DEHUMIDIFIER with BUILT-IN PUMP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Air Quality Products Offering Healthy Home Solutions
Indoor Air Quality Products Offering Healthy Home Solutions Carrier clears the air for enhanced indoor comfort What You Can Expect From Carrier Innovation, efficiency, quality: Our Carrier® Healthy Home Solutions offers superior control over the quality of your indoor air and as a result, improved comfort. From air purification and filtration to humidity control, ventilation and more, these products represent the Carrier quality, environmental stewardship and lasting durability that have endured for more than a century. In 1902, that’s the year a humble but determined engineer solved one of mankind’s most elusive challenges – controlling indoor comfort. A leading engineer of his day, Dr. Willis Carrier would file more than 80 patents over the course of his career. His genius would enable incredible advancements in health care, manufacturing processes, food preservations, art and historical conservation, indoor comfort and much more. Carrier’s foresight changed the world forever and paved the way for over a century of once-impossible innovations. Designed with Your Comfort in Mind Carrier® Healthy Home Solutions represents years of design, development and testing with one goal in mind – maximizing your family’s comfort. Along the way, we have taken the lead with new technologies that deliver the superior performance you demand while staying ahead of industry trends and global initiatives. With innovations like Captures & Kills™ technology and superior humidity and airflow control, whatever your need, Carrier has a solution that’s perfectly tailored for you. 2 Ready to Clear the Air? The EPA has found that indoor levels of many air pollutants are often higher than outdoor levels. -
Model 1830, 1850 & 1850W Dehumidifier Owner's Manual
Model 1830, 1850 & 1850W Dehumidifier Owner’s Manual PLEASE LEAVE THIS MANUAL WITH THE HOMEOWNER Installed by: _________________________________ Installer Phone: _______________________ Date Installed: _______________ ON/OFF button Up/Down Dehumidifer Control Outlet used to turn buttons used to dehumidifier on change humidity and off setting MODE button used for optional ventilation feature Inlet Filter Access Drain Power Door Switch 90-1874 WHOLE HOME Dehumidification The Aprilaire® Dehumidifier controls the humidity level in your entire home. A powerful blower inside the dehumidifier draws air into the cabinet, filters the air and removes moisture, then discharges the dry air into the HVAC system or dedicated area of the home. Inside the cabinet, a sealed refrigeration system removes moisture by moving the air through a series of tubes and fins that are kept colder than the dew point of the incoming air. The dew point is the temperature at which moisture in the air will condense, much like what occurs on the outside of a cold glass on a hot summer day. The condensed moisture drips into the dehumidifier drain pan to a drain tube routed to the nearest floor drain or condensate pump. After the moisture is removed, the air moves through a second coil where it is reheated before being sent back into the home. The air leaving the dehumidifier will be warmer and drier than the air entering the dehumidifier. SETTING THE DESIRED HUMIDITY LEVEL The dehumidifier on-board control will display the humidity setting when not running, and ENERGY SavinGS TIPS displays the measured humidity when running. Energy Savings Tip #1: Adjust the humidity setting to be as high as is comfortable to reduce dehumidifier run time. -
Dehumidifiers' Common Phenomenon and Troubleshooting Manual
Dehumidifiers’ Common Phenomenon and Troubleshooting Manual AlorAir Solutions,Inc Web: www.alorair.com E-mail: [email protected] Restoration&Moisture&Ventilation Dehumidifiers’ Common Phenomenon and Troubleshooting Manual Welcome to Alorair company. Alorair focuses mainly on Dehumidifier’s Common Phenomenon and Troubleshooting.. inner air quality solutions with quite professional dehumidifiers’ LGR ............................................................... .. PAGE 01-03 technology, SLGR technology, super efficient air mover and air scrubber. As the staff train file and customers after-sale instruction, Dehumidifiers’ Common Phenomenon and Troubleshooting manual aims to bring a serial of expertise suggestions in facing with confused Error codes............................................................................ dehumidifier operation errors. ................................................................ PAGE 03-06 This manual contains three parts: 1).Dehumidifiers’ Common Phenomenon and Troubleshooting FAQ........................................................................................ 2). Error codes .................................................................. PAGE 06 3). FAQ Please refer to according contents for your reference needs. Humidity sensor failure Replace the humidity sensor Dehumidifiers’ Common Phenomenon Frequent starting of The humidity sensor is influenced by the moisture Adjust the position of the sensor to the right unit from evaporator position to avoid interference and Troubleshooting Humidity -
(HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad
water Article Humidification–Dehumidification (HDH) Desalination System with Air-Cooling Condenser and Cellulose Evaporative Pad Li Xu * , Yan-Ping Chen, Po-Hsien Wu and Bin-Juine Huang Mechanical Engineering Department, National Taiwan University, 708 Engineering Building, No.1 Section 4 Roosevelt Rd., Taipei 106, Taiwan; [email protected] (Y.-P.C.); [email protected] (P.-H.W.); [email protected] (B.-J.H.) * Correspondence: [email protected] Received: 27 October 2019; Accepted: 30 December 2019; Published: 2 January 2020 Abstract: This paper presents a humidification–dehumidification (HDH) desalination system with an air-cooling condenser. Seawater in copper tubes is usually used in a condenser, but it has shown the drawbacks of pipe erosion, high cost of the copper material, etc. If air could be used as the cooling medium, it could not only avoid the above drawbacks but also allow much more flexible structure design of condensers, although the challenge is whether the air-cooing condenser can provide as much cooling capability as water cooling condensers. There is no previous work that uses air as cooling medium in a condenser of a HDH desalination system to the best of our knowledge. In this paper we designed a unique air-cooling condenser that was composed of closely packed hollow polycarbonate (PC) boards. The structure was designed to create large surface area of 13.5 m2 with the volume of only 0.1 m3. The 0.2 mm thin thickness of the material helped to reduce the thermal resistance between the warm humid air and cooling air. A fan was used to suck the ambient air in and out of the condenser as an open system to the environment. -
Residential Facilities - Dehumidifier Guide
Residential Facilities - Dehumidifier Guide We have installed a small dehumidifier in your room to help combat higher relative humidity levels which naturally occur when the weather warms up outside. It is important that you use this dehumidifier during air-conditioning season in order to help maintain a comfortable humidity level in your room. The unit is designed to run continuously until the set relative humidity (RH%) is reached in the room. This dehumidifier features a built-in pump which will pump water out through the drain tube from the back – you do not need to touch or empty the water bucket. In order to ensure proper and continuous drainage, the dehumidifier has been tethered to the fan coil unit. Please do not attempt to move the dehumidifier away from the fan coil unit or to disconnect it. Some quick tips on how to get the most out of your in-room dehumidifier: 1. Turn it ON and set RH to 45% when the a/c is on in your room. 2. If you turn if off at night, turn it back on before leaving in the morning. 3. Keep the front, sides, and top clear of any furniture or bedding. Keep the unit upright 4. Report any issues with the unit such as a red light on the display or water appearing on the floor around the unit to our 24-Hour Service Center by calling 301-314-WORK (9675). Below is an explanation of the controls on the front of the dehumidifier: BUCKET FULL LAMP DEFROST LAMP CURRENT TEMPERATURE/HUMIDITY DISPLAY When the dehumidifier is operating, it displays the current If this red light comes on, A yellow light turns on when temperature on the left side and actual humidity on the right side. -
Smart Dehumidifier User Manual
Smart Dehumidifier User Manual Read and save these instructions before use Model: TP30AWKN/ TP50AWKN/ TP70AWKN www.jmatek.com Email: [email protected] THANK YOU Thank you for purchasing a Honeywell Dehumidifier. This User Manual is intended to provide you with important information needed to set up, operate, maintain and troubleshoot this product. SAFETY RULES WARNING -- READ AND SAVE THESE INSTRUCTIONS BEFORE USING THIS PRODUCT. The use of electrical products may create hazards that include, but are not limited to injury, fire, electrical shock. Failure to follow these instructions may damage and/ or impair its operation and void the warranty. In case there is any inconsistency or conflict between the English version and any other language version of the content of this material, the English version shall prevail. When using electrical appliances, basic safety precautions should always be followed: • DO NOT touch the dehumidifier or the electrical plug with wet hands. • Check the household voltage to ensure it matches the appliance's specification. • Before operating, remove all packaging material and check for any damage that may have occurred during shipping. • DO NOT operate any product with a damaged cord or plug. • DO NOT use an extension cord with this appliance. • DO NOT run power cord under carpeting, or cover it with rugs or runners. Keep the cord away from areas where it may be tripped over. • Always unplug the dehumidifier before emptying the water tank. • The water collected in the tank must be discarded. The water should never be used for drinking. • Always unplug the dehumidifier and remove the water from the water tank before cleaning, servicing or relocating the unit. -
Table of Contents
Table of Contents 1.0 Introduction ........................................................................................................................ 3 2.0 Key Terms .......................................................................................................................... 4 3.0 Key Equations .................................................................................................................... 6 4.0 Psychrometric Chart ........................................................................................................... 8 4.1 Properties of Moist Air .................................................................................................... 9 4.1.1 Dry Bulb Temperature ........................................................................................... 10 4.1.2 Wet Bulb Temperature .......................................................................................... 11 4.1.3 Relative Humidity .................................................................................................. 12 4.1.4 Humidity Ratio ....................................................................................................... 13 4.1.5 Enthalpy ................................................................................................................ 14 4.1.6 Specific Volume ..................................................................................................... 15 4.1.7 Dew Point ............................................................................................................. -
Indoor Air Quality
Indoor Air Quality FILL YOUR HOME WITH AIR THAT IS AS CLEAN AS IT IS COMFORTABLE. FRESHER AIR. A VALUE VENTILATION OPTION WITH INTELLIGENT LOGIC The Envirowise™ Energy Recovery Ventilator (ERV) exchanges stale, indoor air and provides heated and humidified fresh air in a more efficient and The EnviroWise™ QF130V in-line ventilator offers a cost effective mechanical fresh consistent manner than opening a window. In the winter, heat and moisture air solution that controls humidity and temperature. The QF130V has a full ECM are transferred from the exhaust air back into the incoming fresh air. In the motor that makes installation fast and easy, with no balancing dampers required. summer, Envirowise ERV removes heat and moisture from outdoor air to The ECM motor allows for adjustable airflow to meet the ventilation requirements for provide fresh, cooled, dehumidified air to your home. homes up to 3500 sq. ft. The installer dials in the quantity (CFM) of fresh air needed and sets the desired limits for outside humidity and temperature, and the QF130V is ready. A 24V relay is included with the unit and allows the flexibility of controlling 5 the QF130V from a wall mounted thermostat. 4 Outdoor Air Stale Air Sent Outdoors 1 Heat and Stale Indoor Air 2 Fresh Air Moisture Transfer Sent Indoors 1 62.2 Compliant Ventilation With adjustable airflow from 30 to 3 1 130 cfm to meet ventilation codes for all size homes. 2 MERV 8 filter 6 Included for improved indoor air quality. Optional heater available for extreme cold climates 3 On-board LCD “logic” controller Why is the Envirowise ERV good for your 1 High efficiency crossflow energy transfer core Allows for customized set-up home and your family? High-performance core recovers heat and moisture from depending on climate conditions. -
Research on a Dehumidifier of Liquid Desiccant Type Solar Air- Conditioning System for Full Year-Round Use
2011 International Conference on Chemistry and Chemical Process IPCBEE vol.10 (2011) © (2011) IACSIT Press, Singapore Research on a Dehumidifier of Liquid Desiccant Type Solar Air- Conditioning System for Full Year-round Use Agung Bakhtiar1, Fatkhur Rokhman2 and Choi Kwang Hwan3 1,2 Graduate School of Dept. of Regeneration and Air Conditioning Engineering, Pukyong National University, South Korea 3 Dept. of Regeneration and Air Conditioning Engineering, Pukyong National University, South Korea Abstract. In full year round term, the air conditioning system should be available to use for winter and summer season. The solar desiccant system is a type of air conditioner that uses solar energy in operation, hence this type have been developed. A dehumidifier is one of the essential components in liquid desiccant air-conditioning system. This paper is an experimental study on a structured packed tower of liquid lithium chloride dehumidifier system with different air velocity and flow rate of liquid desiccant. Experimental apparatus in this experiment is divided into three components; those are load chamber, packed tower and chiller. Load chamber’s volume is 40m3, and packed tower dimension is cubic with length 0.4m occupied with packed column. Desiccant temperature set into 10oC and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced both by the air velocity and desiccant flow rate. The result shows that high air velocity will obtain the fast air dehumidification but has low effectiveness and high liquid desiccant will obtain high. Keywords: Dehumidifier, Effectiveness, Lithium chloride, Flow rate, Packing tower Nomenclature ω : humidity ratio (kg'/kg air) : mass flow rate (kg/s) p : saturation pressure, Pa T : absolute temperature, K ε : dehumidifier effectiveness Subscript in : inlet out : outlet des : desiccant w : water vapour ws : water saturated 200 1. -
Johnson Controls Unitary Products Central Dehumidifier Owner's Manual
Johnson Controls S1-CVD070T01A / S1-CVD095T01A / S1-CVD130T01A Unitary Products Central Dehumidifier Owner’s Manual PLEASE LEAVE THIS MANUAL WITH THE HOMEOWNER Installed by: _________________________________ Installer Phone: _______________________ Date Installed: _______________ ON/OFF button Up/Down Dehumidifer Control Outlet used to turn buttons used to dehumidifier on change humidity and off setting MODE button used for optional ventilation feature Inlet Filter Access Drain Power Door Switch 90-1874 WHOLE HOME DEHUMIDIFICATION The Central Dehumidifier controls the humidity level in your entire home. A powerful blower inside the dehumidifier draws air into the cabinet, filters the air and removes moisture, then discharges the dry air into the HVAC system or dedicated area of the home. Inside the cabinet, a sealed refrigeration system removes moisture by moving the air through a series of tubes and fins that are kept colder than the dew point of the incoming air. The dew point is the temperature at which moisture in the air will condense, much like what occurs on the outside of a cold glass on a hot summer day. The condensed moisture drips into the dehumidifier drain pan to a drain tube routed to the nearest floor drain or condensate pump. After the moisture is removed, the air moves through a second coil where it is reheated before being sent back into the home. The air leaving the dehumidifier will be warmer and drier than the air entering the dehumidifier. SETTING THE DESIRED HUMIDITY LEVEL The dehumidifier on-board control will display the humidity setting when not running, and ENERGY SAVINGS TIPS displays the measured humidity when running. -
Solar Air-Conditioning Using Desiccants
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 06 | June 2019 www.irjet.net p-ISSN: 2395-0072 Solar Air-Conditioning using Desiccants Ar. Sakshi Agarwal1, Ar. Aashna Arora2 1,2Facultyof Architecture and Ekistics, Jamia Millia Islamia, New Delhi. ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract –India receives adequate solar radiation for 300 days, making it to 3,000 hours of sunshine equivalent to over 5,000 trillion kwh. The National Institute of Solar Energy in India determined the country’s solar power potential at about 750 GW, but less than 0.5% has been used till date. Air- conditioning is one of the major consumers of electrical energy. The demand can be expected to increase because of changing working times, increased comfort expectations and global warming. Solar cooling/refrigeration is therefore, the most relevant application for our country, especially in view of the rapidly increasing demand for energy. Fig -2: Conventional Air-Conditioning system Key Words: Air-Conditioning, Desiccant, Adsorption, On other hand, Solar air-conditioning uses the sun energy as Absorption, Compression, Dehumidification the heat source to produce the energy to run the cooling process. Gas gets compressed when heated. After 1. INTRODUCTION compression, gaseous refrigerant is heated up in the solar panel up to 90°C. The solar heat from the sun is used to Solar air-conditioning is basically process of converting solar superheat the refrigerant for it to begin changing the state. It thermal energy(heat) into conditioned air. It can be operated allows more of the refrigerant to change its state back to with green resources of heat as backup resources when solar liquid faster and at the same allows the transformation of radiation is unavailable. -
Adaption of an Evaporative Desert Cooler Into a Liquid Desiccant Air Conditioner: Experimental and Numerical Analysis
atmosphere Article Adaption of an Evaporative Desert Cooler into a Liquid Desiccant Air Conditioner: Experimental and Numerical Analysis Mustafa Jaradat *, Mohammad Al-Addous and Aiman Albatayneh Department of Energy Engineering; German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; [email protected] (M.A.-A.); [email protected] (A.A.) * Correspondence: [email protected] Received: 25 November 2019; Accepted: 25 December 2019; Published: 28 December 2019 Abstract: Desert coolers have attracted much attention as an alternative to mechanical air conditioning systems, as they are proving to be of lower initial cost and significantly lower operating cost. However, the uncontrolled increase in the moisture content of the supply air is still a great issue for indoor air quality and human thermal comfort concerns. This paper represents an experimental and numerical investigation of a modified desert air cooler into a liquid desiccant air conditioner (LDAC). An experimental setup was established to explore the supply air properties for an adapted commercial desert cooler. Several experiments were performed for air–water and air–desiccant as flow media, at several solutions to air mass ratios. Furthermore, the experimental results were compared with the result of a numerical simplified effectiveness model. The outcomes indicate a sharp reduction in the air humidity ratio by applying the desiccant solutions up to 5.57 g/kg and up to 4.15 g/kg, corresponding to dew point temperatures of 9.5 ◦C and 12.4 ◦C for LiCl and CaCl2, respectively. Additionally, the experimental and the numerical results concurred having shown the same pattern, with a maximal deviation of about 18% within the experimental uncertainties.