Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic

Total Page:16

File Type:pdf, Size:1020Kb

Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic by Corey Mulvihill A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Philosophy Waterloo, Ontario, Canada, 2015 c Corey Mulvihill 2015 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Hilbert's choice operators τ and ", when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert's operators in relation to his evolving program in the foundations of mathematics and in relation to philosophical motivations leading to the development of intuitionistic logic. This sets the stage for a brief description of the relevant part of Dummett's program to recast debates in metaphysics, and in particular disputes about realism and anti-realism, as closely intertwined with issues in philosophical logic, with the acceptance of classical logic for a domain reflecting a commitment to realism for that domain. Then I review extant results about what is provable and what is not when one adds epsilon to intuitionistic logic, largely due to Bell and DeVidi, and I give several new proofs of intermediate logics from intuitionistic logic+" without identity. With all this in hand, I turn to a discussion of the philosophical significance of choice operators. Among the conclusions I defend are that these results provide a finer-grained basis for Dummett's contention that commitment to classically valid but intuitionistically invalid principles reflect metaphysical commitments by showing those principles to be derivable from certain existence assumptions; that Dummett's framework is improved by these results as they show that questions of realism and anti-realism are not an \all or nothing" matter, but that there are plausibly metaphysical stances between the poles of anti-realism (corresponding to acceptance just of intutionistic logic) and realism (corresponding to acceptance of classical logic), because different sorts of ontological assumptions yield intermediate rather than classical logic; and that these intermediate positions between classical and intuitionistic logic link up in interesting ways with our intuitions about issues of objectivity and reality, and do so usefully by linking to questions around intriguing everyday concepts such as \is smart," which I suggest involve a number of distinct dimensions which might themselves be objective, but because of their multivalent structure are themselves intermediate between being objective and not. Finally, I discuss the implications of these results for ongoing debates about the status of arbitrary and ideal objects in the foundations of logic, showing among other things that much of the discussion is flawed because it does not recognize the degree to which the claims being made depend on the presumption that one is working with a very strong (i.e., classical) logic. v Acknowledgements I would first like to thank my advisor David DeVidi, who both encouraged and, when necessary, restrained my efforts, and whose own work inspired so much of the subject matter of this thesis. I would also like to thank my committee, from the Waterloo philosophy department, Tim Kenyon, Doreen Frazer and especially Gerry Callaghan, who valiantly stepped in at the last minute; Steve Furino, from the Waterloo faculty of mathematics; and my external examiner Greg Lavers for his careful reading and helpful comments. In addition, I must thank all the Waterloo Philosophy Department Faculty and Staff. Especially Debbie Detrich who from my first arrival at UW has advised me, and helped me navigate the UW system, looking out for me as she does all the graduate students in the Philosophy Department, we are very lucky to have her. I should also thank my graduate colleagues at Waterloo, who created such a wonderful and welcoming environment. Especially my year's Ph.D. cohort: Mike McEwan and Eric Hochstein. They made living in Waterloo tolerable with their friendship, discussions in various uptown establishments, and the Saturday breakfasts that followed. In a similar vein I would be remiss if I did not thank the Univeristy of Western Ontario philosophers, and Ivey folk, who made living in London bearable. In addition to those mentioned above, I would also like to thank the people who I en- countered when I started my journey in philosophy, at the University of Ottawa|especially since I forgot to include an acknowledgement's section in my master's thesis. Thanks, first, to Mathieu Marion, my master's supervisor, who first introduced me to non-classical logics; and to Sophie Rietti and Patrice Philie, friends and now colleagues at Ottawa, for their friendship and insight. Thanks also are due to my former graduate student colleagues, in particular: Dan McArthur, who encouraged me to return to academia; Mark Young, whose friendship and loyalty can only be described as supererogatory; Shane Ralston, who I am proud to say made it through his Ph.D. at Ottawa without me getting him arrested once; and Dean Lauer whose wonderful companionship kept us out late so many nights, often until closing hours. Thanks to my wonderful gigantic family, both the Rowes and the Mulvihills, and now, since I made the best decision of my life and married my wonderful wife, the Mazutises and Trences. Please know that I am aware of how lucky I am to have so many wonderful and supportive people in my life. A special thank you is due to my amazing parents, Bob and Helen, who have supported me through the years, both morally and financially, and to my sister, Shauna Mulvihill, whom the fates have punished with me as a sibling. Finally, to my brilliant and beautiful wife Daina Mazutis and my daughter Emilija Mulvihill; I know I could not have finished this without you Daina. Thank you for your support and the most wonderful daughter in the world. Thank you all. vii Contents Introduction 1 1 Introduction 3 1.1 Logic and Metaphysics . .5 1.1.1 Problems with Dummett's views . .7 1.2 The Axiom of Choice and Hilbert's Programme . .7 1.3 Structure of Thesis . .9 I Historical Context 11 2 The Origins and Development of Hilbert's Programme 13 2.1 Introduction . 13 2.2 Early Constructivism . 17 2.3 The Road to Hilbert's Programme . 19 2.3.1 The Invariant Theory Papers . 20 2.3.2 From the Foundations of Geometry to the Foundations of Mathematics 22 2.3.3 Hilbert's Problems . 23 2.4 The Origin of the Ignorabimus ......................... 24 2.5 Axiomatizing Arithmetic . 27 2.5.1 Hilbert's \On the Concept of Number" . 28 2.5.2 Hilbert \On the Foundations of Logic and Arithmetic" . 30 2.5.3 Poincar´e'sResponse to Hilbert (1905) . 33 ix 2.5.4 Hilbert's 1905 Lecture Course `Logical Principles of Mathematical Thought' . 34 2.6 The Middle Period . 36 2.6.1 Hilbert and Logicism . 37 2.7 Hilbert's Programme . 41 2.7.1 Hilbert's \New Grounding of Mathematics" . 42 2.8 Choice Operators . 49 2.8.1 Hilbert and Bernay's Grundlagen der Arithmetik .......... 49 2.8.2 Russell's -Operator and Hilbert's "-Operator . 50 2.8.3 Hilbert's Epsilon Theorems . 55 3 Intuitionistism, Intuitionistic Logic and Anti-Realism 59 3.1 Introduction . 59 3.2 Defining Intuitionism . 63 3.2.1 Philosophical Intuitionism . 64 3.3 Brouwer's intuitionism . 65 3.3.1 Intuitionism and Formalism . 66 3.3.2 Hilbert and Brouwer . 68 3.4 Intuitionistic Logic . 69 3.4.1 Formalizations of intuitionistic logic . 70 3.4.2 Axiom Systems for Intuitionistic Logic . 71 3.4.3 Introduction and Elimination Rules . 72 3.4.4 Intermediate Logics . 74 3.5 Dummett and Intuitionistic Logic . 76 3.6 Dummett and Logical Laws . 80 3.6.1 Harmony and Introduction Rules . 81 3.6.2 Proof Theoretic Justification . 85 3.6.3 Canonical Proofs and Demonstrations . 92 3.7 The Introduction and Elimination Rules for Intuitionistic Logic +" .... 94 x II Formal Results 97 4 Deriving Logical Axioms from Choice Principles 99 4.1 Introduction: The Intuitionistic "-calculus . 99 4.2 Syntax . 101 4.2.1 Notational Conventions . 101 4.3 DeMorgan's Law and the Intuitionistic "-calculus . 103 4.3.1 Bell's Second Proof of DeMorgan's Laws from Epsilon . 104 4.4 Proof of DeMorgan's Laws in Intuitionisitic Logic + " without Identity . 106 4.5 Linearity Axiom and Intuitionistic Predicate Calculus + " ......... 109 4.5.1 Dummett's Scheme . 109 4.6 Extensional Epsilon and the Law of Excluded Middle . 111 4.6.1 The Proof of the Law of Excluded Middle from Intuitionisitic Logic+" and the Axiom of Epsilon Extensionality . 111 4.6.2 Proof of LEM from Intutionistic Logic+" and a Weakened Exten- sional Axiom . 113 5 Semantics for Intuitionistic Logic + " 115 5.1 Semantic Considerations . 115 5.2 Classical Semantics for " -Calculus . 117 5.3 Existing Semantics for Inutitionistic "-Calculus . 118 5.4 Bell's Semantics for Intuitionistic First Order Logic + " .................................... 119 5.5 Bell's Model and Completeness . 124 5.6 DeVidi Semantics for Intuitionistic "-Calculus . 125 5.7 Skeletons and Ground Terms . 126 5.7.1 Skeleton Terms . 127 5.7.2 The Alpha Axiom . 128 5.8 Identity .
Recommended publications
  • Mathematical Logic. Introduction. by Vilnis Detlovs And
    1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40
    [Show full text]
  • Epistemic Truth and Excluded Middle* Cesare Cozzo Abstract
    Penultimate draft of a paper published in in Theoria, a Swedish journal of philosophy, LXIV 2-3, Thales, Stockholm 1998, pp. 243-282. Epistemic truth and excluded middle* Cesare Cozzo Università di Roma ”La Sapienza” Dipartimento di studi filosofici ed epistemologici email: [email protected] Abstract: Can an epistemic conception of truth and an endorsement of the excluded middle (together with other principles of classical logic abandoned by the intuitionists) cohabit in a plausible philosophical view? In PART I I describe the general problem concerning the relation between the epistemic conception of truth and the principle of excluded middle. In PART II I give a historical overview of different attitudes regarding the problem. In PART III I sketch a possible holistic solution. Part I The Problem §1. The epistemic conception of truth. The epistemic conception of truth can be formulated in many ways. But the basic idea is that truth is explained in terms of epistemic notions, like experience, argument, proof, knowledge, etc. One way of formulating this idea is by saying that truth and knowability coincide, i.e. for every statement S i) it is true that S if, and only if, it is (in principle) possible to know that S. Knowledge that S can be equated with possession of a correct (or ideal) finite argument for S in an optimal (or ideal) epistemic situation. For example, mathematical knowledge can be equated with possession of a proof of a mathematical statement. But the notion of ideal argument should be wider than the notion of proof: for empirical statements like “strawberries contain sugar” an ideal argument should contain also some sensory evidence.
    [Show full text]
  • Heinrich Rommen, the Natural Law: a Study in Legal and Social History and Philosophy (1936)
    Rommen_0017 09/15/2005 09:46 AM THE ONLINE LIBRARY OF LIBERTY © Liberty Fund, Inc. 2005 http://oll.libertyfund.org/Home3/index.php HEINRICH ROMMEN, THE NATURAL LAW: A STUDY IN LEGAL AND SOCIAL HISTORY AND PHILOSOPHY (1936) URL of this E-Book: http://oll.libertyfund.org/EBooks/Rommen_0017.pdf URL of original HTML file: http://oll.libertyfund.org/Home3/HTML.php?recordID=0017 ABOUT THE AUTHOR Heinrich Rommen was a Catholic German lawyer who practised in Germany during the Weimar Republic before fleeing to the United States in 1938. He taught in Germany and England before concluding his distinguished scholarly career at Georgetown University. ABOUT THE BOOK Originally published in German in 1936, The Natural Law is the first work to clarify the differences between traditional natural law as represented in the writings of Cicero, Aquinas, and Hooker and the revolutionary doctrines of natural rights espoused by Hobbes, Locke, and Rousseau. Beginning with the legacies of Greek and Roman life and thought, Rommen traces the natural law tradition to its displacement by legal positivism and concludes with what the author calls "the reappearance" of natural law thought in more recent times. In seven chapters each Rommen explores "The History of the Idea of Natural Law" and "The Philosophy and Content of the Natural Law." In his introduction, Russell Hittinger places Rommen’s work in the context of contemporary debate on the relevance of natural law to philosophical inquiry and constitutional interpretation. THE EDITION USED The Natural Law: A Study in Legal and Social History and Philosophy, trans. Thomas R.
    [Show full text]
  • Mathematical Logic, an Introduction
    Mathematical Logic, an Introduction by Peter Koepke Bonn, Winter 2019/20 Wann sollte die Mathematik je zu einem Anfang gelangen, wenn sie warten wollte, bis die Philosophie über unsere Grundbegrie zur Klarheit und Einmüthigkeit gekommen ist? Unsere einzige Rettung ist der formalistische Standpunkt, undenirte Begrie (wie Zahl, Punkt, Ding, Menge) an die Spitze zu stellen, um deren actuelle oder psychologische oder anschauliche Bedeutung wir uns nicht kümmern, und ebenso unbewiesene Sätze (Axiome), deren actuelle Richtigkeit uns nichts angeht. Aus diesen primitiven Begrien und Urtheilen gewinnen wir durch Denition und Deduction andere, und nur diese Ableitung ist unser Werk und Ziel. (Felix Hausdor, 12. Januar 1918) Table of contents 1 Introduction . 4 I First-order Logic and the Gödel Completeness Theorem . 4 2 The Syntax of rst-order logic: Symbols, words, and formulas . 4 2.1 Motivation: a mathematical statement . 5 2.2 Symbols . 5 2.3 Words . 6 2.4 Terms . 7 2.5 Formulas . 8 3 Semantics . 9 4 The satisfaction relation . 11 5 Logical implication and propositional connectives . 14 6 Substitution and term rules . 15 7 A sequent calculus . 20 8 Derivable sequent rules . 22 8.1 Auxiliary derived rules . 22 8.2 Introduction and elimination of ; ; ::: . 23 8.3 Formal proofs about . ._. .^. 24 9 Consistency . 25 1 2 Section 10 Term models and Henkin sets . 27 11 Constructing Henkin sets . 30 12 The completeness theorem . 34 13 The compactness theorem . 35 II Herbrand's Theorem and Automatic Theorem Proving . 38 14 Normal forms . 38 14.1 Negation normal form . 39 14.2 Conjunctive and disjunctive normal form .
    [Show full text]
  • Notes on Set Theory, Part 2
    §11 Regular cardinals In what follows, κ , λ , µ , ν , ρ always denote cardinals. A cardinal κ is said to be regular if κ is infinite, and the union of fewer than κ sets, each of whose cardinality is less than κ , is of cardinality less than κ . In symbols: κ is regular if κ is infinite, and κ 〈 〉 ¡ κ for any set I with I ¡ < and any family Ai i∈I of sets such that Ai < ¤¦¥ £¢ κ for all i ∈ I , we have A ¡ < . i∈I i (Among finite cardinals, only 0 , 1 and 2 satisfy the displayed condition; it is not worth including these among the cardinals that we want to call "regular".) ℵ To see two examples, we know that 0 is regular: this is just to say that the union of finitely ℵ many finite sets is finite. We have also seen that 1 is regular: the meaning of this is that the union of countably many countable sets is countable. For future use, let us note the simple fact that the ordinal-least-upper-bound of any set of cardinals is a cardinal; for any set I , and cardinals λ for i∈I , lub λ is a cardinal. i i∈I i α Indeed, if α=lub λ , and β<α , then for some i∈I , β<λ . If we had β § , then by i∈I i i β λ ≤α β § λ λ < i , and Cantor-Bernstein, we would have i , contradicting the facts that i is β λ β α β ¨ α α a cardinal and < i .
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]
  • Abstract Consequence and Logics
    Abstract Consequence and Logics Essays in honor of Edelcio G. de Souza edited by Alexandre Costa-Leite Contents Introduction Alexandre Costa-Leite On Edelcio G. de Souza PART 1 Abstraction, unity and logic 3 Jean-Yves Beziau Logical structures from a model-theoretical viewpoint 17 Gerhard Schurz Universal translatability: optimality-based justification of (not necessarily) classical logic 37 Roderick Batchelor Abstract logic with vocables 67 Juliano Maranh~ao An abstract definition of normative system 79 Newton C. A. da Costa and Decio Krause Suppes predicate for classes of structures and the notion of transportability 99 Patr´ıciaDel Nero Velasco On a reconstruction of the valuation concept PART 2 Categories, logics and arithmetic 115 Vladimir L. Vasyukov Internal logic of the H − B topos 135 Marcelo E. Coniglio On categorial combination of logics 173 Walter Carnielli and David Fuenmayor Godel's¨ incompleteness theorems from a paraconsistent perspective 199 Edgar L. B. Almeida and Rodrigo A. Freire On existence in arithmetic PART 3 Non-classical inferences 221 Arnon Avron A note on semi-implication with negation 227 Diana Costa and Manuel A. Martins A roadmap of paraconsistent hybrid logics 243 H´erculesde Araujo Feitosa, Angela Pereira Rodrigues Moreira and Marcelo Reicher Soares A relational model for the logic of deduction 251 Andrew Schumann From pragmatic truths to emotional truths 263 Hilan Bensusan and Gregory Carneiro Paraconsistentization through antimonotonicity: towards a logic of supplement PART 4 Philosophy and history of logic 277 Diogo H. B. Dias Hans Hahn and the foundations of mathematics 289 Cassiano Terra Rodrigues A first survey of Charles S.
    [Show full text]
  • Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
    Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite.
    [Show full text]
  • Deciding the Undecidable: Wrestling with Hilbert's Problems
    Deciding the Undecidable: Wrestling with Hilbert’s Problems Solomon Feferman∗ In the year 1900, the German mathematician David Hilbert gave a dramatic address in Paris, at the meeting of the 2nd International Congress of Mathematicians—an address which was to have lasting fame and importance. Hilbert was at that point a rapidly rising star, if not superstar, in mathematics, and before long he was to be ranked with Henri Poincar´eas one of the two greatest and most influential mathematicians of the era. Like Poincar´e, Hilbert worked in an exceptional variety of areas. He had already made fundamental contributions to algebra, number theory, geometry and analysis. After 1900 he would expand his researches further in analysis, then move on to mathematical physics and finally turn to mathematical logic. In his work, Hilbert demonstrated an unusual combination of direct intuition and concern for absolute rigor. With exceptional technical power at his command, he would tackle outstanding problems, usually with great originality of approach. The title of Hilbert’s lecture in Paris was simply, “Mathematical Problems”. In it he emphasized the importance of taking on challenging problems for maintaining the progress and vitality of mathematics. And with this, he expressed a remarkable conviction in the solvability of all mathematical problems, which he even called an axiom. To quote from his lecture: Is the axiom of the solvability of every problem a peculiar characteristic of math- ematical thought alone, or is it possibly a general law inherent in the nature of the mind, that all questions which it asks must be answerable?...This convic- tion of the solvability of every mathematical problem is a powerful incentive to the worker.
    [Show full text]
  • Local Theory of Sets As a Foundation for Category Theory and Its Connection with the Zermelo–Fraenkel Set Theory
    Journal of Mathematical Sciences, Vol. 138, No. 4, 2006 LOCAL THEORY OF SETS AS A FOUNDATION FOR CATEGORY THEORY AND ITS CONNECTION WITH THE ZERMELO–FRAENKEL SET THEORY V. K. Zakharov, E. I. Bunina, A. V. Mikhalev, and P. V. Andreev UDC 510.223, 512.581 CONTENTS Introduction..............................................5764 1. First-Order Theories and LTS ....................................5767 1.1. Language of first-order theories ................................5767 1.2. Deducibility in a first-order theory . ............................5768 1.3.Aninterpretationofafirst-ordertheoryinasettheory...................5770 2.LocalTheoryofSets.........................................5772 2.1.Properaxiomsandaxiomschemesofthelocaltheoryofsets................5772 2.2.Someconstructionsinthelocaltheoryofsets........................5775 3. Formalization of the Naive Category Theory within the Framework oftheLocalTheoryofSets.....................................5776 3.1.Definitionofalocalcategoryinthelocaltheoryofsets...................5776 3.2. Functors and natural transformations and the “category of categories” and the “category of functors” in the local theory of sets generated by them . ................5777 4. Zermelo–Fraenkel Set Theory and Mirimanov–von Neumann Sets ................5779 4.1.TheproperaxiomsandaxiomschemesoftheZFsettheory................5779 4.2.OrdinalsandcardinalsintheZFsettheory.........................5782 4.3.Mirimanov–vonNeumannsetsintheZFsettheory.....................5786 5. Universes, Ordinals, Cardinals, and Mirimanov–von
    [Show full text]
  • ¿Ignoramus Et Ignorabimus?
    ¿Ignoramus et ignorabimus? Carlos TORRES ALC A R A Z En agosto de 1900 David Hilbert dictó una conferencia ante el pleno del Segundo Congreso Internacional de Matemáticas celebrado en la ciudad de París. El título de la misma era muy simple: “Problemas matemáticos”, un tema apropiado para el cambio de siglo.1 En ella, Hilbert emprendió la defensa de una convicción que le acompañó durante toda su vida: que todo problema matemático es susceptible de una solución exacta. Éste fue el punto de partida de sus subsecuentes reflexiones acerca del futuro de las matemáticas. Hilbert había pensado en esta cuestión durante mucho tiempo. Antes del Congre- so dudó entre abordar este tema o la relación entre las matemáticas y la física, un pun- to que Poincaré había contemplado tres años atrás. Su decisión final la tomó con base en una sugerencia de Minkowski: “sería más atractivo mirar hacia el futuro, enumerando una lista de problemas en los que los matemáticos habrían de ponerse a prueba durante el siglo venidero”.2 Se trata quizá de la conferencia más renombrada en la historia de las matemáticas. Tras precisar las exigencias que toda buena solución debe satisfacer, en la parte final presentó y analizó su famosa lista de 23 problemas individuales cuya resolución, pensaba, contribuiría al avance de las matemáticas en el siglo XX .3 La convicción de Hilbert En un encendido pasaje, Hilbert parte de la sugerencia de Minkowski para adentrarse en nuestro anhelo por anticipar el futuro: 1 David Hilbert, “Mathematical Problems” (trad. de Mary Winston Newson), en Proceedings of Symposia in Pure Mathematics, vol.
    [Show full text]
  • Propositional Logic
    Lecture 1 — Propositional Logic Ondrejˇ Lengal´ Faculty of Information Technology Brno University of Technology IAM’19 Logic What is (formal) logic? Logic can be considered as a branch of mathematics that studies universal principles of correct reasoning in various formal systems. “[Logic is] . the name of a discipline that analyzes the mean- ing of the concepts common to all the sciences, and estab- lishes the general laws governing the concepts.” —Alfred Tarski “To discover truths is the task of all sciences; it falls to logic to discern the laws of truth. I assign to logic the task of discovering the laws of truth, not of assertion or thought.” —Gottlob Frege Lecture 1 Propositional Logic IAM’19 2 / 47 A Brief History of Logic pre-Aristotle Zeno of Elea (490–430 BCE) I paradoxes: Achilles and the tortoise, arrow paradox, . I reductio ad absurdum = proof by contradiction Euclid (325–270 BCE) I (Elements—geometry) proofs follow axioms in a formal way I (as opposed to empirical methods) Socrates, Plato, Parmenides, . Liar Paradox (Eubulides) This statement is false. Lecture 1 Propositional Logic IAM’19 3 / 47 A Brief History of Logic Aristotle (384–322 BCE) The Father of Logic Organon: works on logic formal term logic (predec. of predicate logic) syllogisms to infer conclusions: Example (Modus Barbara) Example (Modus Calemes) All men are mortal. All men are mortal. Socrates is a man. Elvis is immortal. ) Socrates is mortal. ) Elvis is not a man. Lecture 1 Propositional Logic IAM’19 4 / 47 A Brief History of Logic Gottfried Wilhelm Leibniz
    [Show full text]