Aedes Albopictus - + + Aedes Aegyp Vector Competence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Aedes Aegypti?
Am. J. Trop. Med. Hyg., 98(6), 2018, pp. 1563–1565 doi:10.4269/ajtmh.17-0866 Copyright © 2018 by The American Society of Tropical Medicine and Hygiene Perspective Piece Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? Jeffrey R. Powell* Yale University, New Haven, Connecticut Abstract. Although numerous viruses are transmitted by mosquitoes, four have caused the most human suffering over the centuries and continuing today. These are the viruses causing yellow fever, dengue, chikungunya, and Zika fevers. Africa is clearly the ancestral home of yellow fever, chikungunya, and Zika viruses and likely the dengue virus. Several species of mosquitoes, primarily in the genus Aedes, have been transmitting these viruses and their direct ancestors among African primates for millennia allowing for coadaptation among viruses, mosquitoes, and primates. One African primate (humans) and one African Aedes mosquito (Aedes aegypti) have escaped Africa and spread around the world. Thus it is not surprising that this native African mosquito is the most efficient vector of these native African viruses to this native African primate. This makes it likely that when the next disease-causing virus comes out of Africa, Ae. aegypti will be the major vector to humans. Mosquito-borne viruses (arboviruses) have been afflicting The timeline for the spread of Ae. aegypti is reasonably clear humans for millennia and continue to cause immeasurable and is consistent with epidemiologic records. Beginning in the suffering. While not the only mosquito-borne viruses, the fol- sixteenth century, European ships to the New World stopped lowing four have been the most widespread and notorious in in West Africa to pick up native Africans for the slave trade8 terms of severity of diseases and number of humans affected: and very likely picked up Ae. -
Zika Virus Outside Africa Edward B
Zika Virus Outside Africa Edward B. Hayes Zika virus (ZIKV) is a flavivirus related to yellow fever, est (4). Serologic studies indicated that humans could also dengue, West Nile, and Japanese encephalitis viruses. In be infected (5). Transmission of ZIKV by artificially fed 2007 ZIKV caused an outbreak of relatively mild disease Ae. aegypti mosquitoes to mice and a monkey in a labora- characterized by rash, arthralgia, and conjunctivitis on Yap tory was reported in 1956 (6). Island in the southwestern Pacific Ocean. This was the first ZIKV was isolated from humans in Nigeria during time that ZIKV was detected outside of Africa and Asia. The studies conducted in 1968 and during 1971–1975; in 1 history, transmission dynamics, virology, and clinical mani- festations of ZIKV disease are discussed, along with the study, 40% of the persons tested had neutralizing antibody possibility for diagnostic confusion between ZIKV illness to ZIKV (7–9). Human isolates were obtained from febrile and dengue. The emergence of ZIKV outside of its previ- children 10 months, 2 years (2 cases), and 3 years of age, ously known geographic range should prompt awareness of all without other clinical details described, and from a 10 the potential for ZIKV to spread to other Pacific islands and year-old boy with fever, headache, and body pains (7,8). the Americas. From 1951 through 1981, serologic evidence of human ZIKV infection was reported from other African coun- tries such as Uganda, Tanzania, Egypt, Central African n April 2007, an outbreak of illness characterized by rash, Republic, Sierra Leone (10), and Gabon, and in parts of arthralgia, and conjunctivitis was reported on Yap Island I Asia including India, Malaysia, the Philippines, Thailand, in the Federated States of Micronesia. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Expert Meeting on Chikungunya Modelling
MEETING REPORT Expert meeting on chikungunya modelling Stockholm, April 2008 www.ecdc.europa.eu ECDC MEETING REPORT Expert meeting on chikungunya modelling Stockholm, April 2008 Stockholm, March 2009 © European Centre for Disease Prevention and Control, 2009 Reproduction is authorised, provided the source is acknowledged, subject to the following reservations: Figures 9 and 10 reproduced with the kind permission of the Journal of Medical Entomology, Entomological Society of America, 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876, USA. MEETING REPORT Expert meeting on chikungunya modelling Table of contents Content...........................................................................................................................................................iii Summary: Research needs and data access ...................................................................................................... 1 Introduction .................................................................................................................................................... 2 Background..................................................................................................................................................... 3 Meeting objectives ........................................................................................................................................ 3 Presentations ................................................................................................................................................. -
An Overview of Mosquito Vectors of Zika Virus
Microbes and Infection xxx (2018) 1e15 Contents lists available at ScienceDirect Microbes and Infection journal homepage: www.elsevier.com/locate/micinf An overview of mosquito vectors of Zika virus Sebastien Boyer a, Elodie Calvez b, Thais Chouin-Carneiro c, Diawo Diallo d, * Anna-Bella Failloux e, a Institut Pasteur of Cambodia, Unit of Medical Entomology, Phnom Penh, Cambodia b Institut Pasteur of New Caledonia, URE Dengue and Other Arboviruses, Noumea, New Caledonia c Instituto Oswaldo Cruz e Fiocruz, Laboratorio de Transmissores de Hematozoarios, Rio de Janeiro, Brazil d Institut Pasteur of Dakar, Unit of Medical Entomology, Dakar, Senegal e Institut Pasteur, URE Arboviruses and Insect Vectors, Paris, France article info abstract Article history: The mosquito-borne arbovirus Zika virus (ZIKV, Flavivirus, Flaviviridae), has caused an outbreak Received 6 December 2017 impressive by its magnitude and rapid spread. First detected in Uganda in Africa in 1947, from where it Accepted 15 January 2018 spread to Asia in the 1960s, it emerged in 2007 on the Yap Island in Micronesia and hit most islands in Available online xxx the Pacific region in 2013. Subsequently, ZIKV was detected in the Caribbean, and Central and South America in 2015, and reached North America in 2016. Although ZIKV infections are in general asymp- Keywords: tomatic or causing mild self-limiting illness, severe symptoms have been described including neuro- Arbovirus logical disorders and microcephaly in newborns. To face such an alarming health situation, WHO has Mosquito vectors Aedes aegypti declared Zika as an emerging global health threat. This review summarizes the literature on the main fi Vector competence vectors of ZIKV (sylvatic and urban) across all the ve continents with special focus on vector compe- tence studies. -
A Total of 68 Cases Were Notified in Africa and South America in 1976
Wkfy Epidem. Kec. - Relevéepidem. Iwbd.: 1977, 52, 309-316 No. 39 WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTÉ GENEVA GENÈYE WEEKLY EPIDEMIOLOGICAL RECORD RELEVE EPIDEMIOLOGIQUE HEBDOMADAIRE Epidemiological Surveillance o f Communicable Diseases Service de la Surveillance épidémiologique des Maladies transmissibles Telegraphic Address: EPIDNATIONS GENEVA Telex 27S21 Adresse télégraphique: EPIDNATIONS GENÈVE Télex 27821 Automatic Telex Reply Service Service automatique de réponse Telex 28150 Geneva with ZCZC and ENGL for a reply in P-nglkb Télex 28150 Genève suivi de ZCZC et FRAN pour une réponse en français 30 SEPTEMBER 1977 52nd YEAR — 52e ANNÉE 30 SEPTEMBRE 1977 YELLOW FEVER IN 1976 LA FIÈVRE JAUNE EN 1976 A total of 68 cases were notified in Africa and South America in Un nombre total de 68 cas a été notifié en Afrique et en Amérique 1976, 35 of which were fatal, as compared with 301 cases, including du Sud en 1976, dont 35 furent mortels, comparé à 301 cas, dont 135 135 deaths, in 1975 (Table 1, Fig. 1). décès, en 1975 (Tableau 1, Fig. 1). Fig. 1 Jungle Yellow Fever in South America and Yellow Fever in Africa, 1976 Fièvre jaune de brousse en Amérique du Sud et fièvre jaune en Afrique, 1976 Epidemiological notes contained in this number; Informations épidémiologiques contenues dans ce numéro: Cholera, Community Water Fluoridation, Influenza, Rabies Choléra, fièvre jaune, fluoration de l’eau des réseaux publics, Surveillance, Smallpox, Yellow Fever. grippe, surveillance de la rage, variole. List of Newly Infected Areas, p. 315. Liste des zones nouvellement infectées, p. 315. Wkl? Eptdetn, Ree. • No. 39 - 30 Sept. -
Chikungunya Virus, Epidemiology, Clinics and Phylogenesis: a Review
Asian Pacific Journal of Tropical Medicine (2014)925-932 925 Contents lists available at ScienceDirect IF: 0.926 Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi:10.1016/S1995-7645(14)60164-4 Chikungunya virus, epidemiology, clinics and phylogenesis: A review Alessandra Lo Presti1, Alessia Lai2, Eleonora Cella1, Gianguglielmo Zehender2, Massimo Ciccozzi1,3* 1Department of Infectious Parasitic and Immunomediated Diseases, Epidemiology Unit, Reference Centre on Phylogeny, Molecular Epidemiology and Microbial Evolution (FEMEM), Istituto Superiore di Sanita`, Rome, Italy 2Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy 3University Campus-Biomedico, Rome, Italy ARTICLE INFO ABSTRACT Article history: Chikungunya virus is a mosquito-transmitted alphavirus that causes chikungunya fever, a febrile Received 14 April 2014 illness associated with severe arthralgia and rash. Chikungunya virus is transmitted by culicine Received in revised form 15 July 2014 mosquitoes; Chikungunya virus replicates in the skin, disseminates to liver, muscle, joints, Accepted 15 October 2014 lymphoid tissue and brain, presumably through the blood. Phylogenetic studies showed that the Available online 20 December 2014 Indian Ocean and the Indian subcontinent epidemics were caused by two different introductions of distinct strains of East/Central/South African genotype of CHIKV. The paraphyletic grouping Keywords: of African CHIK viruses supports the historical -
William Hepburn Russell Lumsden Scotland Has a Proud History of Nurturing Distinguished Contributors to Our Understanding of Disease in the Tropics
William Hepburn Russell Lumsden Scotland has a proud history of nurturing distinguished contributors to our understanding of disease in the tropics. Among these must be numbered Russell Lumsden, medical entomologist, virologist and parasitologist, but above all a man with boundless enthusiasm for the entire natural world. Russell became a keen naturalist while still at school. Born in Forfar on 27 March, 1914, he moved with his family to Darlington in 1919 when his father became Schools’ Medical Officer for Durham County. He was educated at the Queen Elizabeth Grammar School there, but in 1931 he was awarded a Carnegie Scholarship to read Zoology at Glasgow University under Sir John Graham Kerr. Russell took part in successive student expeditions to Canna in the Inner Hebrides and wrote detailed reports on the entomology of these and on various projects in marine biology. His dedication to natural history is splendidly illustrated by a paper in The Entomologist’s Monthly Magazine, recounting how, while sunning himself on a jetty at Lake Windermere after swimming, he found an old nail and kept a tally of the different prey of pond skaters by making scratches on the woodwork. After graduation with First Class Honours, Russell went on to qualify in medicine at Glasgow and wrote articles for Surgo, the Glasgow University Medical Journal, acting as its editor in 1938. His companion in all his student activities was Alexander J Haddow, (later FRSE, FRS): both were later to become world authorities on mosquito- borne disease. After receiving his medical degree in 1938, Russell was awarded a Medical Research Council Fellowship for work at the Liverpool School of Tropical Medicine. -
Zika Virus in Southeastern Senegal: Survival of the Vectors and the Virus
Diouf et al. BMC Infectious Diseases (2020) 20:371 https://doi.org/10.1186/s12879-020-05093-5 RESEARCH ARTICLE Open Access Zika virus in southeastern Senegal: survival of the vectors and the virus during the dry season Babacar Diouf*, Alioune Gaye, Cheikh Tidiane Diagne, Mawlouth Diallo and Diawo Diallo* Abstract Background: Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. Methods: Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. Results: A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes. -
Natural Infection of Aedes Aegypti, Ae. Albopictus and Culex Spp. with Zika Virus in Medellin, Colombia Infección Natural De Aedes Aegypti, Ae
Investigación original Natural infection of Aedes aegypti, Ae. albopictus and Culex spp. with Zika virus in Medellin, Colombia Infección natural de Aedes aegypti, Ae. albopictus y Culex spp. con virus Zika en Medellín, Colombia Juliana Pérez-Pérez1 CvLAC, Raúl Alberto Rojo-Ospina2, Enrique Henao3, Paola García-Huertas4 CvLAC, Omar Triana-Chavez5 CvLAC, Guillermo Rúa-Uribe6 CvLAC Abstract Fecha correspondencia: Introduction: The Zika virus has generated serious epidemics in the different Recibido: marzo 28 de 2018. countries where it has been reported and Colombia has not been the exception. Revisado: junio 28 de 2019. Although in these epidemics Aedes aegypti traditionally has been the primary Aceptado: julio 5 de 2019. vector, other species could also be involved in the transmission. Methods: Mosquitoes were captured with entomological aspirators on a monthly ba- Forma de citar: sis between March and September of 2017, in four houses around each of Pérez-Pérez J, Rojo-Ospina the 250 entomological surveillance traps installed by the Secretaria de Sa- RA, Henao E, García-Huertas lud de Medellin (Colombia). Additionally, 70 Educational Institutions and 30 P, Triana-Chavez O, Rúa-Uribe Health Centers were visited each month. Results: 2 504 mosquitoes were G. Natural infection of Aedes captured and grouped into 1045 pools to be analyzed by RT-PCR for the aegypti, Ae. albopictus and Culex detection of Zika virus. Twenty-six pools of Aedes aegypti, two pools of Ae. spp. with Zika virus in Medellin, albopictus and one for Culex quinquefasciatus were positive for Zika virus. Colombia. Rev CES Med 2019. Conclusion: The presence of this virus in the three species and the abundance 33(3): 175-181. -
SY10.01 Epidemiology of Arthritogenic Arboviruses Affecting
6/24/2019 National Center for Emerging and Zoonotic Infectious Diseases National Center for Emerging and Zoonotic Infectious Diseases The Story of Mosquito‐Borne Viruses that Cause Joint Pain Epidemiology of Arthritogenic Arboviruses among Travelers Affecting Travelers Susan Hills MBBS, MTH Medical Epidemiologist Division of Vector‐Borne Diseases Centers for Disease Control and Prevention 16th Conference of the International Society of Travel Medicine June 8, 2019 12 What: Alphaviruses Symptoms of alphaviral diseases Sindbis virus 34 Why is clinician awareness of these diseases important? Potential for rapid spread . Disease burden – Common: Chikungunya –Less common: Ross River, Mayaro, O’nyong‐nyong, Sindbis . Geographically widely distributed Robinson MC. Trans Roy Soc Trop Med Hyg 1955 56 1 6/24/2019 Travelers can be sentinels of infection Traveler’s role in spread of infection Lindh E. Open Forum ID 2018 Tsuboi 2016. Emerging Infectious Diseases 78 Chikungunya 910 Chikungunya Transmission cycle Sylvatic cycle . First recognized during Aedes furcifer, Aedes africanus outbreak in Tanzania in 1952–53 . ‘that which bends up’ or Chimpanzees, monkeys, Chimpanzees, ‘to become contorted’ baboons monkeys, baboons (Makonde language) Aedes furcifer, Aedes africanus Source: PAHO, 2011. Preparedness and Response for Chikungunya Virus Introduction in the Americas Available at www..paho.org Acknowledgement for graphic: Dr Ann Powers, CDC 11 12 2 6/24/2019 Transmission cycle Mosquito vectors Sylvatic cycle Urban cycle Aedes aegypti Aedes furcifer, Aedes africanus Aedes albopictus Chimpanzees, monkeys, Chimpanzees, baboons monkeys, baboons Aedes aegypti Aedes albopictus . Identified by white stripes on bodies and legs Aedes aegypti Aedes furcifer, Aedes africanus Aedes albopictus . Aggressive daytime biters with peak dawn and dusk . -
The Zika Virus Species of Aedes Mosquito, Aedes Furcifer 109 (19.46
Journal of Agriculture and Veterinary Sciences Volume 10, Number 1, 2018 ISSN: 2277-0062 POTENTIAL ZIKA VIRUS VECTORS OF KAUGAMA LOCAL GOVERNMENT AREA, JIGAWA STATE, NIGERIA Ahmed, U.A. Department of Biological Science, Sule Lamido University, Kafin Hausa, Jigawa State, Nigeria Email: [email protected] ABSTRACT The Zika virus strain responsible for the outbreak in Brazil has been detected in Africa for the first time. This information will help African countries to re-evaluate their level of risk and adopt increase their levels of preparedness. These should include the study of potential vectors responsible for the disease. Identification of potential Zika virus vectors in Kaugama revealed the presence of five species of Aedes mosquito, Aedes furcifer 109 (19.46%), A. aegypti 92 (16.43%), A. africanus 132 (23.57%), A. albopictus 112 (20.00%) and A. taylori 115 (20.54%). Aedes africanus was the most abundant species encountered. Analysis of species abundance showed no significant difference (p>0.05). The abundance of the vectors was suggested to be due to large number of breeding places in the study area and probably improper mosquito control. Detection of Zika virus from the collected vectors is of great importance, serological detection of specific antibodies against Zika virus from the inhabitants is valuable tool to prove them as vectors and it is good to eradicate the potential vectors from the area. Keywords: Kaugama, Potential, Species, Vectors, Zika virus INTRODUCTION Zika virus is an emerging mosquito-borne virus that was first identified in Uganda in 1947 in rhesus monkeys. Its name 58 Journal of Agriculture and Veterinary Sciences Volume 10, Number1, 2018 comes from Zika forest of Uganda.