that cancer cells might take and surgically removed and to identify the sentinel node(s) where those cells might end up. The examined for cancer cells. most commonly used tracking substances are a radioactive tracer (isotope) called technetium 99 and a blue dye called isosulfan blue. They follow the same route that cancer cells would through the lym- phatic channels and allow the sentinel node to be identified at the time of surgery because the sentinel nodes will contain the dye or Information about cancer cells found in the isotope. Although cancer might not yet have spread to this area, if sentinel lymph nodes is used for prognosis and it has spread, it will be found first in the sentinel node or nodes. to make decisions about breast cancer treatment. How Will the Information Be Used? Atthetimeofsurgery,thesentinelnodeornodeswillbeidentifiedand presentthere.Everyonehasauniquenumberofsentinellymphnodes; removed. They will be analyzed to determine whether the cancer has you may have 1 or more. Todetermine if there is cancer present in the reached them, and this information can be used to refine the patient’s sentinel node, it must be removed and carefully evaluated. prognosis. The information is often used to make decisions about fur- ther treatment, if surgery is performed prior to any other treatment. If the surgical procedure is performed after chemotherapy,the senti- nel node procedure will indicate whether the treatment has affected FOR MORE INFORMATION anycancerthatmighthavebeeninthelymphnodesbeforetreatment. • Sentinel Lymph Node Biopsy for Early-Stage Breast Cancer http://www.cancer.net/research-and-advocacy/asco-care Important Concepts -and-treatment-recommendations-patients Everyone has sentinel lymph nodes; conducting the mapping pro- /sentinel-lymph-node-biopsy-early-stage-breast-cancer cedure to discover the sentinel nodes does not mean that cancer is Author: Alexandra S. Heerdt, MD, MPH The JAMA Oncology Patient Page is a public service of JAMA Oncology. The information Published Online: November 22, 2017. doi:10.1001/jamaoncol.2017.4000 and recommendations appearing on this page are appropriate in most instances, but they are not a substitute for medical diagnosis. For specific information concerning your Conflict of Interest Disclosures: None reported. personal medical condition, JAMA Oncology suggests that you consult your physician. Section Editor: Howard (Jack) West, MD. This page may be photocopied noncommercially by physicians and other health care professionals to share with patients. To purchase bulk reprints, call (312) 464-0776. jamaoncology.com (Reprinted) JAMA Oncology March 2018 Volume 4, Number 3 431 © 2017 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021.
Recommended publications
  • Follicular Lymphoma
    Follicular Lymphoma What is follicular lymphoma? Let us explain it to you. www.anticancerfund.org www.esmo.org ESMO/ACF Patient Guide Series based on the ESMO Clinical Practice Guidelines FOLLICULAR LYMPHOMA: A GUIDE FOR PATIENTS PATIENT INFORMATION BASED ON ESMO CLINICAL PRACTICE GUIDELINES This guide for patients has been prepared by the Anticancer Fund as a service to patients, to help patients and their relatives better understand the nature of follicular lymphoma and appreciate the best treatment choices available according to the subtype of follicular lymphoma. We recommend that patients ask their doctors about what tests or types of treatments are needed for their type and stage of disease. The medical information described in this document is based on the clinical practice guidelines of the European Society for Medical Oncology (ESMO) for the management of newly diagnosed and relapsed follicular lymphoma. This guide for patients has been produced in collaboration with ESMO and is disseminated with the permission of ESMO. It has been written by a medical doctor and reviewed by two oncologists from ESMO including the lead author of the clinical practice guidelines for professionals, as well as two oncology nurses from the European Oncology Nursing Society (EONS). It has also been reviewed by patient representatives from ESMO’s Cancer Patient Working Group. More information about the Anticancer Fund: www.anticancerfund.org More information about the European Society for Medical Oncology: www.esmo.org For words marked with an asterisk, a definition is provided at the end of the document. Follicular Lymphoma: a guide for patients - Information based on ESMO Clinical Practice Guidelines – v.2014.1 Page 1 This document is provided by the Anticancer Fund with the permission of ESMO.
    [Show full text]
  • The Landmark Series: Axillary Management in Breast Cancer
    Ann Surg Oncol (2020) 27:724–729 https://doi.org/10.1245/s10434-019-08154-5 ORIGINAL ARTICLE – BREAST ONCOLOGY The Landmark Series: Axillary Management in Breast Cancer Carla S. Fisher, MD1, Julie A. Margenthaler, MD2, Kelly K. Hunt, MD3, and Theresa Schwartz, MD4 1Department of Surgery, Indiana University School of Medicine, Indianapolis, IN; 2Department of Surgery, Washington University School of Medicine, St. Louis, MO; 3Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; 4Department of Surgery, St. Louis University, St. Louis, MO ABSTRACT The evolution in axillary management for AXILLARY MANAGEMENT IN PATIENTS patients with breast cancer has resulted in multiple dra- UNDERGOING PRIMARY SURGICAL THERAPY matic changes over the past several decades. The end result has been an overall deescalation of surgery in the axilla. For many patients with breast cancer, surgery is the first Landmark trials that have formed the basis for the current line of therapy for treatment and staging. When the Halsted treatment guidelines are reviewed herein. radical mastectomy was introduced, the axilla was seen as a transit point between the breast and distant metastatic disease, and it was believed that removal of axillary nodes Axillary management for patients with newly diagnosed was necessary to prevent distant metastatic spread. As breast cancer has undergone several practice-changing understanding of breast cancer evolved, removal of these paradigm shifts over the last few decades with the ultimate lymph nodes was not viewed as a necessary procedure to goal of reducing morbidity without compromising onco- prevent spread but rather an important component of breast logic outcomes or staging.
    [Show full text]
  • Sporadic (Nonhereditary) Colorectal Cancer: Introduction
    Sporadic (Nonhereditary) Colorectal Cancer: Introduction Colorectal cancer affects about 5% of the population, with up to 150,000 new cases per year in the United States alone. Cancer of the large intestine accounts for 21% of all cancers in the US, ranking second only to lung cancer in mortality in both males and females. It is, however, one of the most potentially curable of gastrointestinal cancers. Colorectal cancer is detected through screening procedures or when the patient presents with symptoms. Screening is vital to prevention and should be a part of routine care for adults over the age of 50 who are at average risk. High-risk individuals (those with previous colon cancer , family history of colon cancer , inflammatory bowel disease, or history of colorectal polyps) require careful follow-up. There is great variability in the worldwide incidence and mortality rates. Industrialized nations appear to have the greatest risk while most developing nations have lower rates. Unfortunately, this incidence is on the increase. North America, Western Europe, Australia and New Zealand have high rates for colorectal neoplasms (Figure 2). Figure 1. Location of the colon in the body. Figure 2. Geographic distribution of sporadic colon cancer . Symptoms Colorectal cancer does not usually produce symptoms early in the disease process. Symptoms are dependent upon the site of the primary tumor. Cancers of the proximal colon tend to grow larger than those of the left colon and rectum before they produce symptoms. Abnormal vasculature and trauma from the fecal stream may result in bleeding as the tumor expands in the intestinal lumen.
    [Show full text]
  • December 2020 E-Tips Solid Tumor Rules
    New Jersey State Cancer Registry December 2020 E-Tips Cancer Epidemiology Services http://www.nj.gov/health/ces (609) 633-0500 Solid Tumor Rules: December 2020 Update ICD-0-3.2 changes have also been added to applicable site modules. Most changes are minor: terminology, additional definitions, new notes and examples. In order to clarify histology coding instructions, new rules have been added and histology tables updated. These updates do not require review of already abstracted cases. The December 2020 rules replace the current rules and should be used now. SEER Strongly recommends reading the December 2020 Change Log to understand what changes were made. The updated Solid Tumor Rules may be accessed at: https://seer.cancer.gov/tools/solidtumor/ Reportability Changes for 2021 Radiation Coding Total Dose (1533) Starting 01/01/2021 the following terms are reportable: If doses across phases to a single point of region, code Sum of all phases. ** (see 2019 update below) Early or evolving melanoma in situ, or any other early or If doses are to multiple metastatic sites, code highest evolving melanoma, are reportable. dose site. If doses are to primary site and metastatic site, code dose All GIST tumors are reportable and classified as 8936/3 in from the primary site only. ICD-O-3.2. When you have two different sites, you cannot add the Nearly all thymomas are reportable; the exceptions are doses together to get the total dose. microscopic thymoma or thymoma benign (8580/0), micronodular thymoma with lymphoid stroma (8580/1), Radiation Tips and updates for 2019 and ectopic hamartomatous thymoma (8587/0).
    [Show full text]
  • Paraneoplastic Neurologic Syndromes
    DO I:10.4274/tnd.05900 Turk J Neurol 2018;24:63-69 Case Report / Olgu Sunumu Paraneoplastic Neurologic Syndromes: Rare But More Common Than Expected Nine Cases with a Literature Review Paraneoplastik Nörolojik Sendromlar: Nadir Ancak Beklenenden Daha Sık Dokuz Olgu ile Literatür Derlemesi Hülya Uluğut Erkoyun, Sevgin Gündoğan, Yaprak Seçil, Yeşim Beckmann, Tülay Kurt İncesu, Hatice Sabiha Türe, Galip Akhan Izmir Katip Celebi University, Atatürk Training and Research Hospital, Department of Neurology, Izmir, Turkey Abstract Paraneoplastic neurologic syndromes (PNS) are rare disorders, which are remote effects of cancer that are not caused by the tumor, its metastasis or side effects of treatment. We had nine patients with PNS; two of our patients had limbic encephalitis, but one had autoimmune limbic encephalitis with no malignancy; two patients had subacute cerebellar degeneration; three had Stiff-person syndrome; one had Lambert-Eaton myasthenic syndrome; and the remaining patient had sensory neuronopathy. In most patients, the neurologic disorder develops before the cancer becomes clinically overt and the patient is referred to a neurologist. Five of our patients’ malignancies had been diagnosed in our clinic after their neurologic symptoms became overt. PNS are more common than expected and neurologists should be aware of the variety of the clinical presentations of these syndromes. When physicians suspect PNS, cancer screening should be conducted. The screening must continue even if the results are negative. Keywords: Paraneoplastic, neurologic syndromes, neurogenic autoantibodies Öz Paraneoplastik nörolojik sendromlar (PNS), kanserin doğrudan, metastaz ya da tedavi yan etkisine bağlı olmayan, uzak etkisi ile ortaya çıkan nadir hastalıklardır. Dokuz PNS’li hastanın ikisi limbik ensefalitti fakat bunlardan biri otoimmün limbik ensefalitti ve malignitesi yoktu.
    [Show full text]
  • Brain Metastasis from Unknown Primary Tumour: Moving from Old Retrospective Studies to Clinical Trials on Targeted Agents
    cancers Review Brain Metastasis from Unknown Primary Tumour: Moving from Old Retrospective Studies to Clinical Trials on Targeted Agents Roberta Balestrino 1,* , Roberta Rudà 2,3 and Riccardo Soffietti 3 1 Department of Neuroscience, University of Turin, Via Cherasco 15, 10121 Turin, Italy 2 Department of Neurology, Castelfranco Veneto/Treviso Hospital, Via dei Carpani, 16/Z, 31033 Castelfranco Veneto, Italy; [email protected] 3 Department of Neuro-Oncology, University of Turin, Via Cherasco 15, 10121 Turin, Italy; riccardo.soffi[email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 9 November 2020; Published: 12 November 2020 Simple Summary: Brain metastases (BMs) are the most common intracranial tumours in adults and occur up to 3–10 times more frequently than primary brain tumours. In up to 15% of patients with BM, the primary tumour cannot be identified. These cases are known as BM of cancer of unknown primary (CUP) (BM-CUP). The understanding of BM-CUP, despite its relative frequency and unfavourable outcome, is still incomplete and clear indications on management are missing. The aim of this review is to summarize current evidence on the diagnosis and treatment of BM-CUP. Abstract: Brain metastases (BMs) are the most common intracranial tumours in adults and occur up to 3–10 times more frequently than primary brain tumours. BMs may be the cause of the neurological presenting symptoms in patients with otherwise previously undiagnosed cancer. In up to 15% of patients with BMs, the primary tumour cannot be identified. These cases are known as BM of cancer of unknown primary (CUP) (BM-CUP).
    [Show full text]
  • About Mastectomy and Sentinel Lymph Node Biopsy
    All About Mastectomy and Sentinel Lymph Node Biopsy One of the most important goals of Moffitt Cancer Center is to provide you with quality patient care through education, research and patient care. The following information has been developed to help you understand the mastectomy and sentinel lymph node biopsy procedures for which you have been scheduled. Members of your health care team will review this information with you and answer any questions that you may have. Definitions: Mastectomy – Removal of the entire breast but not the muscles underneath. Lymph Nodes - Small bean shaped glands found in the armpit. They remove waste and fluids from the arm and breast and help fight infection. They are also call lymph glands. Sentinel Lymph Node - The first place breast cancer may metastasize (or spread) is to lymph nodes in the axilla (underarm area) on the side of the body where the cancer is. The first lymph node(s) are referred to as the sentinel lymph node(s) or the “gate keepers”. These nodes are first biopsied to determine if the cancer has spread. If cancer cells are not found in the sentinel lymph node(s) that were removed, it will not be necessary to remove the remaining lymph nodes in the arm pit. Sentinel Lymph Node Mapping and Biopsy - This procedure is a two step process. Performing the sentinel lymph node biopsy requires a small incision in your axilla. In the first step, the doctor injects a radioactive substance and/ or blue dye in the area around the tumor. Lymphatic channels (like blood vessels) carry these materials to the sentinel lymph node.
    [Show full text]
  • Carcinogenesis
    Chapter 3 Chapter 3 Carcinogenesis CONTENTS Oral Carcinoma and Smokeless Tobacco Use: A Clinical Profile W. Frederick McGuirt and Anna Wray .................................................. 91 Introduction .................................................................................... 91 Patients ............................................................................................ 91 Field Cancerization ......................................................................... 92 Discussion........................................................................................ 93 References ........................................................................................ 95 Chemical Composition of Smokeless Tobacco Products Klaus D. Brunnemann and Dietrich Hoffmann ..................................... 96 Introduction .................................................................................... 96 Chemical Composition ................................................................... 97 Carcinogenic Agents in ST .............................................................. 97 Carcinogenic N-Nitrosamines ....................................................... 100 TSNA .............................................................................................. 101 Control of Carcinogens in ST ....................................................... 104 References ...................................................................................... 106 Carcinogenesis of Smokeless Tobacco Dietrich Hoffmann, Abraham
    [Show full text]
  • Consensus Guideline on the Management of the Axilla in Patients with Invasive/In-Situ Breast Cancer
    - Official Statement - Consensus Guideline on the Management of the Axilla in Patients With Invasive/In-Situ Breast Cancer Purpose To outline the management of the axilla for patients with invasive and in-situ breast cancer. Associated ASBrS Guidelines or Quality Measures 1. Performance and Practice Guidelines for Sentinel Lymph Node Biopsy in Breast Cancer Patients – Revised November 25, 2014 2. Performance and Practice Guidelines for Axillary Lymph Node Dissection in Breast Cancer Patients – Approved November 25, 2014 3. Quality Measure: Sentinel Lymph Node Biopsy for Invasive Breast Cancer – Approved November 4, 2010 4. Prior Position Statement: Management of the Axilla in Patients With Invasive Breast Cancer – Approved August 31, 2011 Methods A literature review inclusive of recent randomized controlled trials evaluating the use of sentinel lymph node surgery and axillary lymph node dissection for invasive and in-situ breast cancer as well as the pathologic review of sentinel lymph nodes and indications for axillary radiation was performed. This is not a complete systematic review but rather, a comprehensive review of recent relevant literature. A focused review of non-randomized controlled trials was then performed to develop consensus guidance on management of the axilla in scenarios where randomized controlled trials data is lacking. The ASBrS Research Committee developed a consensus document, which was reviewed and approved by the ASBrS Board of Directors. Summary of Data Reviewed Recommendations Based on Randomized Controlled
    [Show full text]
  • Paraneoplastic Syndromes in Lung Cancer and Their Management
    359 Review Article Page 1 of 9 Paraneoplastic syndromes in lung cancer and their management Asad Anwar1, Firas Jafri1, Sara Ashraf2, Mohammad Ali S. Jafri3, Michael Fanucchi3 1Department of Internal Medicine, Westchester Medical Center, Valhalla, NY, USA; 2Department of Hematology/Oncology, Marshall University, Huntington, WV, USA; 3Department of Hematology/Oncology, Westchester Medical Center, Valhalla, NY, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Mohammad Ali S. Jafri, MD. Department of Hematology/Oncology, Westchester Medical Center, Valhalla, NY, USA. Email: [email protected]. Abstract: Paraneoplastic syndromes are most frequently associated with lung cancer. This review considers a variety paraneoplastic syndromes associated with lung cancer and discusses their pathophysiology, clinical features and management options. Keywords: Paraneoplastic syndromes; lung cancer; thoracic oncology Submitted Feb 12, 2019. Accepted for publication Apr 25, 2019. doi: 10.21037/atm.2019.04.86 View this article at: http://dx.doi.org/10.21037/atm.2019.04.86 Introduction PTHrP production (parathyroid hormone related-protein), it is referred to as HHM. Paraneoplastic syndromes refer to the remote effects HHM is observed in a variety of malignancies such as associated with malignancy which are unrelated to direct breast, renal, multiple myeloma and lung; squamous cell tumor invasion or metastases (1). These may occur before is the most frequently observed subtype (3-5). Osteolytic the cancer is diagnosed and can be independent in their metastases are another significant cause of hypercalcemia in severity to the stage of the primary tumor.
    [Show full text]
  • Prognostic Significance of Lymph Node Examination by the OSNA
    cells Article Prognostic Significance of Lymph Node Examination by the OSNA Method in Lung Cancer Patients—Comparison with the Standard Histopathological Procedure Josef Vodicka 1 , Martin Pesta 2,3,*, Vlastimil Kulda 4 , Katerina Houfkova 2, Bohuslava Vankova 5, Jakub Sebek 1, Martin Skala 1, Jakub Fichtl 1, Kristyna Prochazkova 1 and Ondrej Topolcan 6 1 Department of Surgery, Faculty Hospital Plzen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 80, 304 60 Plzen, Czech Republic; [email protected] (J.V.); [email protected] (J.S.); [email protected] (M.S.); fi[email protected] (J.F.); [email protected] (K.P.) 2 Department of Biology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Plzen, Czech Republic; [email protected] 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Plzen, Czech Republic 4 Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; [email protected] 5 Department of Pathology, Faculty Hospital Plzen, Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 13, 305 99 Plzen, Czech Republic; [email protected] 6 Department of Immunochemistry Diagnostics, Faculty Hospital Plzen, Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 13, 305 99 Plzen, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-377-593-261 Received: 26 October 2020; Accepted: 1 December 2020; Published: 4 December 2020 Abstract: The aim of the study was to compare the prognostic significance of lymph node status of patients with lung cancer analyzed by three different methods: hematoxylin and eosin (H&E), immunohistochemistry of cytokeratin 19 (IHC CK19), and One-Step Nucleic Acid Amplification (OSNA).
    [Show full text]
  • Application of Preoperative Computed Tomographic Lymphography For
    Wen et al. BMC Surg (2021) 21:187 https://doi.org/10.1186/s12893-021-01190-7 RESEARCH ARTICLE Open Access Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients Shishuai Wen1,2,3†, Yiran Liang1†, Xiaoli Kong1, Baofeng Liu4, Tingting Ma1, Yeqing Zhou1, Liyu Jiang1, Xiaoyan Li1 and Qifeng Yang1,5,6* Abstract Background: In light of the extensive application of sentinel lymph node biopsy (SLNB) in clinically node-negative breast cancer patients and the recently investigated failure of SLNB after lumpectomy, it has become important to explore methods for preoperative mapping of sentinel lymph nodes (SLNs) and their lymphatics to direct precise SLNB and improve the identifcation rate of SLNs. Methods: Twenty-seven patients with suspected breast cancer based on the results of the clinical examination and imaging were enrolled in the study. Computed tomographic lymphography (CTLG) followed by CT three-dimensional reconstruction was performed to determine the localization of SLNs and lymphatics on the body surface preopera- tively. Intraoperatively combined staining with methylene blue and indocyanine green was used to evaluate the accuracy and feasibility of CTLG. Results: SLNs and lymphatics from the breast were identifed using CTLG in all patients, and preoperative SLNs and lymphatics localization on the body surface showed a signifcant role in the selection of operative incision and injec- tion points. The accuracy rate of SLN and lymphatic detection by CTLG was 92.6% compared with intraoperatively combined staining. Moreover, preoperative CTLG performed well in SLN number detection, and the accuracy rate was 95.2%. Conclusion: We evaluate the procedure and application of preoperative CTLG in the superfcial localization of SLNs and lymphatics, which may lead to a decreased incidence of cutting of the lymphatics of SLNs and consequently more rapid and accurate SLN detection.
    [Show full text]