Cosmological Constant: Relaxation Vs Multiverse ∗ Alessandro Strumia A, Daniele Teresi A,B, a Dipartimento Di Fisica “E

Total Page:16

File Type:pdf, Size:1020Kb

Cosmological Constant: Relaxation Vs Multiverse ∗ Alessandro Strumia A, Daniele Teresi A,B, a Dipartimento Di Fisica “E Physics Letters B 797 (2019) 134901 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Cosmological constant: Relaxation vs multiverse ∗ Alessandro Strumia a, Daniele Teresi a,b, a Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy b INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy a r t i c l e i n f o a b s t r a c t 3 Article history: We consider a scalar field with a bottom-less potential, such as g φ, finding that cosmologies unavoidably Received 18 June 2019 2/3 1/3 end up with a crunch, late enough to be compatible with observations if g 1.2H M . If rebounces Received in revised form 21 August 2019 0 Pl avoid singularities, the multiverse acquires new features; in particular probabilities avoid some of the Accepted 27 August 2019 usual ambiguities. If rebounces change the vacuum energy by a small enough amount, this dynamics Available online 30 August 2019 selects a small vacuum energy and becomes the most likely source of universes with anthropically small Editor: G.F. Giudice cosmological constant. Its probability distribution could avoid the gap by 2 orders of magnitude that Keywords: seems left by standard anthropic selection. Cosmological constant © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 Relaxation (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . Multiverse 1. Introduction Recently [11](see also [12]) proposed a cosmological model that could make the cosmological constant partially smaller and The vacuum energy V that controls the cosmological constant negative. It needs two main ingredients: receives power-divergent quantum corrections as well as physi- 4 cal corrections of order Mmax, where Mmax is the mass of the a) ‘Rolling’: a scalar field φ with a quasi-flat potential and no bot- heaviest particle. In models with new physics at the Planck scale tom (at least in the field space probed cosmologically), such as (e.g. string theory) one thereby expects Planckian vacuum ener- =− 3 2/3 1/3 V φ g φ with small g H0 MPl where H0 is the present gies, and the observed cosmological constant (corresponding to Hubble constant. 4 the vacuum energy V 0 ≈ (2.3 meV) ) can be obtained from a can- 4 ∼ 120 cellation by one part in MPl/V 0 10 . In tentative models of Then, a cosmological phase during which the energy density is dimensionless gravity the heaviest particle might be the top quark dominated by V φ (with a value such that φ classically rolls down (M ∼ M , see e.g. [1]), still needing a cancellation by one part max t its potential) ends up when V φ crosses zero and becomes slightly 4 ∼ 60 in Mmax/V 0 10 . negative, starting contraction. During the contraction phase the A plausible interpretation of this huge cancellation is provided kinetic energy of φ rapidly blue-shifts and, assuming some inter- by theories with enough vacua such that at least one vacuum action with extra states, gets converted into a radiation bath, thus accidentally has the small observed cosmological constant. Then, reheating the Universe and maybe triggering the following dynam- assuming that the vacua get populated e.g. by eternal inflation, ob- ics. 3 servers can only develop in those vacua with V 10 V 0 [2](see also [3]). More quantitative attempts of understanding anthropic b) ‘Rebouncing’: a mechanism that turns a contracting universe selection find that the most likely vacuum energy measured by a into an expanding universe. Furthermore, to get a small posi- random observer is about 100 times larger that the vacuum energy tive (rather than negative) cosmological constant, the authors V we observe [2,4–6](unless some special measure is adopted, 0 of [11] assume multiple minima and a ‘hiccupping’ mechanism for instance as in [7–10]). This mild remaining discrepancy might that populates vacua up to some energy density V . signal some missing piece of the puzzle. rebounce Hence, at this stage the Universe appears as hot, expanding and with a small positive cosmological constant, i.e. with standard hot * Corresponding author. E-mail addresses: [email protected] (A. Strumia), Big-Bang cosmology. In this way, the cancellation needed to get [email protected] (D. Teresi). the observed cosmological constant gets partially reduced by some https://doi.org/10.1016/j.physletb.2019.134901 0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 2 A. Strumia, D. Teresi / Physics Letters B 797 (2019) 134901 tens of orders of magnitude, such that theories with Mmax ∼ MeV Classical motion of φ dominates over its quantum fluctuations 1 | | 3 ∼ no longer need accidental cancellations [11,12]. However particles for field values such that V φ H . The critical point is φclass almost 106 heavier than the electron exist in nature. − 2 ∼ 2 2 MPl/g which corresponds to vacuum energy V class g MPl. Clas- The authors of [11]restricted the parameter space of their ˙ 2 sical slow-roll ends when V φ ∼ φ : this happens at φ ∼ φend ∼ MPl model in order to avoid eternal inflation. However other features 3 which corresponds to V φ ∼ V end ∼−g MPl. Such a small V φ ≈ 0is of the Standard Model, in particular light fermion masses, suggest a special point of the cosmological evolution when V φ dominates that anthropic selection is playing a role [13–16]. The weak scale the energy density [11,12]. The scale factor of an universe domi- too might be anthropically constrained [17]. Taking the point of ∼ 2 2 nated by V φ expands by N MPl/g e-folds while transiting the view that a multiverse remains needed, we explore the role that classical slow-roll region. the above ingredients a) and b), assumed to be generic enough, Eternal inflation occurs for field values such that V φ V class: might play in a multiverse context. Is an anthropically accept- starting from any given point φ<φ the field eventually fluctu- able vacuum more easily found by random chance or through the class ates down to φ after N ∼|φ|M2 /g3 e-folds. The Fokker-Planck mechanism of [11]? class Pl equation for the probability density P(φ, N) in comoving coordi- In section 2 we consider in isolation the ingredient a), finding that all observers eventually end up in an anti-de-Sitter crunch, nates of finding the scalar field at the value φ has the form of a that can be late enough to be compatible with cosmological data. leaky box [18] In section 3 we consider in isolation the ingredient b), finding that 2 ∂ P ∂ M ∂ H H3/2 ∂ it modifies the multiverse structure, in particular leading to multi- = Pl P + (H3/2 P ) . (4) t 4 8 2 ple cycles of a “temporal multiverse”. ∂ ∂φ π ∂φ π ∂φ Adding both ingredients a) and b), in section 4 we show that This equation admits stationary solutions where P decreases going the mechanism of [11]can have a dominant multiverse probability deeper into the quantum region (while being non-normalizable), of forming universes with an anthropically acceptable vacuum en- and leaks into the classical region. ergy. In such a case, the small discrepancy left by usual anthropic A large density ρ of radiation and/or matter is present during selection (the measured vacuum energy V 0 is 100 times below its the early big-bang phase. The scalar φ, similarly to a cosmological most likely value) can be alleviated or avoided. Conclusions are constant, is irrelevant during this phase. The variation in the scalar given in section 5. potential energy due to its slow-roll is negligible as long as 2. Rolling: a bottom-less scalar in cosmology | | 2 V φ H MPl. (5) Indeed A scalar potential with a small slope but no bottom is one of the ingredients of [11]. We here study its cosmology irrespectively V 2 dVφ dφ φ 2 2 of the other ingredients. We consider a scalar field φ with La- = V = ρ ∼ H M . (6) dN φ dN 3H2 Pl grangian 3 Thereby the evolution of a scalar field with a very small slope g 2 (∂μφ) becomes relevant only at late times when the energy density ρ Lφ = − V φ(φ), (1) 2 becomes small enough, ρ V φ . Fig. 1 shows the cosmological evolution of our universe, assum- where the quasi-flat potential can be approximated as V φ(φ) 3 ing different initial values of the vacuum energy density V φ (φin). −g φ with small g. We consider a flat homogeneous universe with If such vacuum energy is negative, a crunch happens roughly as in scale-factor a(t) (with present value a0) in the presence of φ and 3 3 standard cosmology, after a time of non-relativistic matter with density ρm(a) = ρm(a0)a /a , as in 0 our universe at late times. Its cosmological evolution is described amax da π MPl by the following equations tcrunch = 2 = aH 6 −V φ(φin) a¨ 4π G 0 =− (ρ + 3p) (2a) a 3 V 0 ˙ ≈ 3.6 × 1010 yr. (7) a − φ¨ =−3 φ˙ − V (2b) V φ(φin) a φ Unlike in standard cosmology the Universe finally undergoes a 2 where G = 1/M is the Newton constant; ρ = ρφ +ρm and p = pφ Pl crunch even if V φ(φin) ≥ 0, because φ starts dominating the en- are the total energy density and pressure with ergy density (like a cosmological constant) and rolls down (unlike a cosmological constant).
Recommended publications
  • Measurement of Associated Z+Charm Production and Search for W' Bosons in the CMS Experimented at the LHC
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS Departamento de Física Atómica, Molecular y Nuclear TESIS DOCTORAL Measurement of associated Z+charm production and search for W' bosons in the CMS experimented at the LHC Medida de la producción asociada de Z+charm y búsqueda de bosones W' en el experimento CMS del LHC MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Escalante del Valle Director Juan Alcaraz Maestre Madrid, 2017 ©Alberto Escalante del Valle, 2017 CENTRO DE INVESTIGACIONES ENERGETICAS´ MEDIOAMBIENTALES Y TECNOLOGICAS´ Measurement of associated Z+charm production and Search for W0 bosons in the CMS experiment at the LHC by Alberto Escalante del Valle A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Universidad Complutense de Madrid Facultad de Ciencias F´ısicas Departamento de F´ısicaAt´omica,Molecular y Nuclear Supervised by: Dr. Juan Alcaraz Maestre Dr. Juan Pablo Fern´andezRamos Madrid February 2017 CENTRO DE INVESTIGACIONES ENERGETICAS´ MEDIOAMBIENTALES Y TECNOLOGICAS´ Medida de la producci´onasociada de Z+charm y B´usquedade bosones W0 en el experimento CMS del LHC por Alberto Escalante del Valle Memoria de la tesis presentada para optar al grado de Doctor en Filosof´ıa en la Universidad Complutense de Madrid Facultad de Ciencias F´ısicas Departamento de F´ısicaAt´omica,Molecular y Nuclear Supervisado por: Dr. Juan Alcaraz Maestre Dr. Juan Pablo Fern´andezRamos Madrid Febrero 2017 Abstract Measurement of associated Z+charm production and Search for W0 bosons in the CMS experiment at the LHC by Alberto Escalante del Valle Do we understand how elementary particles interact with each other? Are we able to predict the result of the collisions of these elementary particles at the LHC? The objective of this thesis is to investigate the validity of our current theoretical model, the Standard Model of particle physics, to explain the production of two low rate processes in proton-proton collisions at the LHC.
    [Show full text]
  • Jhep06(2019)110
    Published for SISSA by Springer Received: February 22, 2019 Revised: June 3, 2019 Accepted: June 10, 2019 Published: June 20, 2019 Coset cosmology JHEP06(2019)110 Luca Di Luzio,a;b Michele Redi,c Alessandro Strumiaa and Daniele Teresia;b aDipartimento di Fisica, Universit`adi Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy bINFN, Sezione di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy cINFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We show that the potential of Nambu-Goldstone bosons can have two or more local minima e.g. at antipodal positions in the vacuum manifold. This happens in many models of composite Higgs and of composite Dark Matter. Trigonometric potentials lead to unusual features, such as symmetry non-restoration at high temperature. In some mod- els, such as the minimal SO(5)=SO(4) composite Higgs with fermions in the fundamental representation, the two minima are degenerate giving cosmological domain-wall problems. Otherwise, an unusual cosmology arises, that can lead to supermassive primordial black holes; to vacuum or thermal decays; to a high-temperature phase of broken SU(2)L, pos- sibly interesting for baryogenesis. Keywords: Cosmology of Theories beyond the SM, Global Symmetries, Spontaneous Symmetry Breaking, Technicolor and Composite Models ArXiv ePrint: 1902.05933 Open Access, c The Authors. https://doi.org/10.1007/JHEP06(2019)110 Article funded by SCOAP3. Contents
    [Show full text]
  • The State of the Multiverse: the String Landscape, the Cosmological Constant, and the Arrow of Time
    The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time Raphael Bousso Center for Theoretical Physics University of California, Berkeley Stephen Hawking: 70th Birthday Conference Cambridge, 6 January 2011 RB & Polchinski, hep-th/0004134; RB, arXiv:1112.3341 The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Magnitude of contributions to the vacuum energy graviton (a) (b) I Vacuum fluctuations: SUSY cutoff: ! 10−64; Planck scale cutoff: ! 1 I Effective potentials for scalars: Electroweak symmetry breaking lowers Λ by approximately (200 GeV)4 ≈ 10−67. The cosmological constant problem −121 I Each known contribution is much larger than 10 (the observational upper bound on jΛj known for decades) I Different contributions can cancel against each other or against ΛEinstein. I But why would they do so to a precision better than 10−121? Why is the vacuum energy so small? 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Many ways to make empty space Topology and combinatorics RB & Polchinski (2000) I A six-dimensional manifold contains hundreds of topological cycles.
    [Show full text]
  • Phenomenological Implications of Neutrinos in Extra Dimensions
    October 27, 2018 CERN-TH/2001–184 hep-ph/0107156 IFUP–TH/18–2001 Phenomenological implications of neutrinos in extra dimensions Andr´ede Gouvˆea, Gian Francesco Giudice, Alessandro Strumia∗, and Kazuhiro Tobe Theoretical Physics Division, CERN, CH-1211, Gen`eve 23, Switzerland Abstract Standard Model singlet neutrinos propagating in extra dimensions induce small Dirac neutrino masses. While it seems rather unlikely that their Kaluza-Klein excitations directly participate in the observed neutrino oscillations, their virtual exchange may lead to detectable signatures in future neutrino experiments and in rare charged lepton processes. We show how these effects can be described by specific dimension-six effective operators and discuss their experimental signals. 1 Introduction The hypothesis that Standard Model (SM) singlet fields propagate in extra dimensions leads to striking arXiv:hep-ph/0107156v2 1 Nov 2001 results. When applied to the graviton, it allows to lower the quantum gravity scale down to few TeV [1, 2], suggesting a new scenario for addressing the Higgs mass hierarchy problem. It is also natural to consider the case of “right-handed neutrinos” (i.e., fermions without SM gauge interactions) propagating in extra dimensions. The smallness of the neutrino masses, of the Dirac type, could in fact be a manifestation of this hypothesis [3, 4, 5, 6]. If the radius of the compactified dimensions is very large, R > eV−1, Kaluza-Klein (KK) modes of right-handed neutrinos would significantly participate in neutrino∼ oscillations. However, KK interpreta- tions of the atmospheric and solar neutrino puzzles are disfavoured by the following arguments: A KK tower of sterile neutrinos gives rise to active/sterile oscillations at a small ∆m2 1/R2 • ∼ only in the case of a single large extra dimension.
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • Modified Standard Einstein's Field Equations and the Cosmological
    Issue 1 (January) PROGRESS IN PHYSICS Volume 14 (2018) Modified Standard Einstein’s Field Equations and the Cosmological Constant Faisal A. Y. Abdelmohssin IMAM, University of Gezira, P.O. BOX: 526, Wad-Medani, Gezira State, Sudan Sudan Institute for Natural Sciences, P.O. BOX: 3045, Khartoum, Sudan E-mail: [email protected] The standard Einstein’s field equations have been modified by introducing a general function that depends on Ricci’s scalar without a prior assumption of the mathemat- ical form of the function. By demanding that the covariant derivative of the energy- momentum tensor should vanish and with application of Bianchi’s identity a first order ordinary differential equation in the Ricci scalar has emerged. A constant resulting from integrating the differential equation is interpreted as the cosmological constant introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi- cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the gravitational action. On the other hand, when energy-momentum is not conserved, a new modified field equations emerged, one type of these field equations are Rastall’s gravity equations. 1 Introduction term in his standard field equations to represent a kind of “anti ff In the early development of the general theory of relativity, gravity” to balance the e ect of gravitational attractions of Einstein proposed a tensor equation to mathematically de- matter in it. scribe the mutual interaction between matter-energy and Einstein modified his standard equations by introducing spacetime as [13] a term to his standard field equations including a constant which is called the cosmological constant Λ, [7] to become Rab = κTab (1.1) where κ is the Einstein constant, Tab is the energy-momen- 1 Rab − gabR + gabΛ = κTab (1.6) tum, and Rab is the Ricci curvature tensor which represents 2 geometry of the spacetime in presence of energy-momentum.
    [Show full text]
  • Copyrighted Material
    ftoc.qrk 5/24/04 1:46 PM Page iii Contents Timeline v de Sitter,Willem 72 Dukas, Helen 74 Introduction 1 E = mc2 76 Eddington, Sir Arthur 79 Absentmindedness 3 Education 82 Anti-Semitism 4 Ehrenfest, Paul 85 Arms Race 8 Einstein, Elsa Löwenthal 88 Atomic Bomb 9 Einstein, Mileva Maric 93 Awards 16 Einstein Field Equations 100 Beauty and Equations 17 Einstein-Podolsky-Rosen Besso, Michele 18 Argument 101 Black Holes 21 Einstein Ring 106 Bohr, Niels Henrik David 25 Einstein Tower 107 Books about Einstein 30 Einsteinium 108 Born, Max 33 Electrodynamics 108 Bose-Einstein Condensate 34 Ether 110 Brain 36 FBI 113 Brownian Motion 39 Freud, Sigmund 116 Career 41 Friedmann, Alexander 117 Causality 44 Germany 119 Childhood 46 God 124 Children 49 Gravitation 126 Clothes 58 Gravitational Waves 128 CommunismCOPYRIGHTED 59 Grossmann, MATERIAL Marcel 129 Correspondence 62 Hair 131 Cosmological Constant 63 Heisenberg, Werner Karl 132 Cosmology 65 Hidden Variables 137 Curie, Marie 68 Hilbert, David 138 Death 70 Hitler, Adolf 141 iii ftoc.qrk 5/24/04 1:46 PM Page iv iv Contents Inventions 142 Poincaré, Henri 220 Israel 144 Popular Works 222 Japan 146 Positivism 223 Jokes about Einstein 148 Princeton 226 Judaism 149 Quantum Mechanics 230 Kaluza-Klein Theory 151 Reference Frames 237 League of Nations 153 Relativity, General Lemaître, Georges 154 Theory of 239 Lenard, Philipp 156 Relativity, Special Lorentz, Hendrik 158 Theory of 247 Mach, Ernst 161 Religion 255 Mathematics 164 Roosevelt, Franklin D. 258 McCarthyism 166 Russell-Einstein Manifesto 260 Michelson-Morley Experiment 167 Schroedinger, Erwin 261 Millikan, Robert 171 Solvay Conferences 265 Miracle Year 174 Space-Time 267 Monroe, Marilyn 179 Spinoza, Baruch (Benedictus) 268 Mysticism 179 Stark, Johannes 270 Myths and Switzerland 272 Misconceptions 181 Thought Experiments 274 Nazism 184 Time Travel 276 Newton, Isaac 188 Twin Paradox 279 Nobel Prize in Physics 190 Uncertainty Principle 280 Olympia Academy 195 Unified Theory 282 Oppenheimer, J.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Higgs Inflation
    Higgs inflation Javier Rubio Institut fur¨ Theoretische Physik, Ruprecht-Karls-Universitat¨ Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany —————————————————————————————————————————— Abstract The properties of the recently discovered Higgs boson together with the absence of new physics at collider experiments allows us to speculate about consistently extending the Standard Model of particle physics all the way up to the Planck scale. In this context, the Standard Model Higgs non- minimally coupled to gravity could be responsible for the symmetry properties of the Universe at large scales and for the generation of the primordial spectrum of curvature perturbations seeding structure formation. We overview the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and discuss its interplay with the possible metastability of the Standard Model vacuum. —————————————————————————————————————————— arXiv:1807.02376v3 [hep-ph] 13 Mar 2019 Email: [email protected] 1 Contents 1 Introduction and summary3 2 General framework7 2.1 Induced gravity . .7 2.2 Higgs inflation from approximate scale invariance . .8 2.3 Tree-level inflationary predictions . 11 3 Effective field theory interpretation 14 3.1 The cutoff scale . 14 3.2 Relation between high- and low-energy parameters . 16 3.3 Potential scenarios and inflationary predictions . 17 3.4 Vacuum metastability and high-temperature effects . 21 4 Variations and extensions 22 4.1 Palatini Higgs inflation . 23 4.2 Higgs-Dilaton model . 24 5 Concluding remarks 26 6 Acknowledgments 26 2 1 Introduction and summary Inflation is nowadays a well-established paradigm [1–6] able to explain the flatness, homogene- ity and isotropy of the Universe and the generation of the primordial density fluctuations seeding structure formation [7–10].
    [Show full text]
  • The Cosmological Constant Problem Philippe Brax
    The Cosmological constant problem Philippe Brax To cite this version: Philippe Brax. The Cosmological constant problem. Contemporary Physics, Taylor & Francis, 2004, 45, pp.227-236. 10.1080/00107510410001662286. hal-00165345 HAL Id: hal-00165345 https://hal.archives-ouvertes.fr/hal-00165345 Submitted on 25 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cosmological Constant Problem Ph. Brax1a a Service de Physique Th´eorique CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS, CEA-Saclay F-91191 Gif/Yvette cedex, France Abstract Observational evidence seems to indicate that the expansion of the universe is currently accelerating. Such an acceleration strongly suggests that the content of the universe is dominated by a non{clustered form of matter, the so{called dark energy. The cosmological constant, introduced by Einstein to reconcile General Relativity with a closed and static Universe, is the most likely candidate for dark energy although other options such as a weakly interacting field, also known as quintessence, have been proposed. The fact that the dark energy density is some one hundred and twenty orders of magnitude lower than the energy scales present in the early universe constitutes the cosmological constant problem.
    [Show full text]
  • Astrophysics and Physics of Neutrino Detection
    Astrophysics and Physics of Neutrino Detection A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Cheng-Hsien Li IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Professor Yong-Zhong Qian, Advisor September, 2017 c Cheng-Hsien Li 2017 ALL RIGHTS RESERVED Acknowledgements This dissertation would be impossible to complete without the help and support from many people and institutions. First and foremost, I would like to express my sincere gratitude to my research advisor, Professor Yong-Zhong Qian, who has patiently guided me through this long PhD journey. I learned a lot from his insights in neutrino physics and his approaches to problems during countless hours of discussion. He always offered helpful suggestions regarding my thesis projects and how to conduct rigorous research. I would like to thank Dr. Projjwal Banerjee for guiding me on the SN1987A project presented in this thesis. He was not only a research collaborator but he is also a dear friend to me. He kindly offered advice and encouragement which helped me overcome difficulties during my PhD study. In addition, I feel grateful to have received a lot of help from then fellow graduate students, Dr. Ke-Jun Chen, Dr. Meng-Ru Wu, Dr. Zhen Yuan, Mr. Zhu Li, and Mr. Zewei Xiong, in the Nuclear Physics Group. I am also indebted to Professor Hans-Thomas Janka and Professor Tobias Fischer for generously providing supernova simulation results from their research groups upon request, Professor Huaiyu Duan for commenting on my wave-packet project, and Professor Alexander Heger for the computing resource I received in the research group.
    [Show full text]
  • Teleparallel Gravity and Its Modifications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery University College London Department of Mathematics PhD Thesis Teleparallel gravity and its modifications Author: Supervisor: Matthew Aaron Wright Christian G. B¨ohmer Thesis submitted in fulfilment of the requirements for the degree of PhD in Mathematics February 12, 2017 Disclaimer I, Matthew Aaron Wright, confirm that the work presented in this thesis, titled \Teleparallel gravity and its modifications”, is my own. Parts of this thesis are based on published work with co-authors Christian B¨ohmerand Sebastian Bahamonde in the following papers: • \Modified teleparallel theories of gravity", Sebastian Bahamonde, Christian B¨ohmerand Matthew Wright, Phys. Rev. D 92 (2015) 10, 104042, • \Teleparallel quintessence with a nonminimal coupling to a boundary term", Sebastian Bahamonde and Matthew Wright, Phys. Rev. D 92 (2015) 084034, • \Conformal transformations in modified teleparallel theories of gravity revis- ited", Matthew Wright, Phys.Rev. D 93 (2016) 10, 103002. These are cited as [1], [2], [3] respectively in the bibliography, and have been included as appendices. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: Date: i Abstract The teleparallel equivalent of general relativity is an intriguing alternative formula- tion of general relativity. In this thesis, we examine theories of teleparallel gravity in detail, and explore their relation to a whole spectrum of alternative gravitational models, discussing their position within the hierarchy of Metric Affine Gravity mod- els. Consideration of alternative gravity models is motivated by a discussion of some of the problems of modern day cosmology, with a particular focus on the dark en- ergy problem.
    [Show full text]