Annualreport 2010 2011

Total Page:16

File Type:pdf, Size:1020Kb

Annualreport 2010 2011 C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2010 2011 . i C ii C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2010 2011 . iii Centre de recherches mathématiques Université de Montréal C.P. 6128, succ. Centre-ville Montréal, QC H3C 3J7 Canada [email protected] Also available on the CRM website http://crm.math.ca/docs/docRap_an.shtml. © Centre de recherches mathématiques Université de Montréal, 2012 ISBN 978-2-921120-49-4 C Presenting the Annual Report 2010 – 2011 1 ematic Program 4 ematic Programs of the Year 2010 – 2011: “Geometric, Combinatorial and Computational Group e- ory” and “Statistics” ............................................ 5 Aisenstadt Chairholders in 2010 – 2011: Yuri Gurevich, Angus Macintyre, Alexander Razborov, and James Robins ................................................ 6 Activities of the ematic Semesters ...................................... 9 Past ematic Programs ............................................. 21 General Program 23 CRM activities .................................................. 24 Colloquium Series ................................................ 36 Multidisciplinary and Industrial Program 39 Activities of the Climate Change and Sustainability Program ........................ 40 Activities of the Multidisciplinary and Industrial Program .......................... 41 CRM Prizes 47 CRM – Fields – PIMS Prize 2011 Awarded to Mark Lewis ........................... 48 André-Aisenstadt Prize 2011 Awarded to Joel Kamnitzer ........................... 48 CAP – CRM Prize 2011 Awarded to Robert Brandenberger .......................... 49 CRM – SSC Prize 2011 Awarded to Edward Susko ............................... 50 e CRM Outreach Program 51 When the Earth Was Too Young for Darwin — Cédric Villani ......................... 52 MSI: Anatomy of Integers and Permutations — Andrew Granville ...................... 53 Mathematics that Swings: e Math behind Golf — Doug Arnold ...................... 55 CRM Partnerships 57 CRM Partners .................................................. 58 Joint Initiatives .................................................. 61 Mathematical Education 62 Institut des sciences mathématiques (ISM) ................................... 63 Other Joint Initiatives .............................................. 66 Research Laboratories 68 Applied Mathematics .............................................. 69 CICMA ...................................................... 71 CIRGET ...................................................... 72 GIREF ....................................................... 74 INTRIQ ...................................................... 76 LaCIM ....................................................... 78 Mathematical Analysis ............................................. 81 Mathematical Physics .............................................. 83 PhysNum ..................................................... 86 Statistics ..................................................... 88 Publications 92 Recent Titles ................................................... 93 Previous Titles .................................................. 93 iii C Scientific Personnel 98 CRM Members in 2010 – 2011 .......................................... 99 Postdoctoral Fellows ............................................... 101 Visitors ...................................................... 101 List of Students Having Graduated in 2010 – 2011 103 Ph.D. Students .................................................. 104 M.Sc. Students .................................................. 105 Governance and Scientific Guidance 109 Board of Directors ................................................ 110 International Scientific Advisory Commiee ................................. 110 CRM Administrative and Support Staff 114 e Director’s Office ............................................... 115 Administration .................................................. 115 Scientific Activities ............................................... 115 Computer Services ................................................ 115 Publications ................................................... 115 Communications ................................................. 115 Mandate of the CRM 116 iv Presenting the Annual Report 2010 – 2011 C 2010 – 2011 two thematic semesters were orga- methodology, surfaces and representation theory, evo- I nized by the CRM. e first one was devoted to lutionary games, and discrete and algorithmic math- Geometric, Combinatorial and Computational Group ematics. e CRM awards four prizes, either on its eory and organized by Olga Kharlampovich (McGill own or in collaboration with other institutes or profes- University), Alexei Miasnikov (Stevens Institute of sional associations. In 2011 the CRM – Fields – PIMS Technology), and their colleagues (Benson Farb, Uni- Prize (the most prestigious Canadian mathematical versity of Chicago; Luis Ribes, Carleton University; prize) was awarded to Mark Lewis (University of Al- Mark Sapir, Vanderbilt University; and Efim Zel- berta). Joel Kamnitzer (University of Toronto) was the manov, University of California, San Diego). is recipient of the André-Aisenstadt Prize, awarded by semester featured five workshops, lectures at the lead- the CRM International Scientific Advisory Commiee ing edge, and series of Aisenstadt lectures; those events to a young Canadian mathematician. Edward Susko took place between August and October 2010. Of (Dalhousie University) was the recipient of the CRM – course group theory is a field of pure mathematics, SSC Prize, awarded by a joint commiee of the CRM but one of the goals of the semester was to demon- and the Statistical Society of Canada. Finally Robert strate and stimulate the new links between this field Brandenberger (McGill University) was the recipient and other areas of pure and applied mathematics, in- of the CAP – CRM Prize on eoretical and Mathemat- cluding applications to complexity theory and cryp- ical Physics, awarded by a joint commiee of the CRM tography (and thus computer science). e Aisenstadt and the Canadian Association of Physicists. Chairs for the group theory semester were Yuri Gure- In 2010 – 2011 the Grandes Conférences program con- vich (Microso Research), Angus MacIntyre (een tinued to enjoy a large success. e three lec- Mary, University of London), and Alexander Razborov tures were given respectively by Cédric Villani (Fields (University of Chicago). medallist and director of the Institut Henri-Poincaré), e second thematic semester of the year 2010-2011 Doug Arnold (University of Minnesota), and Andrew was devoted to statistics and organized by a commit- Granville (Université de Montréal). e CRM is proud tee including 15 researchers (11 researchers working to have extended financial support to 45 postdoctoral in Canadian universities and 4 in other public institu- fellows (all from outside ébec) in 2010 – 2011. is tions, including the Canadian Forest Service, the In- support demonstrates the scientific reach of the CRM stitut de recherches cliniques de Montréal, and the and its aractiveness for young researchers from all Hydro-ébec Research Institute). e semester on over the world. Note that the CRM does not award statistics featured 7 workshops, covering theoretical postdoctoral fellowships to Ph.D. students completing topics (causal inference, analysis of survival and event their studies in ébec universities; indeed all those history data, copula models and dependence) as well as universities are affiliated with the CRM and the goal methods applied to varied fields (meteorology, health, of the postdoctoral fellowship program is to offer di- genomics, and forest management). Two of the work- verse training experiences. Our Ph.D. students are of- shops (those on meteorology and forest management, fered fellowships in foreign countries and Ph.D. stu- respectively) were included in the Climate Change and dents from abroad apply for fellowships at the CRM. Sustainability Program, which also featured a course Each year 200 to 300 top-level students from all parts on viability theory by Professor Jean-Pierre Aubin of the world apply for postdoctoral fellowships at the (Université Paris-Dauphine) and a workshop on de- CRM. All professors at the large ébec universities cision analysis and sustainable development (a joint may look at the applications and take part in the fi- CRM – GERAD – MITACS workshop). e Aisenstadt nancing of a fellowship. Chair for the statistics semester was Professor James To conclude I would like to mention that in 2010 – 2011, Robins, from the Harvard School of Public Health. the CRM welcomed 2,133 researchers from all parts In 2010 – 2011 the CRM general program contributed of the world, including 55% of Canadian researchers. even more than usual to the financing of its labora- e CRM activities are numerous and varied and they tories activities, which covered topics such as num- demonstrate that the CRM plays a central role in the ber theory, cosmology, quantum cryptography, pro- advancement of science, be it in ébec, Canada, or gram construction, signal processing, bifurcation anal- the world. I also wish to thank the institutions that ysis, generation of combinatorial objects, statistical support the CRM, especially NSERC (Government of 2 P A R 2010 – 2011 Canada), FQRNT (Government of ébec), the NSF (Unites States), the MITACS network, and the part- ner universities: first the Université de Montréal, then UQAM, Concordia University, McGill University, Uni- versité Laval,
Recommended publications
  • Royal Statistical Scandal
    Royal Statistical Scandal False and misleading claims by the Royal Statistical Society Including on human poverty and UN global goals Documentary evidence Matt Berkley Draft 27 June 2019 1 "The Code also requires us to be competent. ... We must also know our limits and not go beyond what we know.... John Pullinger RSS President" https://www.statslife.org.uk/news/3338-rss-publishes-revised-code-of- conduct "If the Royal Statistical Society cannot provide reasonable evidence on inflation faced by poor people, changing needs, assets or debts from 2008 to 2018, I propose that it retract the honour and that the President makes a statement while he holds office." Matt Berkley 27 Dec 2018 2 "a recent World Bank study showed that nearly half of low-and middle- income countries had insufficient data to monitor poverty rates (2002- 2011)." Royal Statistical Society news item 2015 1 "Max Roser from Oxford points out that newspapers could have legitimately run the headline ' Number of people in extreme poverty fell by 137,000 since yesterday' every single day for the past 25 years... Careless statistical reporting could cost lives." President of the Royal Statistical Society Lecture to the Independent Press Standards Organisation April 2018 2 1 https://www.statslife.org.uk/news/2495-global-partnership-for- sustainable-development-data-launches-at-un-summit 2 https://www.statslife.org.uk/features/3790-risk-statistics-and-the-media 3 "Mistaken or malicious misinformation can change your world... When the government is wrong about you it will hurt you too but you may never know how.
    [Show full text]
  • Tools for Tutoring Theoretical Computer Science Topics
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2019 Tools for Tutoring Theoretical Computer Science Topics Mark McCartin-Lim University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces Commons, Other Computer Sciences Commons, and the Theory and Algorithms Commons Recommended Citation McCartin-Lim, Mark, "Tools for Tutoring Theoretical Computer Science Topics" (2019). Doctoral Dissertations. 1797. https://doi.org/10.7275/15233091 https://scholarworks.umass.edu/dissertations_2/1797 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TOOLS FOR TUTORING THEORETICAL COMPUTER SCIENCE TOPICS A Dissertation Presented by MARK MCCARTIN-LIM Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2019 College of Information and Computer Sciences c Copyright by Mark McCartin-Lim 2019 All Rights Reserved TOOLS FOR TUTORING THEORETICAL COMPUTER SCIENCE TOPICS A Dissertation Presented by MARK MCCARTIN-LIM Approved as to style and content by: Andrew McGregor, Co-chair Beverly Woolf, Co-chair David Mix Barrington, Member Siman Wong, Member James Allan, Department Chair College of Information and Computer Sciences DEDICATION To the students who faithfully came to my office hours, whose struggles and perseverance inspired this dissertation. To my good friend Lucas, who provided much needed moral support during the hardest times, and who gave me the courage to choose this dissertation topic.
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Joel Feldman
    Essay‐Contest 2017/18 Lukas Lanik, International School Kufstein, 9. Schulstufe, Fremdsprachenerwerb: 5 Jahre Joel Feldman Physics, mathematics and computer science belong to my favourite subjects in school and are definitely sciences that I would like to study at university. That is why I think the work and research that Joel Feldman does is really interesting. He is a mathematician and a mathematical physicist. He did his bachelor’s degree in 1970 at the University of Toronto and his masters and PhD at Harvard University in 1971 and 1974. He has made important contributions to quantum field theory, many‐body theory, Schrödinger operator theory, the theory of infinite genus Riemann surfaces and on Fermi liquids. His research on Fermi liquids and infinite genus Riemann surfaces was done in collaboration with Horst Knörrer and Eugene Trubowitz. Over the years professor Feldman won many prizes because of his outstanding contributions in Mathematics and Theoretical Physics and is a part of the Royal Society of Canada. In 1996 he won the John L. Synge Award, in 2004 he won the Jeffery‐ Williams Prize and in 2007 he won the CRM‐Fields‐PIMS Prize together with CAP‐CRM in Theoretical and Mathematical Physics. But why are contributions to research in physics so important? How do they help to push humanity forward? Physics helps us understand the nature of the universe. It helps us understand why certain things work the way they work. Take, for example, the European robin. At first glance, it seems like an ordinary bird. But once we start asking how is it possible that during winter the bird is able to find its way to southern Europe and back, things start to get weird, because the answer to this question lies in the mysterious realm of quantum mechanics.
    [Show full text]
  • 336737 1 En Bookfrontmatter 1..24
    Universitext Universitext Series editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 W. Frank Moore • Mark Rogers Sean Sather-Wagstaff Monomial Ideals and Their Decompositions 123 W. Frank Moore Sean Sather-Wagstaff Department of Mathematics School of Mathematical and Statistical Wake Forest University Sciences Winston-Salem, NC, USA Clemson University Clemson, SC, USA Mark Rogers Department of Mathematics Missouri State University Springfield, MO, USA ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-3-319-96874-2 ISBN 978-3-319-96876-6 (eBook) https://doi.org/10.1007/978-3-319-96876-6 Library of Congress Control Number: 2018948828 Mathematics Subject Classification (2010): 13-01, 05E40, 13-04, 13F20, 13F55 © Springer Nature Switzerland AG 2018 This work is subject to copyright.
    [Show full text]
  • Benjamin Rossman
    Benjamin Rossman 40 St George Street, Room 6214 Phone: 416-946-7825 Toronto, ON M5S 3G4 Canada E-mail: [email protected] POSITIONS University of Toronto 2016 – present Assistant Professor of Mathematics and Computer Science National Institute of Informatics (Tokyo, Japan) 2013 – 2016 Assistant Professor in the Kawarabayashi Large Graph Project Simons Institute for the Theory of Computing (Berkeley, CA) 2014 – 2015 Simons-Berkeley Research Fellow Tokyo Institute of Technology 2010 – 2013 NSF Mathematical Sciences Postdoctoral Research Fellow EDUCATION Massachusetts Institute of Technology Ph.D. in Computer Science 2010 · Advisor: Madhu Sudan · Thesis: Average-Case Complexity of Detecting Cliques University of Pennsylvania M.A. in Mathematics 2002 B.A. in Mathematics, Summa Cum Laude 2001 HONORS AND AWARDS André Aisenstadt Prize in Mathematics 2018 Invited Speaker at the International Congress of Mathematicians 2018 Alfred P. Sloan Research Fellowship 2017 Best Paper Award at FOCS (IEEE Symposium on Foundations of Computer Science) 2015 Best Paper Award at CCC (Computational Complexity Conference) 2015 Best Paper Award at CSR (International Computer Science Symposium in Russia) 2014 Ackermann Award (Outstanding Dissertation Award of the European Association for 2011 Computer Science Logic) George M. Sprowls Award (Best Doctoral Theses in Computer Science at MIT) 2010 NSF Mathematical Sciences Postdoctoral Research Fellowship 2010 National Defense Science and Engineering Graduate Fellowship 2006 1 NSF Graduate Research Fellowship 2006
    [Show full text]
  • Program Sunday Evening: Welcome Recep- Tion from 7Pm to 9Pm at the Staff Lounge of the Department of Computer Science, Ny Munkegade, Building 540, 2Nd floor
    Computational ELECTRONIC REGISTRATION Complexity The registration for CCC’03 is web based. Please register at http://www.brics.dk/Complexity2003/. Registration Fees (In Danish Kroner) Eighteenth Annual IEEE Conference Advance† Late Members‡∗ 1800 DKK 2200 DKK ∗ Sponsored by Nonmembers 2200 DKK 2800 DKK Students+ 500 DKK 600 DKK The IEEE Computer Society ∗The registration fee includes a copy of the proceedings, Technical Committee on receptions Sunday and Monday, the banquet Wednesday, and lunches Monday, Tuesday and Wednesday. Mathematical Foundations +The registration fee includes a copy of the proceedings, of Computing receptions Sunday and Monday, and lunches Monday, Tuesday and Wednesday. The banquet Wednesday is not included. †The advance registration deadline is June 15. ‡ACM, EATCS, IEEE, or SIGACT members. Extra proceedings/banquet tickets Extra proceedings are 350 DKK. Extra banquet tick- ets are 300 DKK. Both can be purchased when reg- istering and will also be available for sale on site. Alternative registration If electronic registration is not possible, please con- tact the organizers at one of the following: E-mail: [email protected] Mail: Complexity 2003 c/o Peter Bro Miltersen In cooperation with Department of Computer Science University of Aarhus ACM-SIGACT and EATCS Ny Munkegade, Building 540 DK 8000 Aarhus C, Denmark Fax: (+45) 8942 3255 July 7–10, 2003 Arhus,˚ Denmark Conference homepage Conference Information Information about this year’s conference is available Location All sessions of the conference and the on the Web at Kolmogorov workshop will be held in Auditorium http://www.brics.dk/Complexity2003/ F of the Department of Mathematical Sciences at Information about the Computational Complexity Aarhus University, Ny Munkegade, building 530, 1st conference is available at floor.
    [Show full text]
  • The Abel Prize Laureate 2017
    The Abel Prize Laureate 2017 Yves Meyer École normale supérieure Paris-Saclay, France www.abelprize.no Yves Meyer receives the Abel Prize for 2017 “for his pivotal role in the development of the mathematical theory of wavelets.” Citation The Abel Committee The Norwegian Academy of Science and or “wavelets”, obtained by both dilating infinite sequence of nested subspaces Meyer’s expertise in the mathematics Letters has decided to award the Abel and translating a fixed function. of L2(R) that satisfy a few additional of the Calderón-Zygmund school that Prize for 2017 to In the spring of 1985, Yves Meyer invariance properties. This work paved opened the way for the development of recognised that a recovery formula the way for the construction by Ingrid wavelet theory, providing a remarkably Yves Meyer, École normale supérieure found by Morlet and Alex Grossmann Daubechies of orthonormal bases of fruitful link between a problem set Paris-Saclay, France was an identity previously discovered compactly supported wavelets. squarely in pure mathematics and a theory by Alberto Calderón. At that time, Yves In the following decades, wavelet with wide applicability in the real world. “for his pivotal role in the Meyer was already a leading figure analysis has been applied in a wide development of the mathematical in the Calderón-Zygmund theory of variety of arenas as diverse as applied theory of wavelets.” singular integral operators. Thus began and computational harmonic analysis, Meyer’s study of wavelets, which in less data compression, noise reduction, Fourier analysis provides a useful way than ten years would develop into a medical imaging, archiving, digital cinema, of decomposing a signal or function into coherent and widely applicable theory.
    [Show full text]
  • Contemporary Mathematics 224
    CONTEMPORARY MATHEMATICS 224 Recent Progress in Algebra An International Conference on Recent Progress in Algebra August 11-15, 1997 KAIST, Taejon, South Korea Sang Geun Hahn Hyo Chul Myung Efim Zelmanov Editors http://dx.doi.org/10.1090/conm/224 Selected Titles in This Series 224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999 223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999 222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999 221 J. Robert Dorroh, Gisela Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999 220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998 219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998 218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998 217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential equations and mathematical physics, 1998 216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998 215 M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics and applications, 1998 214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998 213 Farhad Jafari, Barbara D. MacCiuer, Carl C. Cowen, and A. Duane Porter, Editors, Studies on composition operators, 1998 212 E. Ramirez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, Editors, Operator theory for complex and hypercomplex analysis, 1998 211 J6zef Dodziuk and Linda Keen, Editors, Lipa's legacy: Proceedings from the Bers Colloquium, 1997 210 V.
    [Show full text]
  • Mathematics Nomad Wins Abel Prize (Pdf)
    Mathematics Nomad Wins Abel Prize Give me a museum and I’ll fill it. Indeed, his contributions thereafter cru- – Pablo Picasso cially changed common practices in signal processing. As an example, the compres- rolific mathematician Yves Meyer, sion standard in JPEG2000 is entirely based could be described as the Picasso of on the ability of sparsely representing P the mathematical sciences. On 23 images in a wavelet basis and the work of May 2017 the French mathematician was Martin Vetterli and his team who turned awarded the Abel Prize, which is often Meyer’s insight into usable computational described as the mathematics Nobel. In the algorithms. The discovery of wavelets as a laudatio the Abel recognised Meyer in par- sciences des | Académie Eymann © B. tool for sparsely representing images also ticular ‘for his pivotal role in the develop- turned them into one of the central compo- ment of mathematical theory of wavelets’. nents in compressed sensing, i.e. the non- Wavelets are functions that can explain adaptive compressed acquisition of data. complex structures in signals and images, And in 2015 and 2016 wavelets played a in solutions of partial differential equa- central role in the detection of gravitational tions, by decomposing them into translated waves by LIGO. Wavelets separated the and dilated versions of a mother wavelet gravitational waves from instrumental arte- (see Figure 1). facts and random noise using an algorithm They form an orthonormal basis of square integrable func- designed by Sergey Klimenko. tions and can be seen as a further development of the Fourier Recent works by Stéphane Mallat and colleagues also show transform, characterising signals in time-frequency by spatially the role of wavelets in understanding the mechanisms behind localised, somewhat oscillatory, building blocks of different deep learning.
    [Show full text]
  • Spatio-Temporal Point Processes: Methods and Applications Peter J
    Johns Hopkins University, Dept. of Biostatistics Working Papers 6-27-2005 Spatio-temporal Point Processes: Methods and Applications Peter J. Diggle Medical Statistics Unit, Lancaster University, UK & Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, [email protected] Suggested Citation Diggle, Peter J., "Spatio-temporal Point Processes: Methods and Applications" (June 2005). Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 78. http://biostats.bepress.com/jhubiostat/paper78 This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder. Copyright © 2011 by the authors Spatio-temporal Point Processes: Methods and Applications Peter J Diggle (Department of Mathematics and Statistics, Lancaster University and Department of Biostatistics, Johns Hopkins University School of Public Health) June 27, 2005 1 Introduction This chapter is concerned with the analysis of data whose basic format is (xi; ti) : i = 1; :::; n where each xi denotes the location and ti the corresponding time of occurrence of an event of interest. We shall assume that the data form a complete record of all events which occur within a pre-specified spatial region A and a pre-specified time- interval, (0; T ). We call a data-set of this kind a spatio-temporal point pattern, and the underlying stochastic model for the data a spatio-temporal point process. 1.1 Motivating examples 1.1.1 Amacrine cells in the retina of a rabbit One general approach to analysing spatio-temporal point process data is to extend existing methods for purely spatial data by considering the time of occurrence as a distinguishing feature, or mark, attached to each event.
    [Show full text]
  • Party Time for Mathematicians in Heidelberg
    Mathematical Communities Marjorie Senechal, Editor eidelberg, one of Germany’s ancient places of Party Time HHlearning, is making a new bid for fame with the Heidelberg Laureate Forum (HLF). Each year, two hundred young researchers from all over the world—one for Mathematicians hundred mathematicians and one hundred computer scientists—are selected by application to attend the one- week event, which is usually held in September. The young in Heidelberg scientists attend lectures by preeminent scholars, all of whom are laureates of the Abel Prize (awarded by the OSMO PEKONEN Norwegian Academy of Science and Letters), the Fields Medal (awarded by the International Mathematical Union), the Nevanlinna Prize (awarded by the International Math- ematical Union and the University of Helsinki, Finland), or the Computing Prize and the Turing Prize (both awarded This column is a forum for discussion of mathematical by the Association for Computing Machinery). communities throughout the world, and through all In 2018, for instance, the following eminences appeared as lecturers at the sixth HLF, which I attended as a science time. Our definition of ‘‘mathematical community’’ is journalist: Sir Michael Atiyah and Gregory Margulis (both Abel laureates and Fields medalists); the Abel laureate the broadest: ‘‘schools’’ of mathematics, circles of Srinivasa S. R. Varadhan; the Fields medalists Caucher Bir- kar, Gerd Faltings, Alessio Figalli, Shigefumi Mori, Bào correspondence, mathematical societies, student Chaˆu Ngoˆ, Wendelin Werner, and Efim Zelmanov; Robert organizations, extracurricular educational activities Endre Tarjan and Leslie G. Valiant (who are both Nevan- linna and Turing laureates); the Nevanlinna laureate (math camps, math museums, math clubs), and more.
    [Show full text]