The Liquid Helium Cryogenic System for the Superconducting Cavity in Srrc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Liquid Helium Variable Temperature Research Dewars
CRYO Variable Temperature Liquid Helium Research Dewars CRYO Variable Temperature Liquid Helium Research Dewars Cryo Industries Variable Temperature Liquid Helium Research Dewars (CN Series) provide soluitions for an extensive variety of low temperature optical and non-optical requirements. There are numerous designs available, including Sample in Flowing Vapor, Sample in Vacuum and Sample in Exchange Gas. Our most popular models features Sample in Flowing Vapor (dynamic exchange gas), where the sample is cooled by insertion into flowing helium gas exiting from the vaporizer (also known as the diffuser or heat exchanger). The samples are top loading and can be quickly changed while operating. The temperature of the sample can be varied from typically less than 1.4 K to room temperature. Liquid helium flows from the reservoir through the adjustable flow valve down to the vaporizer located at the bottom of the sample tube. Applying heat, vaporizes the liquid and raises the gas temperature. This gas enters the sample zone to cool the sample to your selected temperature. Pumping on the sample zone will provide temperatures below 2 K with either sample in vapor or immersed in liquid. No inefficient liquid helium reservoir pumping is required. The system uses enthalpy (heat capacity) of the helium vapor which results in very high power handling, fast temperature change, ultra stable temperatures, ease of use an much more - Super Variable Temperature. Optical ‘cold’ windows are normally epoxy sealed, strain relief mounted into indium sealed mounts or direct indium mounted. Window seals are reliable and fully guaranteed. For experiments where flowing vapor may be undesirable (such as mossbauer or infrared detectors), static exchange gas cooling and sample in vacuum inserts are available. -
Introduction to Cryostat Design
Introduction to Cryostat Design J. G. Weisend II July 2014 Course Goals Provide an introduction to cryostat design Examine cryostats as integrated systems rather then a group of subsystems Provide background information and useful data Provide pointers to resources for more detail Show examples Introduction to Cryostat Design 7/7/14 2 J. G. Weisend II ICEC 2014 Syllabus Introduction Cryostat Requirements Materials Selection Thermal Isolation and Heat Leak Structures Safety Instrumentation Seals, Feed throughs and Bayonets Transfer Lines Examples References and Resources Introduction to Cryostat Design 7/7/14 3 J. G. Weisend II ICEC 2014 Introduction What is a cryostat? A device or system for maintaining objects at cryogenic temperatures. Cryostats whose principal function is to store cryogenic fluids are frequently called Dewars. Named after the inventor of the vacuum flask and the first person to liquefy hydrogen Introduction to Cryostat Design 7/7/14 4 J. G. Weisend II ICEC 2014 Introduction Cryostats are one of the technical building blocks of cryogenics There are many different types of cryostats with differing requirements The basic principles of cryostat design remain the same Before we can do anything else we have to define our requirements Introduction to Cryostat Design 7/7/14 5 J. G. Weisend II ICEC 2014 E158 LH2 Target Cryostat Introduction to Cryostat Design 7/7/14 6 J. G. Weisend II ICEC 2014 Cryostat Requirements Maximum allowable heat leak at various temperature levels This may be driven by the number of cryostats to be built as well as by the impact of large dynamic heat loads (SCRF or target cryostats) Alignment and vibration requirements Impact of thermal cycles Need to adjust alignment when cold or under vacuum? Alignment tolerances can be quite tight (TESLA : +/‐ 0.5 mm for cavities and +/‐ 0.3 mm for SC magnets) Introduction to Cryostat Design 7/7/14 7 J. -
Versatile Cryogen-Free Cryostat for the Electromagnetic Characterization Of
Saniour et al. EPJ Techniques and Instrumentation (2020) 7:3 EPJ Techniques and https://doi.org/10.1140/epjti/s40485-020-00055-2 Instrumentation RESEARCH ARTICLE Open Access Versatile cryogen-free cryostat for the electromagnetic characterization of superconducting radiofrequency coils Isabelle Saniour1*† , Michel Geahel1,2,3†, Javier Briatico2, Cornelis J. van der Beek3,4, Georges Willoquet1, Laurène Jourdain1, Bertrand Baudouy5, Gilles Authelet5, Jean-Christophe Ginefri1, Luc Darrasse1 and Marie Poirier-Quinot1 * Correspondence: isabelle.saniour@ universite-paris-saclay.fr Abstract Isabelle Saniour and Michel Geahel are Co-first authors. The use of high temperature superconducting (HTS) radio frequency (RF) coils in †Isabelle Saniour and Michel Geahel Magnetic Resonance Imaging (MRI) greatly improves the signal-to-noise ratio (SNR) contributed equally to this work. in many biomedical applications and particularly in micro-MRI. However, a detailed 1Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France understanding of the electrical behavior of HTS coils is important in order to Full list of author information is optimize their performance through MR experiments. This paper presents a simple available at the end of the article and versatile cryogen-free cryostat designed to characterize the RF properties of HTS coils prior to their use in MRI. The cryostat can be used at temperatures from 50 K to 300 K, with a control precision of approximately 3 mK at 70 K, and can measure the RF electrical power transmitted to an HTS coil over a range from 1 μW to 10 W. The quality factor and resonance frequency of the tested HTS coil are determined as a function of the temperature and the power it dissipates. -
9 Xenon Handling and Cryogenics
9 Xenon Handling and Cryogenics 9.1 Overview The Xe handling and cryogenics strategy of LZ derives strongly from the successful LUX program and takes maximum advantage of key technologies demonstrated there: chromatographic krypton removal, high-flow online purification, high-efficiency two-phase heat exchange, sensitive in situ monitoring of Xe purity, and thermosyphon cryogenics. In many cases, the primary technical challenge of the LZ implementation is how to best scale up from LUX. Two classes of impurities are of concern: electronegatives such as O2 and H2O that suppress charge and light transport in the TPC, and radioactive noble gases such as 85Kr, 39Ar, and 222Rn that create backgrounds that are not amenable to self-shielding. Both types of impurities may be found in the vendor- supplied Xe, and both may also be introduced into the detector during operations via outgassing and emanation. The purity goals are summarized in Table 9.1.1. We have three mitigation techniques to control these impurities. First, electronegatives are suppressed during operations by continuous circulation of the Xe in gaseous form through a hot (450 oC) zirconium getter. Gettering in the gas phase is made practical by a two-phase heat exchanger. A metal-diaphragm gas pump drives the circulation and the system is capable of purifying the entire Xe stockpile in 2.3 days. Second, the problematic radioactive species, 85Kr and 39Ar, which have relatively long half-lives (10.8 years and 269 years, respectively) and no supporting parents, can be removed from the vendor-supplied Xe prior to the start of operations. -
Cryogenics in Space
— 37 — Cryogenics in space Nicola RandoI Abstract Cryogenics plays a key role on board space-science missions, with a range of applications, mainly in the domain of astrophysics. Indeed a tremendous progress has been achieved over the last 20 years in cryogenics, with enhanced reliability and simpler operations, thus matching the needs of advanced focal-plane detectors and complex science instrumentation. In this article we provide an overview of recent applications of cryogenics in space, with specific emphasis on science missions. The overview includes an analysis of the impact of cryogenics on the spacecraft system design and of the main technical solutions presently adopted. Critical technology developments and programmatic aspects are also addressed, including specific needs of future science missions and lessons learnt from recent programmes. Introduction H. Kamerlingh-Onnes liquefied 4He for the first time in 1908 and discovered superconductivity in 1911. About 100 years after such achievements (Pobell 1996), cryogenics plays a key role on board space-science missions, providing the environ- ment required to perform highly sensitive measurements by suppressing the thermal background radiation and allowing advantage to be taken of the performance of cryogenic detectors. In the last 20 years several spacecraft have been equipped with cryogenic in- strumentation. Among such missions we should mention IRAS (launched in 1983), ESA’s ISO (launched in 1995) (Kessler et al 1996) and, more recently, NASA’s Spitzer (formerly SIRTF, launched in 2006) (Werner 2005) and the Japanese mis- sion Akari (IR astronomy mission launched in 2006) (Shibai 2007). New missions involving cryogenics are the ESA missions Planck (dedicated to the mapping of the cosmic background radiation) and Herschel (far infrared and sub-millimetre observatory), carrying instruments operating at temperatures of 0.1 K and 0.3 K, respectively (Crone et al 2006). -
Compressed Liquid Gases (Cryogens) Laboratory Safe Work Practices
Compressed Liquid Gases (Cryogens) Laboratory Safe Work Practices Source: Section 3.9 of Guidelines for Safe Work Practices in Human and Animal Medical Diagnostic Laboratories: Recommendations of a CDC-convened, Biosafety Blue Ribbon Panel; excerpted by Vanderbilt OCRS, 10.2020. Compressed Liquid Gases (Cryogens) Cryogenic liquids are liquefied gases that have a normal boiling point below -238°F (-150°C). Liquid nitrogen is used in the microbiology laboratory to freeze and preserve cells and virus stocks. The electron microscopy laboratory, frozen section suites, and grossing stations for surgical pathology frequently use liquid nitrogen; some laboratories also use liquid helium. The principal hazards associated with handling cryogenic fluids include cold contact burns and freezing, asphyxiation, explosion and material embrittlement. Cold contact burns and freezing • Liquid nitrogen is dangerously cold (-320°F [-196°C]), and • Wear loose-fitting thermal gloves with elbow-length cuffs skin contact with either the liquid or gas phase can when filling dewars. Ensure that gloves are loose enough to immediately cause frostbite. At -450°F (-268°C), liquid be thrown off quickly if they contact the liquid. helium is dangerous and cold enough to solidify atmospheric • Never place gloved hands into liquid nitrogen or into the air. liquid nitrogen stream when filling dewars. Gloves are not • Always wear eye protection (face shield over safety goggles). rated for this type of exposure. Insulated gloves are The eyes are extremely sensitive to freezing, and liquid designed to provide short-term protection during handling of nitrogen or liquid nitrogen vapors can cause eye damage. hoses or dispensers and during incidental contact with the • Do not allow any unprotected skin to contact uninsulated liquid. -
Cryogenics – the Basics Or Pre-Basics Lesson 1 D
Cryogenics – The Basics or Pre-Basics Lesson 1 D. Kashy Version 3 Lesson 1 - Objectives • Look at common liquids and gases to get a feeling for their properties • Look at Nitrogen and Helium • Discuss Pressure and Temperature Scales • Learn more about different phases of these fluids • Become familiar with some cryogenic fluids properties Liquids – Water (a good reference) H2O density is 1 g/cc 10cm Total weight 1000g or 1kg (2.2lbs) Cube of water – volume 1000cc = 1 liter Liquids – Motor Oil 10cm 15W30 density is 0.9 g/cc Total weight 900g or 0.9 kg (2lbs) Cube of motor oil – volume 1000cc = 1 liter Density can and usually does change with temperature 15W30 Oil Properties Density Curve Density scale Viscosity scale Viscosity Curve Water density vs temperature What happens here? What happens here? Note: This plot is for SATURATED Water – Discussed soon Water and Ice Water Phase Diagram Temperature and Pressure scales • Fahrenheit: 32F water freezes 212 water boils (at atmospheric pressure) • Celsius: 0C water freezes and 100C water boils (again at atmospheric pressure) • Kelvin: 273.15 water freezes and 373.15 water boils (0K is absolute zero – All motion would stop even electrons around a nucleus) • psi (pounds per square in) one can reference absolute pressure or “gage” pressure (psia or psig) • 14.7psia is one Atmosphere • 0 Atmosphere is absolute vacuum, and 0psia and -14.7psig • Standard Temperature and Pressure (STP) is 20C (68F) and 1 atm Temperature Scales Gases– Air Air density is 1.2kg/m3 => NO Kidding! 100cm =1m Total weight -
Cryogenic Liquid Nitrogen Vehicles (ZEV's)
International Journal of Scientific and Research Publications, Volume 6, Issue 9, September 2016 562 ISSN 2250-3153 Cryogenic Liquid Nitrogen Vehicles (ZEV’S) K J Yogesh Department Of Mechanical Engineering, Jain Engineering College, Belagavi Abstract- As a result of widely increasing air pollution available zero emission vehicle (ZEV) meeting it's standards are throughout the world & vehicle emissions having a major the electrically recharged ones, however these vehicles are also contribution towards the same, it makes its very essential to not a great success in the society due to its own limitations like engineer or design an alternative to the present traditional initial cost, slow recharge, speeds etc. Lead acid & Ni-Cd gasoline vehicles. Liquid nitrogen fueled vehicles can act as an batteries are the past of major technologies in the electric excellent alternative for the same. Liquefied N2 at cryogenic vehicles. They exhibit specific energy in the range of 30-40 W- temperatures can replace conventional fuels in cryogenic heat hr/kg. Lead- acid batteries take hours to recharge & the major engines used as a propellant. The ambient temperature of the drawback of the batteries in all the cases is their replacement surrounding vaporizes the liquid form of N2 under pressure & periodically. This directly/indirectly increases the operating cost leads to the formation of compressed N2 gas. This gas actuates a when studied carefully & thereby not 100% acceptable. pneumatic motor. A combination of multiple reheat open Recent studies make it clear that the vehicles using liquid Rankine cycle & closed Brayton cycle are involved in the nitrogen as their means provide an excellent alternative before process to make use of liquid N2 as a non-polluting fuel. -
Cryogenicscryogenics Forfor Particleparticle Acceleratorsaccelerators Ph
CryogenicsCryogenics forfor particleparticle acceleratorsaccelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009 Contents • Low temperatures and liquefied gases • Cryogenics in accelerators • Properties of fluids • Heat transfer & thermal insulation • Cryogenic distribution & cooling schemes • Refrigeration & liquefaction Contents • Low temperatures and liquefied gases ••• CryogenicsCryogenicsCryogenics ininin acceleratorsacceleratorsaccelerators ••• PropertiesPropertiesProperties ofofof fluidsfluidsfluids ••• HeatHeatHeat transfertransfertransfer &&& thermalthermalthermal insulationinsulationinsulation ••• CryogenicCryogenicCryogenic distributiondistributiondistribution &&& coolingcoolingcooling schemesschemesschemes ••• RefrigerationRefrigerationRefrigeration &&& liquefactionliquefactionliquefaction • cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989) • cryogenics, the science and technology of temperatures below 120 K New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975) Characteristic temperatures of cryogens Triple point Normal boiling Critical Cryogen [K] point [K] point [K] Methane 90.7 111.6 190.5 Oxygen 54.4 90.2 154.6 Argon 83.8 87.3 150.9 Nitrogen 63.1 77.3 126.2 Neon 24.6 27.1 44.4 Hydrogen 13.8 20.4 33.2 Helium 2.2 (*) 4.2 5.2 (*): λ Point Densification, liquefaction & separation of gases LNG Rocket fuels LIN & LOX 130 000 m3 LNG carrier with double hull Ariane 5 25 t LHY, 130 t LOX Air separation by cryogenic distillation Up to 4500 t/day LOX What is a low temperature? • The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is S = kB ln W • Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T T = dQ/dS ⇒ high temperature: heating produces small entropy change ⇒ low temperature: heating produces large entropy change L. -
“Is Cryonics an Ethical Means of Life Extension?” Rebekah Cron University of Exeter 2014
1 “Is Cryonics an Ethical Means of Life Extension?” Rebekah Cron University of Exeter 2014 2 “We all know we must die. But that, say the immortalists, is no longer true… Science has progressed so far that we are morally bound to seek solutions, just as we would be morally bound to prevent a real tsunami if we knew how” - Bryan Appleyard 1 “The moral argument for cryonics is that it's wrong to discontinue care of an unconscious person when they can still be rescued. This is why people who fall unconscious are taken to hospital by ambulance, why they will be maintained for weeks in intensive care if necessary, and why they will still be cared for even if they don't fully awaken after that. It is a moral imperative to care for unconscious people as long as there remains reasonable hope for recovery.” - ALCOR 2 “How many cryonicists does it take to screw in a light bulb? …None – they just sit in the dark and wait for the technology to improve” 3 - Sterling Blake 1 Appleyard 2008. Page 22-23 2 Alcor.org: ‘Frequently Asked Questions’ 2014 3 Blake 1996. Page 72 3 Introduction Biologists have known for some time that certain organisms can survive for sustained time periods in what is essentially a death"like state. The North American Wood Frog, for example, shuts down its entire body system in winter; its heart stops beating and its whole body is frozen, until summer returns; at which point it thaws and ‘comes back to life’ 4. -
Cryogenic Transport Trailers
CRYOGENIC TRANSPORT TRAILERS Worthington Industries delivers end-to-end solutions for storing and transporting cryogenic liquids. Our high- quality custom trailers are manufactured at our production facility in Theodore, Alabama. Worthington's transport trailers are customized to meet your unique needs and designed to operate for years to come, which means dependable fleets with lower transportation, maintenance and refurbishment costs. We’re always seeking new ways to increase your productivity, performance and value. Our trailers feature lightweight aluminum or stainless steel liners for the safe transportation of the specialty liquefied gases such as: • Liquid Nitrogen (LIN) • Liquid Argon (LAR) • Liquid Oxygen (LOX) • Liquid Hydrogen (LH2) • Liquid Natural Gas (LNG) OUR ENGINEERS WILL WORK WITH YOU TO DETERMINE THE BEST CONFIGURATION FOR YOUR OPERATION. LIN LAR LOX LH2 LNG Spec ATL8400-33PE ATL5150-40PH 6000STL-40PE 17900STL-165P ATL12800-70P (Engine drive) (Hydraulic drive) (Engine drive) ATL8400-33PH (Engine drive 6000STL-40PH (Hydraulic drive) available) (Hydraulic drive) ATL8400-33PL (Electrical drive) Gross Capacity (gallons) 8,400 5,150 6,000 17,900 12,800 Pressure (PSI) 33 40 40 165 70 Inner Vessel Material Alum Alum SS SS Alum Outer Vessel Material Alum Alum C or C/SS C or C/SS C or C/SS *Alum = Aluminum, SS = Stainless Steel, C = Carbon Steel ASME CERTIFIED, ASME U STAMP, NATIONAL BOARD CERTIFIED, DOT-APPROVED (#CT-13707), REPAIR OR BUILD TO MC -331, MC-338 anD CGA-341 4075 HAMILTON ROAD THEODORE, ALABAMA 36582 P: 844.273.7517 [email protected] WORTHINGTONINDUSTRIES.COM/TRANSPORTTRAILERS © 2018, Worthington Industries Inc. 07/18 CRYOGENIC TRANSPORT TRAILER REPAIRS Worthington Industries offers full rehab as well as DOT inspection and certification of cryogenic trailers in our Theodore, Alabama facility. -
New Target Cryostat for Experiments with Negative Muons
! XJ9900001 OBbEflMHEHHbM MHCTMTYT flflEPHbIX MCCJlEflOBAHMM flyoHa D13-98-146 V.F.Boreiko, V.M.Bystritsky, V.I.Datskov, A.N.Fedorov, V.N.Pavlov, V.A.Stolupin, A.Del Rosso1, R.Jacot-Guillarmod1, F.Mulhauser1, L.A.Rivkis2 NEW TARGET CRYOSTAT FOR EXPERIMENTS WITH NEGATIVE MUONS Submitted to «Nuclear Instruments and Methods* 'institute of Physics, University of Fribourg, Switzerland 2A.A.Bochvar All-Russia Research Institute of Inorganic Materials, Moscow, Russia 30-07 1998 Introduction The study of processes yielding charge nonsymmetric muonic molecules like pxZ (z = p,d,t and Z = He, Li, Be) and nuclear fusion started about fifteen years ago. Theoretical and experimental interest have increased these past five years [1-13]. Due to some experimental difficulties, the muon catalyzed fusion (pCF ) is essentially measured in deuterium-helium mixtures. The nuclear fusion from the charge nonsymmetric molecule pd 3He may occur via two different channels, pd3He -4 a + p(14.7 MeV) + p (1) -4 psLi +7(16.4 MeV), (2) whereas the pd4He molecule fuses via a single channel pd*He -4 p6U + 7(1.48 MeV). (3) The proposed apparatus should be able to easily detect those fusion products. In addition, the 6.85 keV soft X rays resulting form the decay of the pd4He and pd3He molecules should be measured, as well as the muon decay electrons. The detection of so many different types of particles, with totally different paths in matter, is a non-trivial constraint in the design of the apparatus. The different processes which occur when a muon enters a deuterium-helium mix ture are strongly dependent on the mixture density.