Diameter and Depth of Lunar Craters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Replace This with the Actual Title Using All Caps
RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kassandra Martin-Wells January 2013 © 2013 Kassandra Martin-Wells RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING Kassandra Martin-Wells, Ph. D. Cornell University 2013 Age dating of planetary surfaces relies on an accurate correlation between lunar crater size-frequency distributions and radiometric ages of samples returned from the Moon. For decades, it has been assumed that cratering records are dominated by “primary” impacts of interplanetary bolides [McEwen et al., 2005]. Unlike primary craters, secondary craters, which originate as ejecta from large primary events, occur in large clusters in both space and time. It was long believed that the majority of secondary craters formed at low velocities near their parent crater, resulting in a class of craters with morphologies which are easily distinguished from primary craters of a similar size [McEwen et al., 2005]. However, recent work by Bierhaus et al. (2005), McEwen et al. (2005) argues that cratering records in the Solar System may be strongly contaminated by hard-to-identify secondary craters. They advise caution when relying on counts at small diameters [McEwen et al., 2005; Bierhaus et al., 2005]. Despite the difficulties, something must be done to improve the accuracy of age dates derived from size-frequency distributions of small craters. In this thesis, a method of secondary crater identification based on radar circular polarization properties is presented. The radar polarization and photographic studies of lunar secondary craters in this thesis reveal that secondary cratering is a widespread phenomenon on the lunar surface. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Sky and Telescope
SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history. -
CARES ACT GRANT AMOUNTS to AIRPORTS (Pursuant to Paragraphs 2-4) Detailed Listing by State, City and Airport
CARES ACT GRANT AMOUNTS TO AIRPORTS (pursuant to Paragraphs 2-4) Detailed Listing By State, City And Airport State City Airport Name LOC_ID Grand Totals AK Alaskan Consolidated Airports Multiple [individual airports listed separately] AKAP $16,855,355 AK Adak (Naval) Station/Mitchell Field Adak ADK $30,000 AK Akhiok Akhiok AKK $20,000 AK Akiachak Akiachak Z13 $30,000 AK Akiak Akiak AKI $30,000 AK Akutan Akutan 7AK $20,000 AK Akutan Akutan KQA $20,000 AK Alakanuk Alakanuk AUK $30,000 AK Allakaket Allakaket 6A8 $20,000 AK Ambler Ambler AFM $30,000 AK Anaktuvuk Pass Anaktuvuk Pass AKP $30,000 AK Anchorage Lake Hood LHD $1,053,070 AK Anchorage Merrill Field MRI $17,898,468 AK Anchorage Ted Stevens Anchorage International ANC $26,376,060 AK Anchorage (Borough) Goose Bay Z40 $1,000 AK Angoon Angoon AGN $20,000 AK Aniak Aniak ANI $1,052,884 AK Aniak (Census Subarea) Togiak TOG $20,000 AK Aniak (Census Subarea) Twin Hills A63 $20,000 AK Anvik Anvik ANV $20,000 AK Arctic Village Arctic Village ARC $20,000 AK Atka Atka AKA $20,000 AK Atmautluak Atmautluak 4A2 $30,000 AK Atqasuk Atqasuk Edward Burnell Sr Memorial ATK $20,000 AK Barrow Wiley Post-Will Rogers Memorial BRW $1,191,121 AK Barrow (County) Wainwright AWI $30,000 AK Beaver Beaver WBQ $20,000 AK Bethel Bethel BET $2,271,355 AK Bettles Bettles BTT $20,000 AK Big Lake Big Lake BGQ $30,000 AK Birch Creek Birch Creek Z91 $20,000 AK Birchwood Birchwood BCV $30,000 AK Boundary Boundary BYA $20,000 AK Brevig Mission Brevig Mission KTS $30,000 AK Bristol Bay (Borough) Aleknagik /New 5A8 $20,000 AK -
B. Apollo 16 Regional Geologic Setting
B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1). -
Planetary Science : a Lunar Perspective
APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim. -
August 2017 Posidonius P & Luther
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – AUGUST 2017 POSIDONIUS P & LUTHER Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA March 5, 2017 01:28-01:48; UT, 15 cm refl, 170x, seeing 7-8/10. I drew these craters on the evening of March 4/5, 2017 while the moon was hiding some Hyades stars. This area is in northeast Mare Serenitatis west of Posidonius itself. Posidonius P is the largest crater on this sketch. The smaller crater south of P is Posidonius F and Posidonius G is the tiny pit to the north. There is a halo around Posidonius G, but this crater is noticeably north of the halo's center. A very low round swelling is northeast of Posidonius G. Luther is the crater well to the west of Posidonius P. All four of these craters are crisp, symmetric features, differing only in size. There are an assortment of elevations near Luther. The peak Luther alpha is well to the west of Luther, and showed dark shadowing at this time. All of the other features near Luther are more subtle than Luther alpha. One mound is between Luther and Luther alpha. Two more mounds are north of Luther, and a low ridge is just east of this crater. A pair of very low mounds are south of Luther. These are the vaguest features depicted here, and may be too conspicuous on the sketch. -
The Moon After Apollo
ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs. -
Apollo 12 Photography Index
%uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII. -
July 2020 in This Issue Online Readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 Click on Images an Invitation to Join ALPO 3 for Hyperlinks
A publication of the Lunar Section of ALPO Edited by David Teske: [email protected] 2162 Enon Road, Louisville, Mississippi, USA Recent back issues: http://moon.scopesandscapes.com/tlo_back.html July 2020 In This Issue Online readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 click on images An Invitation to Join ALPO 3 for hyperlinks. Observations Received 4 By the Numbers 7 Submission Through the ALPO Image Achieve 4 When Submitting Observations to the ALPO Lunar Section 9 Call For Observations Focus-On 9 Focus-On Announcement 10 2020 ALPO The Walter H. Haas Observer’s Award 11 Sirsalis T, R. Hays, Jr. 12 Long Crack, R. Hill 13 Musings on Theophilus, H. Eskildsen 14 Almost Full, R. Hill 16 Northern Moon, H. Eskildsen 17 Northwest Moon and Horrebow, H. Eskildsen 18 A Bit of Thebit, R. Hill 19 Euclides D in the Landscape of the Mare Cognitum (and Two Kipukas?), A. Anunziato 20 On the South Shore, R. Hill 22 Focus On: The Lunar 100, Features 11-20, J. Hubbell 23 Recent Topographic Studies 43 Lunar Geologic Change Detection Program T. Cook 120 Key to Images in this Issue 134 These are the modern Golden Days of lunar studies in a way, with so many new resources available to lu- nar observers. Recently, we have mentioned Robert Garfinkle’s opus Luna Cognita and the new lunar map by the USGS. This month brings us the updated, 7th edition of the Virtual Moon Atlas. These are all wonderful resources for your lunar studies. -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei