The Cosmological Constant Problem Philippe Brax

Total Page:16

File Type:pdf, Size:1020Kb

The Cosmological Constant Problem Philippe Brax The Cosmological constant problem Philippe Brax To cite this version: Philippe Brax. The Cosmological constant problem. Contemporary Physics, Taylor & Francis, 2004, 45, pp.227-236. 10.1080/00107510410001662286. hal-00165345 HAL Id: hal-00165345 https://hal.archives-ouvertes.fr/hal-00165345 Submitted on 25 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cosmological Constant Problem Ph. Brax1a a Service de Physique Th´eorique CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS, CEA-Saclay F-91191 Gif/Yvette cedex, France Abstract Observational evidence seems to indicate that the expansion of the universe is currently accelerating. Such an acceleration strongly suggests that the content of the universe is dominated by a non{clustered form of matter, the so{called dark energy. The cosmological constant, introduced by Einstein to reconcile General Relativity with a closed and static Universe, is the most likely candidate for dark energy although other options such as a weakly interacting field, also known as quintessence, have been proposed. The fact that the dark energy density is some one hundred and twenty orders of magnitude lower than the energy scales present in the early universe constitutes the cosmological constant problem. We review various aspects of the cosmological constant problem and some interesting scenarios using supersymmetry or extra{dimensions attempting to solve one of the most puzzling issues in physics. [email protected] 1 The Cosmological Constant It is now common knowledge that the Universe is expanding. More puzzling is the recent evidence that this expansion is accelerating. Not only distant galaxies are receding away from us, they do so in an accelerating fashion. The quest for an explanation of the acceleration of the Universe is still in its infancy. Many scenarios have been proposed. No complete understanding has been reached yet. The purpose of this introductory review is to present parts of the observa- tional evidence and some of the theoretical models which have been proposed. More details and a comprehensive list of references can be found in the reviews [1,2,3,4,5]. The figures have been taken from the research articles [6,7,8,9]. The dynamics of the Universe are described by the general theory of rel- ativity. In general relativity, matter and geometry are intrinsically entangled. Space{time is curved by matter as well{known from black{hole physics where the gravitational effects are so strong that even light cannot escape to infinity. The Einstein equations relate on the one hand geometry, in the form of the Ricci tensor Rµν , the metric tensor gµν and the curvature R, and matter represented by the energy{momemtum tensor Tµν 1 R − g R = −8πG T (1) µν 2 µν N µν where GN is Newton's constant of gravitation. The Ricci tensor measures the curvature of space{time while the energy{momentum tensor embodies the ef- fects of pressure and energy. These equations relate tensors, here four by four matrices, leading to highly non{linear equations. All gravitational phenomena are governed by Einstein equations. In particular we will be interested in cosmo- logical features occurring on time{scales of the order of the age of the Universe and on distance scales as large as the size of the Universe. Even on such extraor- dinary scales, general relativity is thought to apply and govern all cosmological phenomena. When trying to analyse the cosmology of galaxies and galaxy clus- ters, it is convenient to model the behaviour of matter with only two quantities: energy density and pressure. This is enough to characterise dust{like matter as well as radiation, two of the key components of our Universe. For ordinary matter and radiation, the energy momentum tensor is diagonal and determined by the energy density ρ measured in units of energy per unit volume and p the pressure. All energy scales will be measured in units where h¯ = c = 1. This implies that length scales can be converted into inverse energy scales, therefore energy densities will be expressed in electron{Volt to the fourth power. In 1917, Einstein applied his equations to cosmology. Lacking the observa- tional evidence on the recession of galaxies (discovered by E. Hubble in 1929), Einstein assumed that the Universe was closed and static. A closed universe is such that space is spherical, i.e. spatially finite with no boundary. A static Universe is such that its shape is time{independent. Unfortunately these two hypotheses are incompatible with Einstein's equations. In order to accommo- date a closed and static Universe, Einstein modified his equations by introducing 2 a new term: the cosmological constant Λ 1 R − g R = −8πG T + Λg (2) µν 2 µν N µν µν The positive cosmological constant Λ introduces a repulsive effect which com- pensates the gravitational pull. A closed and static Universe is a solution of 3 the modified Einstein equations with a radius Λ . The cosmological constant Λ has dimension two in energy unit. It can bqe interpreted as another source of matter with a diagonal energy momentum-tensor (as for dust{like matter and radiation). The pressure due to a cosmological constant is the opposite of the energy density corresponding to a so{called equation of state w = −1. The equation of state in statistical mechanics is the relation between pressure and energy density. In cosmology it is common practise to call the equation of state the proportionality coefficient relating pressure and density. The re- pulsive nature of the cosmological constant is due to a negative pressure. We will encounter other types of matter with the same kind of repulsiveness when discussing scalar fields. After the discovery of the galaxy recession, the necessity of the cosmological constant became doubtful. Indeed Friedmann and then independently Lemaitre showed that the Hubble flow of galaxies could be explained within general rel- ativity without the need for a cosmological constant. Until recently the cosmo- logical constant was deemed unphysical as can be read in the highly influential textbook on the classical theory of fields by Landau and Lifschitz. Since the early eighties, the inflationary paradigm has reinstated the cos- mological constant at the forefront of current research. Indeed the standard cosmological model relying on the homogeneity, i.e. the Copernican principle that no particular place in the Universe plays a special role, and the isotropy of the Universe , i.e. on large scales there is no preferred direction, suffers from many problems, among others the horizon problem. As the velocity of light is finite, how come that regions of space which were not in causal contact in the past look so similar now? In particular how come that the temperature of the cosmic microwave background, the remnant radiation from the very early Universe is so isotropic? This can be explained using inflation, a period of exponentially fast expansion in the early Universe. When inflating, regions in causal contact are blown up so fast as to become acausal. So what is the connection between inflation and the cosmological constant? Inflation can be understood as driven by a constant energy density acting as a cosmological constant. This can be easily grasped by looking at one of the most important equations of cosmology: the Friedmann equation ρ Λ k H2 = 8πG + − (3) N 3 3 a2 a_ Here a is the cosmic scale factor measuring the size of the Universe and H = a is the Hubble rate corresponding to the ratio between the speed of receding galaxies and their distance. In a closed and static Universe the Hubble rate 3 vanishes H = 0, a compensation due to the curvature term k = 1 and the cosmological constant Λ. In a flat Universe k = 0 with no cosmological constant Λ = 0, the Hubble rate is non{vanishing due to the presence of matter ρ. In a flat Universe dominated by a constant cosmological constant Λ the Hubble rate is constant. This is the de Sitter model leading to an exponential increase of the scale factor a. Primordial inflation in the early Universe is thought to occur due to a large energy density mimicking the presence of a cosmological constant. This is enough to create an enormous blowing up of distance scales. The end of inflation is due to the sudden transfer of the inflationary energy density to ordinary particles. The origin of this energy density is often modelled by a scalar field. This idea also reappears in models of quintessence as we will discuss shortly. After inflation the Universe is radiation dominated and then matter domi- nated. In the matter dominated era, structures such as galaxies are formed due to the collapse of matter density fluctuations seeded by quantum fluctuations in the early universe. Well-known physics such as particle and nuclear physics constrain the evolution of the Universe since nucleosynthesis (when elements such as helium were created). In particular, it is observationally clear that a cosmological constant, if present, must be negligible from nucleosynthesis till a0 the very recent past measured in redshift denoted by z and defined by a = 1+z where a0 is the scale factor of the Universe now, i.e. from a red{shift of a few thousand to one.
Recommended publications
  • The State of the Multiverse: the String Landscape, the Cosmological Constant, and the Arrow of Time
    The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time Raphael Bousso Center for Theoretical Physics University of California, Berkeley Stephen Hawking: 70th Birthday Conference Cambridge, 6 January 2011 RB & Polchinski, hep-th/0004134; RB, arXiv:1112.3341 The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Magnitude of contributions to the vacuum energy graviton (a) (b) I Vacuum fluctuations: SUSY cutoff: ! 10−64; Planck scale cutoff: ! 1 I Effective potentials for scalars: Electroweak symmetry breaking lowers Λ by approximately (200 GeV)4 ≈ 10−67. The cosmological constant problem −121 I Each known contribution is much larger than 10 (the observational upper bound on jΛj known for decades) I Different contributions can cancel against each other or against ΛEinstein. I But why would they do so to a precision better than 10−121? Why is the vacuum energy so small? 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Many ways to make empty space Topology and combinatorics RB & Polchinski (2000) I A six-dimensional manifold contains hundreds of topological cycles.
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • Modified Standard Einstein's Field Equations and the Cosmological
    Issue 1 (January) PROGRESS IN PHYSICS Volume 14 (2018) Modified Standard Einstein’s Field Equations and the Cosmological Constant Faisal A. Y. Abdelmohssin IMAM, University of Gezira, P.O. BOX: 526, Wad-Medani, Gezira State, Sudan Sudan Institute for Natural Sciences, P.O. BOX: 3045, Khartoum, Sudan E-mail: [email protected] The standard Einstein’s field equations have been modified by introducing a general function that depends on Ricci’s scalar without a prior assumption of the mathemat- ical form of the function. By demanding that the covariant derivative of the energy- momentum tensor should vanish and with application of Bianchi’s identity a first order ordinary differential equation in the Ricci scalar has emerged. A constant resulting from integrating the differential equation is interpreted as the cosmological constant introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi- cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the gravitational action. On the other hand, when energy-momentum is not conserved, a new modified field equations emerged, one type of these field equations are Rastall’s gravity equations. 1 Introduction term in his standard field equations to represent a kind of “anti ff In the early development of the general theory of relativity, gravity” to balance the e ect of gravitational attractions of Einstein proposed a tensor equation to mathematically de- matter in it. scribe the mutual interaction between matter-energy and Einstein modified his standard equations by introducing spacetime as [13] a term to his standard field equations including a constant which is called the cosmological constant Λ, [7] to become Rab = κTab (1.1) where κ is the Einstein constant, Tab is the energy-momen- 1 Rab − gabR + gabΛ = κTab (1.6) tum, and Rab is the Ricci curvature tensor which represents 2 geometry of the spacetime in presence of energy-momentum.
    [Show full text]
  • Copyrighted Material
    ftoc.qrk 5/24/04 1:46 PM Page iii Contents Timeline v de Sitter,Willem 72 Dukas, Helen 74 Introduction 1 E = mc2 76 Eddington, Sir Arthur 79 Absentmindedness 3 Education 82 Anti-Semitism 4 Ehrenfest, Paul 85 Arms Race 8 Einstein, Elsa Löwenthal 88 Atomic Bomb 9 Einstein, Mileva Maric 93 Awards 16 Einstein Field Equations 100 Beauty and Equations 17 Einstein-Podolsky-Rosen Besso, Michele 18 Argument 101 Black Holes 21 Einstein Ring 106 Bohr, Niels Henrik David 25 Einstein Tower 107 Books about Einstein 30 Einsteinium 108 Born, Max 33 Electrodynamics 108 Bose-Einstein Condensate 34 Ether 110 Brain 36 FBI 113 Brownian Motion 39 Freud, Sigmund 116 Career 41 Friedmann, Alexander 117 Causality 44 Germany 119 Childhood 46 God 124 Children 49 Gravitation 126 Clothes 58 Gravitational Waves 128 CommunismCOPYRIGHTED 59 Grossmann, MATERIAL Marcel 129 Correspondence 62 Hair 131 Cosmological Constant 63 Heisenberg, Werner Karl 132 Cosmology 65 Hidden Variables 137 Curie, Marie 68 Hilbert, David 138 Death 70 Hitler, Adolf 141 iii ftoc.qrk 5/24/04 1:46 PM Page iv iv Contents Inventions 142 Poincaré, Henri 220 Israel 144 Popular Works 222 Japan 146 Positivism 223 Jokes about Einstein 148 Princeton 226 Judaism 149 Quantum Mechanics 230 Kaluza-Klein Theory 151 Reference Frames 237 League of Nations 153 Relativity, General Lemaître, Georges 154 Theory of 239 Lenard, Philipp 156 Relativity, Special Lorentz, Hendrik 158 Theory of 247 Mach, Ernst 161 Religion 255 Mathematics 164 Roosevelt, Franklin D. 258 McCarthyism 166 Russell-Einstein Manifesto 260 Michelson-Morley Experiment 167 Schroedinger, Erwin 261 Millikan, Robert 171 Solvay Conferences 265 Miracle Year 174 Space-Time 267 Monroe, Marilyn 179 Spinoza, Baruch (Benedictus) 268 Mysticism 179 Stark, Johannes 270 Myths and Switzerland 272 Misconceptions 181 Thought Experiments 274 Nazism 184 Time Travel 276 Newton, Isaac 188 Twin Paradox 279 Nobel Prize in Physics 190 Uncertainty Principle 280 Olympia Academy 195 Unified Theory 282 Oppenheimer, J.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Teleparallel Gravity and Its Modifications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery University College London Department of Mathematics PhD Thesis Teleparallel gravity and its modifications Author: Supervisor: Matthew Aaron Wright Christian G. B¨ohmer Thesis submitted in fulfilment of the requirements for the degree of PhD in Mathematics February 12, 2017 Disclaimer I, Matthew Aaron Wright, confirm that the work presented in this thesis, titled \Teleparallel gravity and its modifications”, is my own. Parts of this thesis are based on published work with co-authors Christian B¨ohmerand Sebastian Bahamonde in the following papers: • \Modified teleparallel theories of gravity", Sebastian Bahamonde, Christian B¨ohmerand Matthew Wright, Phys. Rev. D 92 (2015) 10, 104042, • \Teleparallel quintessence with a nonminimal coupling to a boundary term", Sebastian Bahamonde and Matthew Wright, Phys. Rev. D 92 (2015) 084034, • \Conformal transformations in modified teleparallel theories of gravity revis- ited", Matthew Wright, Phys.Rev. D 93 (2016) 10, 103002. These are cited as [1], [2], [3] respectively in the bibliography, and have been included as appendices. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: Date: i Abstract The teleparallel equivalent of general relativity is an intriguing alternative formula- tion of general relativity. In this thesis, we examine theories of teleparallel gravity in detail, and explore their relation to a whole spectrum of alternative gravitational models, discussing their position within the hierarchy of Metric Affine Gravity mod- els. Consideration of alternative gravity models is motivated by a discussion of some of the problems of modern day cosmology, with a particular focus on the dark en- ergy problem.
    [Show full text]
  • The Cosmological Constant and Its Problems: a Review of Gravitational Aether
    The Cosmological Constant and Its Problems: A Review of Gravitational Aether Michael Florian Wondraka;b;∗ a Frankfurt Institute for Advanced Studies (FIAS) Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany b Institut f¨urTheoretische Physik, Johann Wolfgang Goethe-Universit¨atFrankfurt Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany Abstract In this essay we offer a comprehensible overview of the gravitational aether scenario. This is a possible extension of Einstein's theory of relativity to the quantum regime via an effective approach. Quantization of gravity usually faces several issues including an unexpected high vacuum energy density caused by quantum fluctuations. The model presented in this paper offers a solution to the so-called cosmological constant problems. As its name suggests, the gravitational aether introduces preferred reference frames, while it remains compatible with the general theory of relativity. As a rare feature among quantum gravity inspired theories, it can predict measurable astronomical and cosmolog- ical effects. Observational data disfavor the gravitational aether scenario at 2:6{5 σ. This experimental feedback gives rise to possible refinements of the theory. 1 Introduction Probably everyone of us has experienced the benefits of satellite-based navigation systems, e.g. in route guidance systems for cars. The incredible accuracy to determine one's position is only enabled by consideration of the effects of general relativity. In everyday life this is an omnipresent evidence for the performance of Einstein's theory. Nevertheless, this theory is classical and could not yet be merged with quantum theory. This is important since quantum fluctuations may determine the expansion behavior of the universe.
    [Show full text]
  • Gravity in Reverse: the Tale of Albert Einstein's 'Greatest Blunder '
    Science Exemplary Text Student Handout Sung to the tune of “The Times They Are A-Changin’”: Come gather ‘round, math phobes, Wherever you roam And admit that the cosmos Around you has grown And accept it that soon You won’t know what’s worth knowin’ Until Einstein to you Becomes clearer. So you’d better start listenin’ Or you’ll drift cold and lone For the cosmos is weird, gettin’ weirder. —The Editors (with apologies to Bob Dylan) Cosmology has always been weird. Worlds resting on the backs of turtles, matter and energy coming into existence out of much less than thin air. And now, just when you’d gotten familiar, if not really comfortable, with the idea of a big bang, along comes something new to worry about. A mysterious and universal pressure pervades all of space and acts against the cosmic gravity that has tried to drag the universe back together ever since the big bang. On top of that, “negative gravity” has forced the expansion of the universe to accelerate exponentially, and cosmic gravity is losing the tug-of-war. For these and similarly mind-warping ideas in twentieth-century physics, just blame Albert Einstein. Einstein hardly ever set foot in the laboratory; he didn’t test phenomena or use elaborate equipment. He was a theorist who perfected the “thought experiment,” in which you engage nature through your imagination, inventing a situation or a model and then working out the consequences of some physical principle. If—as was the case for Einstein—a physicist’s model is intended to represent the entire universe, then manipulating the model should be tantamount to manipulating the universe itself.
    [Show full text]
  • Astrophysics in a Nutshell, Second Edition
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 10 Tests and Probes of Big Bang Cosmology In this final chapter, we review three experimental predictions of the cosmological model that we developed in chapter 9, and their observational verification. The tests are cosmo- logical redshift (in the context of distances to type-Ia supernovae, and baryon acoustic oscillations), the cosmic microwave background, and nucleosynthesis of the light ele- ments. Each of these tests also provides information on the particular parameters that describe our Universe. We conclude with a brief discussion on the use of quasars and other distant objects as cosmological probes. 10.1 Cosmological Redshift and Hubble's Law Consider light from a galaxy at a comoving radial coordinate re. Two wavefronts, emitted at times te and te + te, arrive at Earth at times t0 and t0 + t0, respectively. As already noted in chapter 4.5 in the context of black holes, the metric of spacetime dictates the trajectories of particles and radiation. Light, in particular, follows a null geodesic with ds = 0. Thus, for a photon propagating in the FLRW metric (see also chapter 9, Problems 1–3), we can write dr2 0 = c2dt2 − R(t)2 . (10.1) 1 − kr2 The first wavefront therefore obeys t0 dt 1 re dr = √ , (10.2) − 2 te R(t) c 0 1 kr and the second wavefront + t0 t0 dt 1 re dr = √ . (10.3) − 2 te+ te R(t) c 0 1 kr For general queries, contact [email protected] © Copyright, Princeton University Press.
    [Show full text]
  • Dark Energy: Is Itjust'einstein's Cosmological Constant Lambda?
    Dark Energy: is it `just' Einstein's Cosmological Constant Λ? Ofer Lahava a Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK ARTICLE HISTORY Compiled September 23, 2020 ABSTRACT The Cosmological Constant Λ, a concept introduced by Einstein in 1917, has been with us ever since in different variants and incarnations, including the broader con- cept of `Dark Energy'. Current observations are consistent with a value of Λ corre- sponding to about present-epoch 70% of the critical density of the Universe. This is causing the speeding up (acceleration) of the expansion of the Universe over the past 6 billion years, a discovery recognised by the 2011 Nobel Prize in Physics. Coupled with the flatness of the Universe and the amount of 30% matter (5% baryonic and 25% `Cold Dark Matter'), this forms the so-called ‘ΛCDM standard model', which has survived many observational tests over about 30 years. However, there are cur- rently indications of inconsistencies (`tensions' ) within ΛCDM on different values of the Hubble Constant and the clumpiness factor. Also, time variation of Dark Energy and slight deviations from General Relativity are not ruled out yet. Several grand projects are underway to test ΛCDM further and to estimate the cosmological parameters to sub-percent level. If ΛCDM will remain the standard model, then the ball is back in the theoreticians' court, to explain the physical meaning of Λ. Is Λ an alteration to the geometry of the Universe, or the energy of the vacuum? Or maybe it is something different, that manifests a yet unknown higher-level theory? KEYWORDS Cosmology, Dark Matter, Cosmological Constant, Dark Energy, galaxy surveys 1.
    [Show full text]
  • Topics in Cosmology: Island Universes, Cosmological Perturbations and Dark Energy
    TOPICS IN COSMOLOGY: ISLAND UNIVERSES, COSMOLOGICAL PERTURBATIONS AND DARK ENERGY by SOURISH DUTTA Submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy Department of Physics CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. To the people who have believed in me. Contents Dedication iv List of Tables viii List of Figures ix Abstract xiv 1 The Standard Cosmology 1 1.1 Observational Motivations for the Hot Big Bang Model . 1 1.1.1 Homogeneity and Isotropy . 1 1.1.2 Cosmic Expansion . 2 1.1.3 Cosmic Microwave Background . 3 1.2 The Robertson-Walker Metric and Comoving Co-ordinates . 6 1.3 Distance Measures in an FRW Universe . 11 1.3.1 Proper Distance . 12 1.3.2 Luminosity Distance . 14 1.3.3 Angular Diameter Distance . 16 1.4 The Friedmann Equation . 18 1.5 Model Universes . 21 1.5.1 An Empty Universe . 22 1.5.2 Generalized Flat One-Component Models . 22 1.5.3 A Cosmological Constant Dominated Universe . 24 1.5.4 de Sitter space . 26 1.5.5 Flat Matter Dominated Universe . 27 1.5.6 Curved Matter Dominated Universe . 28 1.5.7 Flat Radiation Dominated Universe . 30 1.5.8 Matter Radiation Equality . 32 1.6 Gravitational Lensing . 34 1.7 The Composition of the Universe .
    [Show full text]
  • A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework?,?? J
    A&A 620, A92 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832898 & c ESO 2018 Astrophysics A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework?,?? J. S. Farnes1,2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford OX1 3QG, UK e-mail: [email protected] 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands Received 22 February 2018 / Accepted 20 October 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy.
    [Show full text]