A Finitist's Manifesto: Do We Need to Reformulate the Foundations Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Weyl's Predicative Classical Mathematics As a Logic-Enriched
Weyl’s Predicative Classical Mathematics as a Logic-Enriched Type Theory? Robin Adams and Zhaohui Luo Dept of Computer Science, Royal Holloway, Univ of London {robin,zhaohui}@cs.rhul.ac.uk Abstract. In Das Kontinuum, Weyl showed how a large body of clas- sical mathematics could be developed on a purely predicative founda- tion. We present a logic-enriched type theory that corresponds to Weyl’s foundational system. A large part of the mathematics in Weyl’s book — including Weyl’s definition of the cardinality of a set and several re- sults from real analysis — has been formalised, using the proof assistant Plastic that implements a logical framework. This case study shows how type theory can be used to represent a non-constructive foundation for mathematics. Key words: logic-enriched type theory, predicativism, formalisation 1 Introduction Type theories have proven themselves remarkably successful in the formalisation of mathematical proofs. There are several features of type theory that are of particular benefit in such formalisations, including the fact that each object carries a type which gives information about that object, and the fact that the type theory itself has an inbuilt notion of computation. These applications of type theory have proven particularly successful for the formalisation of intuitionistic, or constructive, proofs. The correspondence between terms of a type theory and intuitionistic proofs has been well studied. The degree to which type theory can be used for the formalisation of other notions of proof has been investigated to a much lesser degree. There have been several formalisations of classical proofs by adapting a proof checker intended for intuitionistic mathematics, say by adding the principle of excluded middle as an axiom (such as [Gon05]). -
Starting the Dismantling of Classical Mathematics
Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem. -
Epistemic Truth and Excluded Middle* Cesare Cozzo Abstract
Penultimate draft of a paper published in in Theoria, a Swedish journal of philosophy, LXIV 2-3, Thales, Stockholm 1998, pp. 243-282. Epistemic truth and excluded middle* Cesare Cozzo Università di Roma ”La Sapienza” Dipartimento di studi filosofici ed epistemologici email: [email protected] Abstract: Can an epistemic conception of truth and an endorsement of the excluded middle (together with other principles of classical logic abandoned by the intuitionists) cohabit in a plausible philosophical view? In PART I I describe the general problem concerning the relation between the epistemic conception of truth and the principle of excluded middle. In PART II I give a historical overview of different attitudes regarding the problem. In PART III I sketch a possible holistic solution. Part I The Problem §1. The epistemic conception of truth. The epistemic conception of truth can be formulated in many ways. But the basic idea is that truth is explained in terms of epistemic notions, like experience, argument, proof, knowledge, etc. One way of formulating this idea is by saying that truth and knowability coincide, i.e. for every statement S i) it is true that S if, and only if, it is (in principle) possible to know that S. Knowledge that S can be equated with possession of a correct (or ideal) finite argument for S in an optimal (or ideal) epistemic situation. For example, mathematical knowledge can be equated with possession of a proof of a mathematical statement. But the notion of ideal argument should be wider than the notion of proof: for empirical statements like “strawberries contain sugar” an ideal argument should contain also some sensory evidence. -
A Quasi-Classical Logic for Classical Mathematics
Theses Honors College 11-2014 A Quasi-Classical Logic for Classical Mathematics Henry Nikogosyan University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/honors_theses Part of the Logic and Foundations Commons Repository Citation Nikogosyan, Henry, "A Quasi-Classical Logic for Classical Mathematics" (2014). Theses. 21. https://digitalscholarship.unlv.edu/honors_theses/21 This Honors Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Honors Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Honors Thesis has been accepted for inclusion in Theses by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. A QUASI-CLASSICAL LOGIC FOR CLASSICAL MATHEMATICS By Henry Nikogosyan Honors Thesis submitted in partial fulfillment for the designation of Departmental Honors Department of Philosophy Ian Dove James Woodbridge Marta Meana College of Liberal Arts University of Nevada, Las Vegas November, 2014 ABSTRACT Classical mathematics is a form of mathematics that has a large range of application; however, its application has boundaries. In this paper, I show that Sperber and Wilson’s concept of relevance can demarcate classical mathematics’ range of applicability by demarcating classical logic’s range of applicability. -
Mathematical Languages Shape Our Understanding of Time in Physics Physics Is Formulated in Terms of Timeless, Axiomatic Mathematics
comment Corrected: Publisher Correction Mathematical languages shape our understanding of time in physics Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would ofer a perspective that is closer to our experience of physical reality. Nicolas Gisin n 1922 Albert Einstein, the physicist, met in Paris Henri Bergson, the philosopher. IThe two giants debated publicly about time and Einstein concluded with his famous statement: “There is no such thing as the time of the philosopher”. Around the same time, and equally dramatically, mathematicians were debating how to describe the continuum (Fig. 1). The famous German mathematician David Hilbert was promoting formalized mathematics, in which every real number with its infinite series of digits is a completed individual object. On the other side the Dutch mathematician, Luitzen Egbertus Jan Brouwer, was defending the view that each point on the line should be represented as a never-ending process that develops in time, a view known as intuitionistic mathematics (Box 1). Although Brouwer was backed-up by a few well-known figures, like Hermann Weyl 1 and Kurt Gödel2, Hilbert and his supporters clearly won that second debate. Hence, time was expulsed from mathematics and mathematical objects Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. came to be seen as existing in some Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; idealized Platonistic world. right: reprinted with permission from ref. 18, Springer These two debates had a huge impact on physics. -
Heinrich Rommen, the Natural Law: a Study in Legal and Social History and Philosophy (1936)
Rommen_0017 09/15/2005 09:46 AM THE ONLINE LIBRARY OF LIBERTY © Liberty Fund, Inc. 2005 http://oll.libertyfund.org/Home3/index.php HEINRICH ROMMEN, THE NATURAL LAW: A STUDY IN LEGAL AND SOCIAL HISTORY AND PHILOSOPHY (1936) URL of this E-Book: http://oll.libertyfund.org/EBooks/Rommen_0017.pdf URL of original HTML file: http://oll.libertyfund.org/Home3/HTML.php?recordID=0017 ABOUT THE AUTHOR Heinrich Rommen was a Catholic German lawyer who practised in Germany during the Weimar Republic before fleeing to the United States in 1938. He taught in Germany and England before concluding his distinguished scholarly career at Georgetown University. ABOUT THE BOOK Originally published in German in 1936, The Natural Law is the first work to clarify the differences between traditional natural law as represented in the writings of Cicero, Aquinas, and Hooker and the revolutionary doctrines of natural rights espoused by Hobbes, Locke, and Rousseau. Beginning with the legacies of Greek and Roman life and thought, Rommen traces the natural law tradition to its displacement by legal positivism and concludes with what the author calls "the reappearance" of natural law thought in more recent times. In seven chapters each Rommen explores "The History of the Idea of Natural Law" and "The Philosophy and Content of the Natural Law." In his introduction, Russell Hittinger places Rommen’s work in the context of contemporary debate on the relevance of natural law to philosophical inquiry and constitutional interpretation. THE EDITION USED The Natural Law: A Study in Legal and Social History and Philosophy, trans. Thomas R. -
From Constructive Mathematics to Computable Analysis Via the Realizability Interpretation
From Constructive Mathematics to Computable Analysis via the Realizability Interpretation Vom Fachbereich Mathematik der Technischen Universit¨atDarmstadt zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Dipl.-Math. Peter Lietz aus Mainz Referent: Prof. Dr. Thomas Streicher Korreferent: Dr. Alex Simpson Tag der Einreichung: 22. Januar 2004 Tag der m¨undlichen Pr¨ufung: 11. Februar 2004 Darmstadt 2004 D17 Hiermit versichere ich, dass ich diese Dissertation selbst¨andig verfasst und nur die angegebenen Hilfsmittel verwendet habe. Peter Lietz Abstract Constructive mathematics is mathematics without the use of the principle of the excluded middle. There exists a wide array of models of constructive logic. One particular interpretation of constructive mathematics is the realizability interpreta- tion. It is utilized as a metamathematical tool in order to derive admissible rules of deduction for systems of constructive logic or to demonstrate the equiconsistency of extensions of constructive logic. In this thesis, we employ various realizability mod- els in order to logically separate several statements about continuity in constructive mathematics. A trademark of some constructive formalisms is predicativity. Predicative logic does not allow the definition of a set by quantifying over a collection of sets that the set to be defined is a member of. Starting from realizability models over a typed version of partial combinatory algebras we are able to show that the ensuing models provide the features necessary in order to interpret impredicative logics and type theories if and only if the underlying typed partial combinatory algebra is equivalent to an untyped pca. It is an ongoing theme in this thesis to switch between the worlds of classical and constructive mathematics and to try and use constructive logic as a method in order to obtain results of interest also for the classically minded mathematician. -
Arxiv:1204.2193V2 [Math.GM] 13 Jun 2012
Alternative Mathematics without Actual Infinity ∗ Toru Tsujishita 2012.6.12 Abstract An alternative mathematics based on qualitative plurality of finite- ness is developed to make non-standard mathematics independent of infinite set theory. The vague concept \accessibility" is used coherently within finite set theory whose separation axiom is restricted to defi- nite objective conditions. The weak equivalence relations are defined as binary relations with sorites phenomena. Continua are collection with weak equivalence relations called indistinguishability. The points of continua are the proper classes of mutually indistinguishable ele- ments and have identities with sorites paradox. Four continua formed by huge binary words are examined as a new type of continua. Ascoli- Arzela type theorem is given as an example indicating the feasibility of treating function spaces. The real numbers are defined to be points on linear continuum and have indefiniteness. Exponentiation is introduced by the Euler style and basic properties are established. Basic calculus is developed and the differentiability is captured by the behavior on a point. Main tools of Lebesgue measure theory is obtained in a similar way as Loeb measure. Differences from the current mathematics are examined, such as the indefiniteness of natural numbers, qualitative plurality of finiteness, mathematical usage of vague concepts, the continuum as a primary inexhaustible entity and the hitherto disregarded aspect of \internal measurement" in mathematics. arXiv:1204.2193v2 [math.GM] 13 Jun 2012 ∗Thanks to Ritsumeikan University for the sabbathical leave which allowed the author to concentrate on doing research on this theme. 1 2 Contents Abstract 1 Contents 2 0 Introdution 6 0.1 Nonstandard Approach as a Genuine Alternative . -
Deciding the Undecidable: Wrestling with Hilbert's Problems
Deciding the Undecidable: Wrestling with Hilbert’s Problems Solomon Feferman∗ In the year 1900, the German mathematician David Hilbert gave a dramatic address in Paris, at the meeting of the 2nd International Congress of Mathematicians—an address which was to have lasting fame and importance. Hilbert was at that point a rapidly rising star, if not superstar, in mathematics, and before long he was to be ranked with Henri Poincar´eas one of the two greatest and most influential mathematicians of the era. Like Poincar´e, Hilbert worked in an exceptional variety of areas. He had already made fundamental contributions to algebra, number theory, geometry and analysis. After 1900 he would expand his researches further in analysis, then move on to mathematical physics and finally turn to mathematical logic. In his work, Hilbert demonstrated an unusual combination of direct intuition and concern for absolute rigor. With exceptional technical power at his command, he would tackle outstanding problems, usually with great originality of approach. The title of Hilbert’s lecture in Paris was simply, “Mathematical Problems”. In it he emphasized the importance of taking on challenging problems for maintaining the progress and vitality of mathematics. And with this, he expressed a remarkable conviction in the solvability of all mathematical problems, which he even called an axiom. To quote from his lecture: Is the axiom of the solvability of every problem a peculiar characteristic of math- ematical thought alone, or is it possibly a general law inherent in the nature of the mind, that all questions which it asks must be answerable?...This convic- tion of the solvability of every mathematical problem is a powerful incentive to the worker. -
¿Ignoramus Et Ignorabimus?
¿Ignoramus et ignorabimus? Carlos TORRES ALC A R A Z En agosto de 1900 David Hilbert dictó una conferencia ante el pleno del Segundo Congreso Internacional de Matemáticas celebrado en la ciudad de París. El título de la misma era muy simple: “Problemas matemáticos”, un tema apropiado para el cambio de siglo.1 En ella, Hilbert emprendió la defensa de una convicción que le acompañó durante toda su vida: que todo problema matemático es susceptible de una solución exacta. Éste fue el punto de partida de sus subsecuentes reflexiones acerca del futuro de las matemáticas. Hilbert había pensado en esta cuestión durante mucho tiempo. Antes del Congre- so dudó entre abordar este tema o la relación entre las matemáticas y la física, un pun- to que Poincaré había contemplado tres años atrás. Su decisión final la tomó con base en una sugerencia de Minkowski: “sería más atractivo mirar hacia el futuro, enumerando una lista de problemas en los que los matemáticos habrían de ponerse a prueba durante el siglo venidero”.2 Se trata quizá de la conferencia más renombrada en la historia de las matemáticas. Tras precisar las exigencias que toda buena solución debe satisfacer, en la parte final presentó y analizó su famosa lista de 23 problemas individuales cuya resolución, pensaba, contribuiría al avance de las matemáticas en el siglo XX .3 La convicción de Hilbert En un encendido pasaje, Hilbert parte de la sugerencia de Minkowski para adentrarse en nuestro anhelo por anticipar el futuro: 1 David Hilbert, “Mathematical Problems” (trad. de Mary Winston Newson), en Proceedings of Symposia in Pure Mathematics, vol. -
Model Theory on Finite Structures∗
Model Theory on Finite Structures∗ Anuj Dawar Department of Computer Science University of Wales Swansea Swansea, SA2 8PP, U.K. e-mail: [email protected] 1 Introduction In mathematical logic, the notions of mathematical structure, language and proof themselves become the subject of mathematical investigation, and are treated as first class mathematical objects in their own right. Model theory is the branch of mathematical logic that is particularly concerned with the relationship between structure and language. It seeks to establish the limits of the expressive power of our formal language (usually the first order predicate calculus) by investigating what can or cannot be expressed in the language. The kinds of questions that are asked are: What properties can or cannot be formulated in first order logic? What structures or relations can or cannot be defined in first order logic? How does the expressive power of different logical languages compare? Model Theory arose in the context of classical logic, which was concerned with resolving the paradoxes of infinity and elucidating the nature of the infinite. The main constructions of model theory yield infinite structures and the methods and results assume that structures are, in general, infinite. As we shall see later, many, if not most, of these methods fail when we confine ourselves to finite structures Many questions that arise in computer science can be seen as being model theoretic in nature, in that they investigate the relationship between a formal language and a structure. However, most structures of interest in computer science are finite. The interest in finite model theory grew out of questions in theoretical computer science (particularly, database theory and complexity theory). -
Propositional Logic
Lecture 1 — Propositional Logic Ondrejˇ Lengal´ Faculty of Information Technology Brno University of Technology IAM’19 Logic What is (formal) logic? Logic can be considered as a branch of mathematics that studies universal principles of correct reasoning in various formal systems. “[Logic is] . the name of a discipline that analyzes the mean- ing of the concepts common to all the sciences, and estab- lishes the general laws governing the concepts.” —Alfred Tarski “To discover truths is the task of all sciences; it falls to logic to discern the laws of truth. I assign to logic the task of discovering the laws of truth, not of assertion or thought.” —Gottlob Frege Lecture 1 Propositional Logic IAM’19 2 / 47 A Brief History of Logic pre-Aristotle Zeno of Elea (490–430 BCE) I paradoxes: Achilles and the tortoise, arrow paradox, . I reductio ad absurdum = proof by contradiction Euclid (325–270 BCE) I (Elements—geometry) proofs follow axioms in a formal way I (as opposed to empirical methods) Socrates, Plato, Parmenides, . Liar Paradox (Eubulides) This statement is false. Lecture 1 Propositional Logic IAM’19 3 / 47 A Brief History of Logic Aristotle (384–322 BCE) The Father of Logic Organon: works on logic formal term logic (predec. of predicate logic) syllogisms to infer conclusions: Example (Modus Barbara) Example (Modus Calemes) All men are mortal. All men are mortal. Socrates is a man. Elvis is immortal. ) Socrates is mortal. ) Elvis is not a man. Lecture 1 Propositional Logic IAM’19 4 / 47 A Brief History of Logic Gottfried Wilhelm Leibniz